
Introduction

The proper number of subjects required to accomplish the 
purpose of a study should be considered during the planning 
stage of a clinical study. Incorrect calculation of the sample size 
not only wastes time and resources but also raises ethical prob-
lems. Too few subjects can fail to provide appropriate scientific 
values for the study results, and they may expose the subjects 
to potential risks without any benefit. If the number of subjects 
is unnecessarily large, the purpose of the study will have been 
accomplished even before the end of the study, and the partici-
pation of some of the subjects may have been meaningless. In 
other words, an appropriate sample size is very important for the 
validity, reliability, accuracy, integrity, and ethicality of a study. 

However, calculating an appropriate sample size is not always easy.
Sample size calculations are divided into the following four 

parts depending on the methods and procedures used. These 
parts are termed sample size estimation/determination, justi-
fication, adjustment, and re-estimation or interim analysis [1]. 
First, sample size estimation/determination is done to estimate 
the minimum power of a test required by a clinical study (for 
example, 80% power) and to calculate the sample size neces-
sary to secure the accuracy and reliability of the target statistical 
values. Second, justification of a sample size is done to verify the 
statistical evidence or justification of the sample size that has 
already been determined, as the sample size can be affected by 
limited research funds, subjects with rare disorders, ethical is-
sues, and other limitations of the study. Third, the sample size is 
adjusted for several factors, such dropouts or covariates, in order 
to allocate a proper number of subjects. Finally, re-estimating 
the sample size enables is done for greater accuracy because the 
sample size estimated when planning the study includes uncer-
tainty. Generally a re-estimation is done using data collected 
up to a certain point in time during the study process such that 
sufficient power of the test can be maintained through an ad-
justment of Type I error. However, to perform a re-estimation, 
the clinical study protocol should describe in detail the method 
used to re-estimate the sample size [1]. 

The stage of study planning is initially reviewed given that the 
calculation of an appropriate sample size starts from that stage. 

Statistical Round

Calculating the sample size is a vital step during the planning of a study in order to ensure the desired power for detect-
ing clinically meaningful differences. However, estimating the sample size is not always straightforward. A number of key 
components should be considered to calculate a suitable sample size. In this paper, general considerations for conducting 
sample size calculations for inequality tests are summarized.
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Considerations during Sample Size 
Calculations

Considering that this article focuses on clinical studies, the 
following factors are assumed. The study design is critical during 
sample size estimations, and this article focuses on the most 
frequently used parallel design. The cross-over design, which is 
also frequently used, differs considerably from the parallel de-
sign with respect to the statistical hypotheses and assumptions 
used. Therefore, it is excluded from the scope of this article. 
Random allocation as performed during the parallel design pro-
cess means that subjects are randomly allocated to each group 
in an independent manner; thus, the response variables may be 
assumed to be independent.

On the basis of the assumptions described above, the fol-
lowing items are needed when calculating the sample size. In 
addition to the present article, an article published by Lee and 
Kang [2] and an article entitled §314.126 Adequate and Well-
Controlled Studies1) published on the website of the US Govern-
ment Publishing Office may help to clarify each item.

Study objectives

First, the objectives of the study should be clear. Study ob-
jectives undergo statistical testing after the establishment of 
hypotheses. In determining the study objectives, the type of 
hypotheses test – for example, an inequality test, non-inferiority 
test, equivalence test, superiority test, and bioequivalence test – 
should be determined simultaneously. Study objectives to which 
an inequality test is applied are established in most pilot studies 
or clinical studies. Such a study objective can be exemplified in 
the following sentence: ‘The anesthesia induction time of the 
new intravenous anesthetic is different from that of the conven-
tional intravenous anesthetic in healthy volunteers.’

Hypotheses

Hypotheses are assumptions with respect to a population to 
which a treatment (for example, a study drug, device, or proce-
dure) is applied, and they are established as null hypotheses (H0) 
and alternative hypotheses (Ha). A null hypothesis is ‘what the 
researcher wants to investigate,’ while an alternative hypothesis 
is ‘what the researcher wants to show.’ If the previous example 
is used again, the null hypothesis is ‘The (average) anesthesia 
induction time of the new intravenous anesthetic (μnew) is equal 
to the (average) anesthesia induction time of the conventional 

intravenous anesthetic (μold),’ and the alternative hypothesis is 
‘The (average) anesthesia induction time of the new intravenous 
anesthetic (μnew) is shorter than the (average) anesthesia induc-
tion time of the conventional intravenous anesthetic (μold).’ In 
fact, an accurate description of the alternative hypothesis in an 
inequality test is ‘The (average) anesthesia induction time of the 
new intravenous anesthetic is not equal to the (average) anesthe-
sia induction time of the conventional intravenous anesthetic.’ 
However, in clinical studies, even when the hypothesis is estab-
lished as if in a one-sided test, a two-sided test is performed in 
most cases in order to maintain a more conservative point of 
view, because the probability that a null hypothesis is rejected is 
higher in a one-sided test where the significance level is set to be 
high or low on one side. In other words, when a new treatment 
which does not cause an actual difference is regarded as if it did 
in fact cause a difference, the result may be used clinically.

