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Exogenous insulin is the only treatment available for type 1 diabetic patients and is mostly administered by subcutaneous (SC)
injection in a basal and bolus scheme using insulin pens (injection) or pumps (preimplanted SC catheter). Some divergence exists
between these two modes of administration, since pumps provide better glycaemic control compared to injections in humans. The
aim of this study was to compare the impacts of two modes of insulin administration (single injections of long-acting insulin or
pump delivery of rapid-acting insulin) at the same dosage (4 IU/200 g/day) on rat metabolism and tissues.The rat weight and blood
glucose levels were measured periodically after treatment. Immunostaining for signs of oxidative stress and for macrophages was
performed on the liver and omental tissues. The continuous insulin delivery by pumps restored normoglycaemia, which induced
the reduction of both reactive oxygen species and macrophage infiltration into the liver and omentum. Injections controlled the
glucose levels for only a short period of time and therefore tissue stress and inflammation were elevated. In conclusion, the insulin
administration mode has a crucial impact on rat metabolic parameters, which has to be taken into account when studies are
designed.

1. Introduction

Glycaemia regulation is closely controlled by beta cells (𝛽-
cells), which routinely monitor blood glucose increases and
control insulin release. Blood insulin rise triggers glucose
absorption and storage in hepatic, adipose, and muscle cells.
The rapid regulation by 𝛽-cells permits the blood glucose to
return to a normal fasting level within an hour after eating [1].
Uncontrolled glycaemia and a high level of blood glucose are
associated with diabetes, in particular type 1 diabetes, which
is an autoimmune disease triggering the specific destruction
of 𝛽 cells. The lack of insulin cannot be compensated by
other hormones since insulin is the unique hypoglycaemic
hormone. Moreover, because of its sensitivity to the digestive
tracts [2], insulin needs to be injected by the parenteral route
to be biofunctional.

The main issue with insulin injection self-management
is that the proper tight regulation of glycaemia to that of 𝛽-
cells is dependent upon the compliance of the patient. The
right dose of insulin needs to be administrated at the right
time and it is based mainly on experience and training. In
order to mimic 𝛽-cell action, different types of insulin are
available: rapid-, long-, and medium-acting insulin types.
Type 1 diabetic patients typically require some basal level of
insulin, provided by a long-acting insulin (given once or twice
a day), as well as short- and rapid-acting insulin types to
cover meals (bolus insulin). The compliance of the patient
can be improved by the use of a pump to allow continuous
insulin release. In fact, pumps can release a small amount of
rapid insulin continuously as a basal level, and a bolus can be
ordered directly via the pump at meal time. Administration
of a continuous release of rapid-acting insulin ismore reliable
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than multiple injections of the long-acting insulin. Indeed,
in numerous clinical studies [3–8], continuous release has
shown improvements of blood glucose values [9] and HbA1c
levels [10], as well as decreases in global inflammation [11, 12]
and oxidative stress [13] levels in plasma of diabetic patients
equipped with pumps.

The different impact of the twomodes of insulin adminis-
tration is well documented in humans but barely so in rodent
models, which is the main model used in research. Since
the differences between injection and continuous delivery in
humans are so important in terms of global inflammation
and oxidative stress, the differences are likely to be equally
as important in rodent models, and the choice of insulin
administration could interfere with the results of a study,
especially with rats which do not have a specific meal time
and eat all night long. Currently, insulin administration in
research animals is done to comply with guidelines set by
animal welfare authorities and usually depends upon the
habits andmeans of the different laboratories. It is thought so
unimportant that it is scarcely described in publications [14].
However, from a previous work, we highlighted that global
and organ-specific stress and inflammation are dependent
upon glycaemia. Indeed, when glycemia was regulated, a
decrease in oxidative stress and inflammation was observed
[15]. In that case, the portal route allows the first insulin
clearance by the liver and better regulation. With regard to
the administration mode, since continuous insulin delivery
permits better glycaemic regulation than injections, the use
of pumps in rodent models could have an important impact
on inflammation and oxidative stress, especially in the liver
and omentum (fat tissue), the principal organs of glycogen
storage [15, 16].

