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Although extensive epidemiological and laboratory studies have been performed to identify the environmental and immunological
causes of atopy, genetic predisposition seems to be the biggest risk factor for allergic diseases. The onset of atopic diseases may
be the result of heritable changes of gene expression, without any alteration in DNA sequences occurring in response to early
environmental stimuli. Findings suggest that the establishment of a peculiar epigenetic pattern may also be generated by oxidative
stress (OS) and perpetuated by the activation of OS-related genes. Analyzing the role of maternal and neonatal oxidative stress
and oxidative stress-inducible genes, the purpose of this review was to summarize what is known about the relationship between
maternal and neonatal OS-related genes and the development of atopic diseases.

1. Introduction

Allergic diseases including atopic dermatitis, allergic rhinitis,
and asthma are some of the most common chronic diseases
in the world [1]. Although extensive epidemiological and lab-
oratory studies have been performed to identify the environ-
mental and immunological causes of atopy, genetic predispo-
sition seems to be the biggest risk factor for allergic diseases
[2, 3]. It is known that several foetal adaptive responses to
environmental factors are mediated by epigenetic changes
which, impacting early-life morbidity, may exercise effects on
the immune system, lung development, airway remodelling,
allergen predisposition, and atopic and nonatopic inflam-
mation, through numerous pathways [2, 4]. In particular,
the onset of atopic diseases may be the result of heritable
changes of gene expression, without any alteration in DNA
sequences, occurring in response to early (prenatal) or later
(perinatal) environmental stimuli [4]. Findings suggest that
the establishment of a peculiar epigenetic pattern may also
be generated by oxidative stress (OS) and perpetuated by the

activation of OS-related genes [5]. Reactive oxygen species
(ROS), known to be important cell-signalling molecules [6],
could, in fact, set up a positive-feedback loop that induces
and perpetuates atopic injury. OS, also influencing T-cell
signal transduction and gene expression [7], modulates T-
cell polarization toward a T helper- (Th-) 2 cellular subset [8]
which might be, in turn, a further source of ROS.

OS is a specific setting also occurring in normal events
such as pregnancy and birth.

Pregnancy is a physiological period associated with
enhanced OS related to highmetabolic turnover and elevated
tissue oxygen requirements [9]. During pregnancy, increased
oxygen demand augments the rate of production of ROS,
and women, even during normal pregnancies, experience
elevated serumOS levels [9]. IncreasedOS levels and reduced
antioxidative capacities may contribute to the pathogenesis
of perinatal [10, 11] and postnatal disorders [12, 13], such as
atopic diseases [14, 15], as newborns are more prone to OS
than individuals later in life [16]. Moreover, it has also been
reported that OS-related maternal genetics, independently of
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transmission of specific alleles, may influence a child’s atopic
risk beginning in the uterus [17, 18].

Also during pregnancy, newborns are also continually
exposed to elevated levels of ROS. At birth, newborns transit
from a hypoxic intrauterine to a normoxic extrauterine
environment. This increased OS further favours neonatal
morbidity, also including atopy [14].

Analyzing the role of maternal and neonatal oxidative
stress and oxidative stress-inducible genes, the purpose of
this review was to summarize what is known about the
relationship betweenmaternal and neonatal OS-related genes
and the development of atopic diseases.

2. Cumulative Effects of Maternal
and Neonatal Oxidative Stress on
the Immune System

It is well known that OS occurs early in pregnancy and con-
tinues in the postnatal period [12]. In particular, pregnancy
is associated with enhanced OS related to high metabolic
turnover and elevated tissue oxygen requirements [34]. On
the other hand, newborns, exhibiting an accelerated pro-
duction of free radicals and limited antioxidant protection,
are also constitutively vulnerable to OS. Therefore, during
pregnancy and intrauterine life,many factors such as hypoxia,
inflammation, and infections can easily induce overproduc-
tion of free radicals (FRs) [11], exceeding the capacity of
defensive mechanisms to neutralize them. The release of FRs
leads to the oxidation of lipids, proteins, and polysaccharides
and to DNA modifications [7–9, 19] which, in turn, increase
the susceptibility of rapidly growing tissues to damage [35],
as well as modulation of the immune system [10, 36].

With regard to the immune system, different immuno-
logical responses to ROS production have been reported,
depending on environmental oxidative status. While nor-
mal ROS amounts have been shown to be important for
T-cell function and for adequate, beneficial antimicrobial
protection [37], high ROS concentrations can negatively
modulate immune system responses leading to inhibited T-
cell proliferation [37] and to hyporesponsivity to exogenous
and/or endogenous activating stimuli [9]. In particular, OS
plays a critical role as a secondary messenger in the initiation
and amplification of signalling, miming antigenic effects.The
antigen receptors are themselves OS-generating enzymes,
contributing further to enhancing the cellular “oxidative
burst” against exogenous pathogens as well as neighbouring
cells [10], causing autoinflammatory and/or allergic diseases
[17, 38].