Hypotheses in a two-sided test are as follows:

H0: μnew = μold       versus       Ha: μnew ≠ μold

Study design

During the study design process, the allocation and treat-
ment of the subjects are determined. There are many study 
design methods, but this article focuses on the parallel design, 
as noted above. Using the previous example again, in a parallel 
design, subjects are randomly allocated into different groups 
to which either a conventional intravenous anesthetic or a new 
intravenous anesthetic is injected. As a result, only one type of 
intravenous anesthetic is injected into a subject.

Primary endpoint

Among the variety of variables to be measured to verify the 
study objectives, the response variable, which is the most ap-
propriate for the study objectives and most meaningful from 
a clinical perspective, is chosen as the primary endpoint, as 
determined by the study objectives and hypotheses. A primary 
endpoint uses the normal, binary, ordinal, and time-to-event 
data types. In the example above, if the effects of a new intrave-
nous anesthetic and a conventional intravenous anesthetic are 
compared, such variables as the anesthetic induction time, the 
postanesthetic recovery time, the variation of the hemodynamic 
parameters during anesthesia, and the existence of pain during 
the intravenous injection may be selected as a primary endpoint. 
The choice of an endpoint as a primary endpoint depends on 
the study objectives. In the previous example, the anesthetic 
induction time, a normal data type, was chosen as the primary 
endpoint.

The number of primary endpoints may be two or more, 
1)http://www.ecfr.gov/cgi-bin/text-idx?SID=7868ff31266e298be4f23984a60

b6771&mc=true&node=se21.5.314_1126&rgn=div8
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though only one is used in most studies. However, given that the 
risk of false-positive and false-negative results for an evaluation 
of a treatment may increase with an increase in the number of 
primary endpoints, it is recommended to choose one primary 
endpoint appropriate to study the objectives and to calculate the 
sample size on the basis of that endpoint. Other endpoints apart 
from the primary endpoint are established as secondary or ter-
tiary endpoints.

Type I error, type II error, and power

Rejection of a true null hypothesis is known as a Type I error 
(α), while not rejecting a false null hypothesis is a Type II error 
(β). Therefore, power refers to the probability of avoiding a Type 
II error (1-β), which is the probability that rejection of a null hy-
pothesis is right when an alternative hypothesis is true.

Power = 1 − β = P (reject H0 when Ha is true)

Consider the previous example of intravenous anesthetics. 
The test may give the erroneous result that the anesthetic induc-
tion time of a new intravenous anesthetic is not equal to that 
of a conventional intravenous anesthetic, although they are in 
fact equal, which is a Type I error. Another erroneous result, the 
finding that they are equal when they actually are not, is a Type 
II error. Therefore, power here refers to the probability that the 
null hypothesis that the anesthetic induction times of the two 
intravenous anesthetics are equal is tested and found to be false 
when the anesthetic induction times are actually not equal. Nei-
ther Type I error nor Type II error is desired, but the probability 
of committing one of the two types of error is increased when 
that of the other is decreased if the sample size is fixed. There-
fore, in order to decrease the occurrences of both types of errors, 
the sample size should be increased.

Power analysis

In a power analysis, the sample size is affected by the level of 
Type II error. In addition to a power analysis, also available are 
a precision analysis, where the Type I error or confidence level 

is calculated; a probability assessment, which is applicable when 
the occurrence is lower; and sample size re-estimation. However, 
this article focuses on the power analysis.

Because Type I error is generally considered as more severe 
in clinical studies, an upper limit of Type I error is established 
as an appropriate significance level for hypothesis testing, and 
Type II error is minimized (or the power is maximized) through 
an appropriate sample size. In other words, a hypothesis test is 
performed on the basis of a predetermined significance level 
(generally 5%) and power level (generally 80 to 90%). In addi-
tion to the previously mentioned significance level and power, a 
power analysis requires information about the clinically signifi-
cant difference (δ) and the standard deviation (s) of the primary 
endpoint.

Effect size2) 

In studies to test differences, a null hypothesis is established 
as ‘There is not a difference between the two treatment groups.’ 
Here, the calculated difference in the means (or ratios) is an un-
standardized effect size. A standardized effect size is obtained by 
adjusting (dividing) the difference in the means by the standard 
deviation. The effect size noted during the calculation of the 
sample size is always the standardized effect size. When prior 
knowledge for the calculation of the standardized effect size is 
not sufficient, a commonly applied effect size is 0.25–0.50, which 
was initially suggested by Cohen [3] and which is still important.

Clinically significant difference

The effect size is also referred to as the clinically significant 
difference or the minimum value of the significant difference. 
Unfortunately, there is not an absolute rule regarding an ap-
propriate effect size. However, determination of the effect size 
should be based on statistical validity and clinical judgment [4]. 
An effect size may be expressed as the variation of the absolute 
value (e.g., a decrease in the anesthetic induction time by one 
minute) or the variation of the ratio (e.g., a decrease in the anes-
thetic induction time by 20%) of the primary endpoint.