In order to identify the impact of the chosen modes
of insulin administration, a single injection of long-acting
insulin was compared with continuous release of rapid-
acting insulin. Either insulinwith retarded activity or osmotic
pumps provide a continuous insulin diffusion replacing the
basal insulin delivered by the pancreas. The impact of these
two treatments on ratmetabolismwas studied, specifically on
liver and omental inflammation and oxidative stress.

2. Material and Methods

2.1. Animals. Males Lewis rats were supplied by Janvier
Laboratory (Le Genes St. Isle, France). The rats were housed
in standard collective cages under pathogen-free conditions
in a temperature-controlled room (23 ± 1∘C) with a 12 h
light : 12 h darkness cycle. They were fed SAFE-A04 rodent
chow (Villemoisson-sur-Orge, France); the food and water
were available ad libitum. All experiments were performed
according to the National Institutes of Health guidelines
(Authorization Number AL/60/67/02/13).

2.2. Diabetes Induction. Experimental type 1 diabetes was
induced pharmacologically in Lewis rats by a single intraperi-
toneal injection of streptozotocin (STZ; 75mg/kg diluted in
citrate buffer, pH 4.5; Sigma, St. Louis, MO, USA). Diabetic
rats with nonfasting blood glucose values >400mg/dL, as
measured by a blood glucose monitor (AccuCheck, Roche,

Basel, Switzerland) and confirmed by a glucose assay kit
(RTU� Glucose; bioMérieux, Marcy-l’Étoile, France), were
used in the study. The diabetic state of each rat was verified
from its C-peptide level. Blood analysis showed a statistically
significant reduction of C-peptide levels in STZ-injected rats
compared with their control nondiabetic (CTL ND) coun-
terparts (𝑝 < 0.01). The low levels of C-peptide remained
stable throughout the study (day 14 levels: CTLND: 2500.63±
120.54 pmol/L; diabetic: 15.71 ± 7.50 pmol/L; injection:
13.24 ± 5.06 pmol/L; pump: 6.25 ± 4.31 pmol/L).

2.3. Pump Preparation. Osmotic pumps (Alzet�, Cupertino,
CA, USA) were loaded with Insuman� 400 IU/mL (Sanofi-
Adventis, Paris, France) and placed in warm (37∘C) saline
solution for 24 h prior to implantation in order to be acti-
vated. The dose loaded into the pump allowed for a 30-day
release of 4 IU/day, according to the technical description
furnished by the supplier. Diluted Insuman (120 IU in buffer
solution used for insulin pumps (Sanofi-Aventis Deutschland
GmbH, Frankfurt am Main, Germany)) was loaded into the
pumps, which were set at a pumping rate of 2.5 ± 0.5 𝜇L/h to
allow delivery of 3.60 ± 0.72 IU/day of insulin.

2.4. Insulin Therapy. Rats were divided randomly into the
following four groups: (i) nondiabetic control rats, untreated
(CTL ND group, 𝑛 = 6), (ii) diabetic rats, untreated (diabetic
group, 𝑛 = 6), (iii) diabetic rats, treated via injections (injec-
tion group, 𝑛 = 11), and (iv) diabetic rats, treated via pumps
(pump group, 𝑛 = 9). Rats from the Injection group received
4 IU/200 g of body weight per day of a long-acting insulin
(100UI/mL Insulin Lantus; Sanofi-Aventis, France) via a
daily subcutaneous (SC) injection. The pump group receive
4 IU/200 g of body weight per day of a short-acting insulin
(Insuman) delivered continuously via an osmotic pump
(Alzet) placed in the dorsal SC space. Briefly, rats were anaes-
thetisedwith isoflurane (Abbott Laboratories, Berkshire, UK)
and placed in the prone position. The skin was shaved and
an incision was made longitudinally with a scalpel. The
preactivated pump was then introduced through the skin
incision with its head in the opposite site of the incision. The
incisionwas then stitched up and the rats were placed under a
lamp until they awoken.Thereafter, the rats were treated with
an antibiotic (5%, 10mg/kg Baytril�; Bayer, Lyon, France)
once daily for 7 days after surgery.