Moreover, it has been suggested that OS, leading to
secretion of a variety of proinflammatory cytokines and
chemokines [38], elicits a polarized immune response which
is closely associated with a breakdown in immune tolerance
[39]. In particular, when immunoglobulin- (Ig-) E binds to
specific membrane receptors, peripheral blood is activated
to produce more superoxide and hydrogen peroxide (H

2
O
2
),

contributing to elevated environmentalOS and sterile inflam-
mation [40] in upper and lower airways [41–43], and in
the skin [44]. Furthermore, immune cells, because of higher

production of ROS, are themselves particularly sensitive to
OS, creating a vicious circle for the production of proin-
flammatory mediators and supporting a prooxidant status
[9]. The activation of both the redox-sensitive transcription
factor nuclear factor-kappa B (NF-𝜅B) and activator protein-
(AP-) 1 and the release of proinflammatory proteins involved
in immune response (e.g., interleukin- (IL-) 1, IL-6, tumour
necrosis factor- (TNF-) 𝛼, and interferon- (INF-) 𝛼, as well as
H
2
O
2
) are critical events in immunity, promoting stimulus-

specific genes expression [17, 38]. These findings confirm
the evidence that foetal immune response is prenatally influ-
enced [45] and that the activation of maternal and neonatal
OS-inducible genes may influence a child’s atopic risk, early
in the uterus [46, 47] (Tables 1, 2, and 3).

3. Epigenetic Effects on Atopic Predisposition

Epigenetics refers to information that is heritable through
cell division. Epigenetic mechanisms include DNA methy-
lation, chromatin remodelling and noncoding RNA, histone
variations, and posttranslational histone modifications [48].
Epigenetic alterations can occur prenatally, perinatally, and
later in life during developmental stages, with unique suscep-
tibility to the effects of environmental exposures [48]. Uterine
life is the most critical time in developmental programming;
when negative environmental exposures occur, the foetal
structure and its functions are irreversibly modified and sub-
jects can be predisposed to several diseases, including allergy
[49]. T-cellular differentiation into Th1, Th2, Th17, and Treg
is influenced by changes in DNA/histone methylation and/or
histone acetylation in naive T-cells and in cytokine promoter
regions.Thus, thewell-known correlation between epigenetic
modifications and Th lineage has led to hypothesize that
triggers inhibit Th1 and T regulatory cell differentiation,
promote Th2-response, and could favour the risk of atopic
predisposition [50]. Although the mechanism of this process
is not fully understood, environmental changes, such as
microbial burden [51], dietary changes [52, 53], and environ-
mental pollutants [54], appear essential to initiate the cascade
of epigenetic modifications that stabilizeTh2 gene expression
[55]. It is also likely that effects of environmental triggers are
also mediated by oxidative stress which, by NF-𝜅B-induced
expression of proinflammatory cytokines and methylation-
mediated changing, can induce histone modifications and
chromatin remodelling of proinflammatory genes, exercising
further implications on foetal immune programming, atopic
predisposition, and increased IgE production following aller-
gen sensitization [49, 56].

4. Cumulative Effects of
Oxidative Stress-Inducible Genes on
the Immune System

Genetic linkage and transmission alleles analyses have high-
lighted the important role of oxidative stress-inducible genes
on the neonatal immune system response [26, 57]. In partic-
ular, the concurrent presence of higher ROS levels and anti-
genic exposure has been reported to alter themethylation of T
helper genes [58]. All these changes impair the differentiation
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Table 1: Oxidative stress-inducible genes and allergic asthma.

Gene Clinical relevance References

Glutathione S-transferases M1 (GSTM1) and P1
(GSTP1)

GSTs conjugate endogenous byproducts of OS with
glutathione, enabling rapid elimination and thus
defending tissues against oxidant damage; common
polymorphisms exist in genes coding for various GSTs
including glutathione S-transferases M1 (GSTM1) and
P1 (GSTP1)

[19]

Antioxidant defence enzymes (ADE)
Glutamate cysteine ligase (GCLM)
Glutathione peroxidase (GPX1)
Myeloperoxidase (MPO)
NADPH oxidase (CYBA, p22phox subunit)
NAD(P)H: quinone oxidoreductase type 1 (NQO1)
Microsomal epoxide hydrolase (EPHX1)
Glutamate cysteine ligase (GCLM)

They are associated with allergic and nonallergic
asthma, inducing increased oxidative stress status [11, 20, 21]

Tumor necrosis factor G-308A It may have a protective role in asthma pathogenesis,
depending on airway oxidative stress levels [22]