2)# Scripts in R (R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL 
https://www.R-project.org/)

	 # Data from the Korean Statistical Information Service (2013, high school seniors)
	 # Men have a mean height (ht) of 174 cm with a standard deviation (sd) of 8 cm (n = 100)
	 # Women have a mean height of 161 cm with a standard deviation of 8 cm (n = 100)
	 # Standardized effect size (ES) is calculated using the codes below.

	ht.men <- 174; sd.men <- 8; n.men <- 100
	ht.women <- 161; sd.women <- 8; n.women <- 100
	pooled.sd <- sqrt(((n.men - 1) * sd.men^2 + (n.women - 1) * sd.women^2) / (n.men + n.women - 2))
	standardized.ES <- ((ht.men - ht.women) / pooled.sd)
	round(standardized.ES, digits = 2)
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Population variance

An estimate of the population variance3) is another compo-
nent of a sample size calculation. Because it is obvious that the 
quality of the variance has a significant effect on the sample size 
calculation [5], the following considerations should be consid-
ered when selecting the references for calculating the estimates 
of the population variances:

A. Study design: Is the study design of the reference similar 
to that of the present study? The variance of an observa-
tion study may be greater than that of a randomized con-
trolled study. If a multi-center clinical study is planned, 
questions such as ‘Is the reference study designed similarly 
to the present study?’ and ‘Is the time interval from the 
treatment to outcome measurement similar?’ should be 
taken into account.

B. Study subjects: Are the subjects of the reference similar 
to the subjects of the present study? Demographical simi-
larity is necessary. In the case of a multi-center study, it 
should be verified as to whether the races or nationalities 
of the subjects are similar. In addition, questions such as 
‘Do the subjects have similar diseases or severity levels? 
and ‘Was the study conducted during the same season or 
period (asthma, influenza, etc.)?’ should be considered.

C. Analysis: Are the analytical methods and summary statis-
tical methods applied to the references identical to those 
of the present study? In addition to the application of the 
same analytical methods, was a covariate (e.g., a reference 
value of a response variable) also analyzed if there was 
one? Including a covariate may reduce the variance esti-
mate and the sample size [5].

In planning a clinical study, reference information is often 
unavailable. However, even when the references that provide 
sufficient information are available, it is recommended that the 
study protocol should include in advance a re-estimation of the 
variance in order to obtain a more accurate variance estimate.

Other considerations

Potential dropouts

The dropout rate may be determined with reference to previ-
ous studies or on the basis of the experiences of the researchers. 
A common mistake when applying a dropout ratio is to add as 
many samples as the number of dropouts to the calculated sam-

ple size. For example, if the calculated sample size is 100 and the 
potential dropout rate is 20%, the final sample size should not 
be 120, but 125, because a dropout rate of 20% is expected with 
reference to the finally determined sample size (If the dropout 
rate is 20% out of 120 subjects, only 96 subjects remain, which 
decreases the power).

Sufficient number of available participants satisfying 
inclusion criteria

A sample size which is greater than the number of available 
participants to satisfy inclusion criteria is not useful. If necessary, 
the criteria for the population to which available participants 
belong may be changed or the sampling method or sampling 
location is modified.

Lasagna’s Law

It is an empirical rule that the number of available partici-
pants is drastically decreased once a study begins, whereas the 
number recovers after the study ends. The process of collecting 
participants is difficult to predict even in a well-planned study; 
thus, the success ratio during the participant collection phase 
should be anticipated very carefully. 

Summary

An appropriate sample size may not be calculated simply by 
quoting the estimated values of the mean and standard devia-
tion from previously published reference data. When calculating 
an appropriate sample size, clearly defined study objectives, the 
study design, the hypotheses and primary endpoints adequate 
for the study objectives, and proper understanding and determi-
nation of the significance level and power are all important. A 
more accurate sample size may be calculated by deriving useful 
estimation values from proper data. A sample size may be cal-
culated using a commercially available or free software program 
or website or even manually. However, an accurate sample size is 
hardly expected to arise if incorrectly selected estimation values 
are employed.

An approach which is more conservative than that presented 
here is asserted in some cases, which is that the difference be-
tween the upper confidence limit of a null hypothesis and the 
lower confidence limit of an alternative hypothesis (or the dif-
ference of the reverse case) should be clinically significant [6]. 
Another conservative approach is the recommendation that the 
power should set at 90%, which is higher than the 80% mark 
commonly applied in clinical studies. Such an increased power 
level reduces the incidence of Type II error by half, and a higher 
power level is retained even if a sufficient number of subjects 
are not collected. In any case, the sample size is increased and 
the time and cost factors are increased as well, but the results are 

3)
Pooled variance (s2) = 

(n1 − 1)·s1
2 + (n2 − 1)·s2

2

n1 + n2 − 2
	 n1: the number of subjects in group 1. n2: the number of subjects in group 2. 

s1: standard deviation of group 1. s2: standard deviation of group 2.
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more likely to become reliable.
The previously discussed considerations are also important 

during sample size calculations in other study designs and when 
using analytical methods that have not been discussed in this 

article, including the cross-over design, dose-response studies, 
nonparametric studies, and in analyses of variance with repeated 
measures.
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