2.5. Study Scheme. Diabetes was induced 1 week before the
first injection or pump implantation. Metabolic follow-up
was carried out by analysing tail-vein blood, sampled at days
0, 7, 14, 21, and 28 after treatment.Thebodyweight and nonin-
vasive glucose monitoring (AccuCheck) were assessed three
times a week. Two time scales were used in this study for
assessing the insulinaemia and glycaemia of rats: a short time
after SC insulin treatment (namely, 5 h after (𝑡 + 5 h)) and
a long time after treatment (namely, 22 h (𝑡 + 22 h)). The
intraperitoneal glucose tolerance test (IpGTT)was conducted
on day 14. The rats were sacrificed on day 28. Total blood
was collected into heparinised tubes and then plasma-frozen.
Liver and omental tissueswere snap-frozen in optimal cutting
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Figure 1: Experimental daily scheme. Blue represents the two insulin administrationmodes. For the single injection group, 4 UI/200 g of body
weight of long-acting insulin was administered each day at 9 am. Analyses were carried out at 𝑡 + 5 and 𝑡 + 22 h thereafter. For the continuous
insulin administration group (via pumps), a rapid-acting insulin was loaded into the osmotic pump to allow a delivery of 4UI/200 g of body
weight per day. The injection point 𝑡0 corresponds to 9 am and analyses were carried out at 𝑡 + 5 and 𝑡 + 22 h thereafter.

temperature compound (Tissue OCT, Labonord, Temple-
mars, France) (Figure 1).

2.6. Intraperitoneal Glucose Tolerance Test. Intraperitoneal
glucose tolerance test (IpGTT) was realized on day 14. Briefly,
nonfasting rats were placed in clean cages with no food or
feces in hopper or bottomof cagewithwater access ab libitum.
Glycaemia was recorded with fingerpick at the end of the tail
and blood glucose meter. Baseline glycaemia was measured
at 𝑡0 and then intraperitoneal injection of 2 g of glucose/kg
body was realized. Blood glucose levels were measured at 15,
30, 60, and 120minutes after glucose injection. Foodwas then
reintroduced at the end of the test.

2.7. Analysis of Blood Parameters. The blood glucose was
assessed using a glucose assay kit (RTU, bioMérieux) and
results were expressed in g/L. Rat C-peptide and human
insulin were analysed by ELISA (enzyme linked immunosor-
bent assay, Mercodia, Uppsala, Sweden) and the results were
expressed in pmol/L and mU/L, respectively. Insulinaemia
and glycaemia status were assessed at 𝑡 + 5 and 𝑡 + 22 h after
insulin injection. Plasma fructosamine (expressed in𝜇mol/L)
was quantified at the time of sacrifice, using a colorimetric
method of Laboratoire Cerba (Cergy Pontoise, France).

2.8. Hepatic and Omental Oxidative Stress. The oxidative
fluorescent dye dihydroethidine (DHE) was used to evaluate
in situ formation of reactive oxygen species (ROS), following
the method described by Dal-Ros et al. [17]. Unfixed liver or
omental tissues were cut into 10 𝜇m thick sections, treated
with DHE (2.5𝜇M), and incubated in a light-protected
humidified chamber at 37∘C for 30min. The level of ROS
was determined using a microscope and whole fluores-
cence of tissue was quantified with the microscope assistant
(NIS-Elements BR, Nikon, Paris, France). The fluorescence

intensity of liver was quantified in five arbitrarily selected
fields and the mean value for each section was calculated.

2.9. Hepatic and Omental Inflammation. Hepatic and omen-
tal macrophage staining was carried out using 10 𝜇m thick
tissue sections on slides. In brief, the slides were fixed with
4% paraformaldehyde for 10min and then incubated with 3%
H
2
O
2
inmethanol in order to block endogenous peroxidases.

The slides were then blocked and incubated with a 1 : 1000
dilution of rabbit anti-Iba-1 antibody (Wako Chemicals
GmbH, Neuss, Germany) for 1 h at room temperature. The
biotinylated secondary antibody and reagent solution were
provided in theVectastain EliteABCkit (Vector Laboratories,
Burlingame, CA, USA). Detection was done using the 3,3-
diaminobenzidine (DAB) peroxidase substrate kit (Vector
Laboratories), and the slides were counterstained with Harris
hematoxylin (Labonord, Templemars, France). Observations
were made and pictures were taken with a camera-attached
microscope (Nikon, France) and macrophage quantification
was determined using ImageJ software.