Methylenetetrahydrofolate reductase (MTHFR)
ORM1-like 3 (ORMDL3)
Gasdermin A and B (GSDM)

In addition to foetal smoke exposure, it seems to be
associated with lower airway responsiveness, lung
function, and increased risk of transient wheezing, a
phenotype of childhood asthma

[23]
[24]
[25]

Antioxidant enzyme paraoxonase (PON1) It is inversely correlated to plasma total oxidant status
and to severity of asthma [26]

Nuclear factor (NF), erythroid-derived 2-related factor
2 (NRF2)

It has been found to be a critical regulator in protecting
cells and tissues under highly oxidative
microenvironments, including airways that interface
with the external environment and are exposed to
pollutants and other oxidant stressors

[27]

Toll-like receptor 4 (Tlr4) It is associated with O
3
-induced lung inflammation and

increased airway hyperpermeability [28]

Heme oxygenase-1 (HMOX-1) In addition to ozone exposure, it is responsible for the
onset of allergic asthma [29]

Transforming growth factor- (TGF-) beta1 C-509T
polymorphism

This genotype is associated with an increased risk of
asthma in addition to maternal smoking exposure in
the uterus or to traffic-related emissions

[30]

Arginases (ARG1 and ARG2) It may play an important role in asthma pathogenesis
through effects on nitrosative stress [31]

Table 2: Oxidative stress-inducible genes and allergic rhinitis.

Gene Clinical relevance References
Glutathione S-transferases- (GSTs-) 1
polymorphism

It may exert protective effects in allergic
rhinitis, decreasing oxidative stress status [19]

Tumour necrosis factor (TNF) rs1800629
Toll-like receptor 4 (Tlr4) rs1927911

They are associated with a higher risk of
allergic rhinitis [22, 28]

of T helper cells, increasing the risk of allergic sensitization
[58]. More recently, changes in the expression of small
noncoding regulator microRNAs have also been suggested
as being critical for mediation of imbalanced responses to
allergens [59]. However, to date, it is still unclear what genes
and pathways are active during pregnancy and/or at birth and
which systems are down- and/or upregulated in response to
perinatal OS.

There is increasing evidence that ROS, also at physiologic
concentrations,might, acting as cell-signallingmediators and
promoting a shift toward aTh2-skewed immune response [17,

38], play additional roles in the onset of allergic disorders [17,
38].

The lung, due to its anatomy, provides an extensive sur-
face area available to interact with all sources of reactive O

2

species, and a large variety of lung diseases, including allergic
asthma, may be induced by ROS [26, 43]. In particular, pul-
monary epithelial cells of alveolar structure appear to be the
principle target for oxidant injury which, inhibiting cellular
cycle progression, promotes a delayed reepithelialization pro-
cess and irreversible cellular damage [60]. Moreover, airway
inflammatory cells, such as macrophages [61], eosinophils,
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Table 3: Oxidative stress-inducible genes and atopic dermatitis.

Gene Clinical relevance References

Glutathione S-transferases- (GSTs-) 1 polymorphism It is associated with atopic dermatitis susceptibility in a
Korean population [19]

MicroRNA-223 or hypomethylation of the thymic
stromal lymphopoietin (TSLP) gene 59-CpG island
(CGI)

It predisposes the host to development of atopic
dermatitis when combined with exposure to oxidative
stress

[32]

Tumour necrosis factor (TNF) promoter region
(TNF-a-308G/A) and linked

It is linked to oxidative stress-mediated atopic
dermatitis [22]

Nitric oxide polymorphism (T276 (276C/T, nNOS) +
C186 (-186A/C, nNOS) + X (CCTTT), nNOS + G954
(-954G/C, iNOS) +220 (TAAA), niNOS + G894
(894C/G, eNOS) + a (VNTR), eNOs)

It is related to clinical and functional manifestations of
bronchial asthma and atopic dermatitis [33]

and peripheral blood monocytes [40], are themselves a likely
source of ROS production [62]. Confirming these findings,
studies have shownhigherH

2
O
2
, nitric oxide, and superoxide

levels in exhaled gases from asthmatic patients than from
control subjects [63–66]. A prooxidant status also induces
a wide range of biological and molecular damage in the
lung. Increased release of isoprostanes and ethane, both
in epithelial and in endothelial cell membranes, as well as
diminished activity of proteins, such as 𝛼1-protease inhibitor,
ascorbate, 𝛼-tocopherol, and superoxide dismutase (SOD),
has been reported [67].

Acting on other targets, such as airway smooth muscle,
inducing acetylcholine-mediated contraction [68], mucin
secretion [69], and nitric oxide- (NO-) mediated neurogenic
inflammation [69], ROS can also impair broncho- and
vasoregulation [70, 71].

Finally, large-scale genome-wide association studies
(GWAS) have demonstrated that genetic susceptibility to
allergic asthma is also determined by complex interactions
between genes involved in OS, such as glutamate cysteine lig-
ase (GCLM), glutathione peroxidase (GPX1), catalase (CAT),
myeloperoxidase (MPO), NADPH oxidase (CYBA, p22phox
subunit), NAD(P)H, quinone oxidoreductase type 1 (NQO1),
and microsomal epoxide hydrolase (EPHX1) [26] (Table 1).

As the primary cell of interface between internal and
external environments, nasal mucosal epithelial cells are
known to initiate the release of a cascade of proinflammatory
mediators through redox pathways [20].Moreover, these cells
also exhibit the capacity to upregulate an effective antioxidant
defence [20]. However, natural allergen exposure agents show
the ability to interfere with oxidant/antioxidant balance,
enhancing OS and upper airway inflammation [72].

Although it has been hypothesized that the role of OS
in allergic rhinitis is similar to that of asthma, the exact
underlying mechanism is still not understood. However, it
has been reported that OS, playing a critical role in allergic
asthma, can also contribute to the onset of allergic rhinitis
and to enhancing the asthma-rhinitis link, as expression of
united airways disease [73].

It has been widely assessed that the loss of antioxidant
activities characterizes patients affected by allergic rhinitis.
Studies reported that decreased activities of both antioxidant
enzyme paraoxonase (PON1) [74] and reduced glutathione

[20] are inversely correlated to plasma total oxidant status
and to severity of disease [20]. Consequently, increased nasal
fraction of exhaled NO (FENO), 8-isoprostane, leukotriene-
(LT-) B4, and PGE2 levels was detected in patients with
allergic rhinitis [75]. An impaired function and distribution
of superoxide anion, NADPH oxidase (NOX)1, and NOX4 in
allergic nasal rhinitis has also been noted, as further confir-
mation of the possible influence of OS on the development of
allergic rhinitis [76] (Table 2).

The ability to interfere with the immune system allows
ROS to induce and perpetuate skin injury, also in atopic
dermatitis. In particular, authors reported that ROS, acting
mainly on keratinocytes and partially on lymphocytes [77],
induce oxidative protein damage in the stratum corneum,
leading to the disruption of barrier functions and the exac-
erbation of atopic dermatitis [78]. Therefore, in response to a
variety of oxidant reactants, the skin upregulates transactivat-
ing AP-1 components such as Fos and Jun, whereas it down-
regulates anti-inflammatory components [79]. Precisely, it
has been suggested that upregulation of AP-1 may be associ-
ated with a defect in ceramide generation which could result
in enhanced protein kinase-C activation, leading to exces-
sive release of proinflammatory cytokines by keratinocytes
[79]. Generally, peroxisome proliferator-activated receptors
(PPARs), amember of the nuclear factor family, also influence
the biological activity of keratinocytes. To be precise, PPAR
isoform-𝛼 (PPAR-𝛼) counteracts the inflammatory response
by inhibition of the expression of proinflammatory genes, as
well as cytokines and metalloproteases. PPAR-𝛼 activation
also induces antioxidant enzymes (catalase, SOD) which
would reduce oxidative damage and inflammatory response
[21].

The oxidant/antioxidant balance is also altered in atopic
dermatitis. ROS reduce the physiological antioxidant levels
of a number of compounds, such as 𝛼-tocopherol (VE),
ubiquinol-10 (CoQH2-10), ascorbic acid (VC), and glu-
tathione (GSH), in the epidermis and dermis and thus
impair the cellular redox system [80]. Evidence of enhanced
protein and lipid-oxidative damage was also found in atopic
dermatitis patients, as demonstrated by the increase of
carbonyl moieties both in lesional and in nonlesional skin,
along with higher activity of SOD, an effective scavenger
of ROS [81]. Recent experimental studies support a role for
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oxidative/antioxidative imbalance also in the shift toward a
Th2-skewed immune response, probably NO-mediated [38].
Accordingly, the administration of antioxidants to human T-
cells culture downregulatedTh2 polarization, with a decrease
in the expression of IL-4 and IL-5, and simultaneous skewing
toward aTh1- phenotype [38]. Finally, data suggest epigenetic
changes linked to the development of atopic dermatitis
through OS-mediated immune dysregulation [82] (Table 3).

5. Conclusions

To date, the exact underlying mechanisms of atopic disease
are still not understood. Recently, more attention has been
given to the critical role of OS-inducible genes in the
pathogenesis of atopic diseases. However, in spite of much
evidence linking atopic predisposition, inflammatory status,
and maternal and neonatal OS, much more remains to be
investigated. Moreover, a genomic approach would clarify
the role of oxidant/antioxidant pathways, in order to better
understand the pathogenesis of atopic diseases and identify
innovative therapeutic strategies.
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