2.10. Statistical Analyses. Statistical analyses were performed
using Statistica software (StatSoft, Maisons-Alfort, France).
Results were analysed by repeated-measures analysis of vari-
ance (ANOVA) or one-way ANOVA with a Fisher’s least-
square difference post hoc test. Results are presented as mean
± SEM. A 𝑝 value of less than 0.05 was considered statistically
significant. For graphic representation, a 𝑝 value < 0.05 was
notified as ∗, 𝑝 < 0.03 as ∗∗, and 𝑝 < 0.01 as ∗ ∗ ∗.

3. Results

3.1. Human Insulin

3.1.1. Short-Time Study. At 5 h after injection, human insulin
was detectable in both groups of treated rats and was
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Figure 2: Plasma levels of human insulin at 5 h (a) and 22 h (b) after insulin administration. For both control nondiabetic (CTL ND) and
diabetic rats which received no insulin treatment, human insulin was undetectable at 𝑡 + 5 or 𝑡 + 22 h. At 𝑡 + 5 h, both injection and pump
rats presented a high level of detectable insulin, but at 22 h thereafter, only the pump group levels continued to increase while the injection
group levels did not. CTL ND and diabetic groups are different from injection and pump groups at all times since 7 days (𝑝 < 0.01) (a); pump
group is different from all other groups at all times since 7 days (𝑝 < 0.01) (b). ∗∗∗𝑝 < 0.01.
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Figure 3: Blood glucose levels at 𝑡 + 5 h (a) and 𝑡 + 22 h (b) after insulin injection. At 𝑡 + 5 h, untreated rats (CTL ND and diabetic)
had, respectively, normal glycaemia and 6 g/L glucose, the highest value detectable with our material. Pump rats succeeded in achieving
normoglycaemia in a few days, whereas the injection group only reached ∼4 g/L. Diabetic group is different (𝑝 < 0.01) from all groups at all
times. Injection group is different (𝑝 < 0.01) from all other groups at all times since day 4 (𝑝 < 0.01). Pump group is different (𝑝 < 0.01)
from injection and diabetic group since day 4 (a). On a longer time (𝑡 + 22 h), CTL ND rats still had a normal blood glucose level, whereas
the diabetic and injection groups levelled at 6 g/L. Pump rats still achieved normoglycaemia. Diabetic and injection groups are different
(𝑝 < 0.01) from all groups at all times. ∗∗𝑝 < 0.03 pump versus CTL ND at day 7 (b). ∗∗∗𝑝 < 0.01.

statistically different from the CTL ND rats (day 21 levels:
CTL ND: undetectable; diabetic: undetectable; injection:
123.11 ± 25.57mU/L; pump: 78.19 ± 16.07mU/L; 𝑝 < 0.01
CTL ND versus injection and pump) (Figure 2(a)).

3.1.2. Long-Time Study. At 22 h after injection, human insulin
was detectable only in the pump group and was statistically
different from the CTL ND and injection groups (day 21 lev-
els: CTL ND: undetectable; diabetic: undetectable; injection:

undetectable except for day 7: 11.27 ± 3.43mU/mL; pump:
84.99 ± 17.77mU/L, 𝑝 < 0.01) (Figure 2(b)).

3.2. Blood Glucose Levels

3.2.1. Short-Time Study. The blood glucose levels were con-
trolled by insulin (whether continuously delivered or by
injection, Figure 3(a)) at 5 h after injection as compared with
that at 𝑡0. Rats in the pump group were normoglycaemic
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(below 1.20 g/L) throughout the study, whereas the glucose
levels of rats in the injection group increased dramatically
to ∼4 g/L (day 21 levels: CTL ND: 1.28 ± 0.02 g/L; diabetic:
6.00±0.00 g/L; injection: 4.05±0.26 g/L; pump: 1.02±0.07 g/L)
(Figure 3(a)).

3.2.2. Long-Time Study. After 22 h, rats in the pump group
were still normoglycaemic, whereas the blood glucose levels
of rats under insulin injection therapy were comparable to
those of untreated diabetic rats (day 21: CTL ND: 1.24 ±
0.02 g/L; diabetic: 6.00 ± 0.00 g/L; injection: 6.00 ± 0.02 g/L;
pump: 1.25 ± 0.41 g/L) (Figure 3(b)).

3.3. Weight. The weight of rats on insulin therapy increased
throughout the study, whereas that of untreated diabetic
rats remained relatively unchanged. Weight gain was more
prominent in the pump group (reaching the level of the CTL
ND group) than in the injection group. During the first 8
days, the weight of rats in the pump group was significantly
lower than that of CTL ND rats (𝑝 < 0.01). Over the next
few days (12–19 days), the pump group weight levels were still
lower than the controls but to a lesser degree (𝑝 < 0.05), and
by the end of the study (21–28 days) there was no statistically
significant difference between these two groups (Figure 4).
The weight measure in the injection group was different from
the controls throughout the follow-up period (0–28 days, 𝑝 <
0.01) and was significantly lower than the pump group from
day 4 onwards (4–28 days, 𝑝 < 0.01).

3.4. Intraperitoneal Glucose Tolerance Test. Both the injection
and pump groups did not have a normal IpGTT response

profile. The CTL ND group responded properly, with an
initial increase of glucose level at 15min (2.22 ± 0.19 g/L),
followed by a progressive decrease at 30min (1.50±0.08 g/L),
and finally reaching the normal level by 60min (1.39 ±
0.05 g/L). The diabetic group was unable to respond properly
(t0min: 5.09±0.04 g/L; t15min: 5.55±0.22 g/L; t60min: 4.82±
0.23 g/L). The injection group did not respond to glucose
(t0min: 5.51±0.12 g/L; t15min: 5.74±0.12 g/L) and was also
not able to reduce the levels after glucose injection (t60min:
5.13±0.21 g/L). In the pump group, no glucose elevation was
observed (t0min: 1.06 ± 0.28 g/L; t15min: 0.82 ± 0.16 g/L),
and the levels remained stable during the 2 h of experiment
(∼1 g/L) (Figure 5).

3.5. Fructosamine Levels. Fructosamine levels reflect the
glycaemic balance in rats. The levels in the pump group were
comparable to those of theCTLNDgroup (CTLND: 126.00±
5.37 𝜇mol/L; pump: 124.00±4.03 𝜇mol/L, 𝑝 > 0.05).The lev-
els in the Injection group were statistically higher than in the
CTL ND or pump groups (injection: 258.88 ± 11.52 𝜇mol/L,
𝑝 < 0.01) but no difference was observed between the dia-
betic and injection groups (diabetic: 245 ± 4.29 𝜇mol/L, 𝑝 >
0.05) (Figure 6).

3.6. Liver and Omental Oxidative Stress. The liver and omen-
tum were chosen to study oxidative stress because they
represent glucose storage organs and can be directly affected
by chronic hyperglycaemia. In addition, the tissues represent
the actual and an alternative site for islet transplantation,
respectively. Basal fluorescence intensity was observed in the
liver tissue of CTL ND rats (6.35 ± 0.85AU). Compared with
the controls, the level was significantly higher in the diabetic
group (16.06 ± 1.67AU, 𝑝 < 0.01) and moderately higher
in the injection group (11.88 ± 1.31AU, 𝑝 > 0.05). That
of the pump group was comparable to the CTL ND group
(5.48 ± 0.55AU, not significant (ns)) (Figure 7(a)).

Similar patterns were observed in the omentum: that is, a
basal level of fluorescence intensity in theCTLND rats (0.78±
0.44AU), a significantly increased level in the diabetic group
(11.31 ± 5.657AU, 𝑝 < 0.01), a moderately higher level in the
injection group (8.35 ± 4.01AU, 𝑝 > 0.05), and a comparable
level in the pump group relative to the control rats (0.96 ±
0.36AU, ns) (Figure 7(b)).

3.7. Liver and Omental Inflammation. The level of macro-
phages in the liver and omentum reflects the inflammation
status in these tissues.

Macrophage staining was observed in the liver of CTL
ND rats (0.76 ± 0.27AU), and this level was comparatively
much higher in the diabetic group (1.20±0.23AU, 𝑝 < 0.05),
moderately higher in the injection group (0.93 ± 0.13AU,
𝑝 > 0.05), and of comparable level in the pump group
(0.7 ± 0.08AU, ns) (Figure 7(c)).

In the omentum, a similar pattern ofmacrophage staining
was observed (CTL ND: 0.35 ± 0.22AU; diabetic: 7.66 ±
1.65AU, 𝑝 < 0.01; injection: 5.29 ± 1.20AU, 𝑝 > 0.05; and
pump: 2.62 ± 0.90AU, ns) (Figure 7(d)).
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nondiabetic (CTL ND) rats. Injection rats had a level comparable
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CTL ND rats. ∗∗∗𝑝 < 0.01.

4. Discussion

In this study, we showed that the continuous release of
insulin with pumps controlled glycaemic fluctuations, which
improved the metabolic parameters of oxidative stress and
macrophage infiltration in both the liver and omentum. On
the contrary, insulin injections did not ensure glycaemic
regulation and showed a short efficiency time of the insulin
despite its long-acting characteristic. Subsequently, variations

in the blood glucose levels enhanced the oxidative stress and
inflammation status of the liver and omentum.

We chose the same dose for both the once-a-day long-
acting injected insulin and the continuously administrated
rapid-acting insulin in the hope that the effects would
be similar. In fact, long-acting insulin (or better named
extended-release insulin) has a delay of action of 1 h and
duration of 24 h. This kind of insulin is obtained through the
modification of amino acids. It is able to precipitate in the
SC space through modification of the pH to 6.7 and is less
soluble at physiological pH, which explains its slow action
rate. Normally, this insulin can achieve a peak level for at least
24 h and is nondetectable after 22 h.

Nevertheless, the continuous delivery of small amounts of
rapid-acting insulin, also designed for human use, achieved
better glycaemic regulation throughout the day. The one
used in our study is Insuman, which is unmodified insulin
with rapid action (10–15min) and short duration (5–8 h)
times.Theoretically, both insulin types should have decreased
the blood glucose levels throughout the day. The difference
observed between Lantus and Insuman could perhaps have
resulted from the chemical modification. In fact, modified
insulinwill not bind to insulin receptorswith the same affinity
as unmodified insulin [18]. Furthermore, the insulin used is
adapted to humans, not to rats, so the structural difference
and lower affinity for insulin receptors could be explanations
for the lower effective action recorded. To achieve glycaemic
control by injection, the doses or the number of injections
should be increased [19].

The improvement of glycaemic fluctuations by a continu-
ous release of insulin was probably due to several factors.The
constant amounts of rapid-acting insulin released guaranteed
the continuous presence of insulin in the blood.This has been
described to be more efficient than injections in humans [9]
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Figure 7: Reactive oxygen species (ROS) staining in liver (a) and omental tissue (b), macrophage staining in liver (c) and omental tissue (d),
and their respective quantifications.The profiles were similar for all quantitative graphs, with diabetic rats having the highest level of oxidative
stress or inflammation in both tissue sites. The control nondiabetic (CTL ND) and pump rats had the lowest level of ROS and macrophage
staining. The injection group had lower levels than the diabetic group, but higher levels than the CTL ND or pump groups. ∗𝑝 < 0.05,
∗∗𝑝 < 0.03, and ∗∗∗𝑝 < 0.01. Scale bar: 100 𝜇m. DHE, dihydroethidine.

and, as shown in our model, likewise in rats. In the present
work, injections were less efficient. The dose of insulin deliv-
ered could have been variable since it was dependent upon the
manipulation, and the repetitive injections could have trig-
gered fibrosis which prevents proper diffusion of the insulin
[20]. As a result, we found that the weight gain was lower
in the injection group. However, continuous insulin diffusion
needs to be optimised since, in our model, the regulation of
glycaemia was too efficient and the blood glucose level was
very low. This large amount of insulin release could create
chronic hyperinsulinism. This was highlighted especially by
the absence of glucose increase in the IpGTT test. Hyperin-
sulinism could also have side effects on rat metabolism [21],

such as triggering insulin resistance [22–24]. In our study,
however, no insulin resistance was detected as glycaemia and
insulinaemia were stable throughout the study. Nevertheless,
to avoid insulin resistance and to be able to control glycaemia,
a 3 IU/day dose seems to be the best option for a continuous
SC administration, since 2 IU had been invalidated in a
previous study [15].

The decrease in glycaemic fluctuations decreased oxida-
tive stress (presence of ROS) and inflammation (presence of
macrophages) in the liver and omentum. This was in accor-
dance with previous results stating that a better regulation
of the blood glucose level using the continuous adminis-
tration mode had a positive effect on oxidative stress and
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inflammation in the liver [15]. By comparing the difference
in glycaemic fluctuations between the pump and injection
groups, we were able to identify a cause of oxidative stress
and inflammation in the tissues. Glucose is known to be pro-
hypertensive [25] and proinflammatory [26, 27], as proved by
the increase in liver and omental macrophage infiltrations in
this study. Furthermore, cells which are incubatedwith a high
concentration of glucose tend to secrete more cytokines for a
same stimulus, suggesting an underlying indirect mechanism
for the glucose-induced inflammatory reaction [28]. Indeed,
injections result in a variation in glucose levels, as shown by
the much higher fructosamine levels, equivalent to Hb1Ac,
which was a generator of oxidative stress. On the contrary,
the stability of glycaemia in the pump group resulted in a
significant decrease in fructosamine levels and significant
decrease in oxidative stress.

The liver and omentum were chosen because they are
the primary glucose storage sites and because they are the
classical and a promising alternative site for islet transplan-
tation, respectively [29]. The characterisation of these two
sites has never been done in terms of inflammation and
oxidative stress in relation to glycaemic regulation. Indeed, in
this study, we showed that high glucose fluctuations increased
oxidative stress in both the liver and omentum. During islet
transplantation, it has been shown that the graft can be
highly sensitive to inflammation and oxidative stress [30–32]
which could lead to an early loss of the transplanted tissue.
This study highlights the importance of glycaemic regulation
before islet transplantation, since it can be critical for engraft-
ment outcome. Oxidative stress is particularly relevant and
dangerous for the transplanted islets, which are among those
tissues that have the lowest levels of intrinsic antioxidant
defenses [33]. As shown in the present study, continuous
delivery of insulin was able to maintain normoglycaemia and
consequently decreased oxidative stress and inflammation.
As we showed, these two sites were rich in ROS in the
diabetic state, and although endogenousROS in physiological
concentrations do help tomaintain homeostasis, they can still
cause chronic oxidative stress and adverse effects when they
accumulate. It is well described that diabetes complications
are generated by a high level of circulating glucose. Some
studies [34] have highlighted the loss of animals as a result
of severe hyperglycaemia complications and the dilemma
of having to keep animals in a diabetic state for a long
period while waiting for islets from, for example, human
material. At this time, pumps seem to be the best option,
because they can be removed at any time and can keep
animals in good health while waiting for available material
for islet transplantation, by limiting the adverse effects of
diabetes. This study highlights the need to properly manage
the diabetes before transplantation in order to allow islets to
be engrafted in a healthy environment without glucotoxicity,
oxidative stress, and inflammation [35].

In addition, this study was important for highlighting the
differences observed in terms of metabolism, inflammation,
and oxidative stress in rats treated with the same amount
of insulin, a comparison that would not have been possible
using different insulin doses. In fact, in diabetes studies,
researchers use many different ways to implement insulin

therapies. Firstly, the type and the origin of insulin types vary:
slow or rapid, human, porcine, and so forth. Secondly, doses
are also not sowell defined, being anywhere from 1 IU to 15 IU
[36]. Making the comparison even more complex, several
models of pumps exist (osmotic pumps [37, 38] or preloaded
implants, also named insulin pellets [35, 39]). Unlike the
case of preloaded insulin pellets, osmotic pumps need to be
filled manually. Although these main differences may seem
to be minor, they are in fact highly important in comparison
studies, as proven by the differences observed in this study
under treatment conditions that appear to be the same.

In conclusion, our comparison of the two modes of
insulin delivery promotes the use of continuous insulin
administration, in terms of feasibility and good results. In
fact, pumps require no daily injection and facilitate rat follow-
up.The well-being of the animals and the homogeneity of the
results permit researchers to limit the numbers of animals and
experiments used to build solid and reproducible results, as
confirmed by other studies [40]. Continuous insulin release
has a positive effect on rat metabolism (glycaemia, weight
gain) and can limit adverse effects of the diabetic state
(oxidative stress and inflammation). Additionally, this study
highlights the limitations of comparative studies, as different
insulin therapies could modify the metabolic parameters.
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