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Abstract In recent years there have been significant technical and methodological advances in
our ability to record the movements of the gastrointestinal tract. This has led to significant changes
in our understanding of the different types of motor patterns that exist in the gastrointestinal
tract (particularly the large intestine) and in our understanding of the mechanisms underlying
their generation. Compared with other tubular smooth muscle organs, a rich variety of motor
patterns occurs in the large intestine. This reflects a relatively autonomous nervous system in the
gut wall, which has its own unique population of sensory neurons. Although the enteric nervous
system can function independently of central neural inputs, under physiological conditions bowel
motility is influenced by the CNS: if spinal pathways are disrupted, deficits in motility occur. The
combination of high resolution manometry and video imaging has improved our knowledge
of the range of motor patterns and provided some insight into the neural and mechanical
factors underlying propulsion of contents. The neural circuits responsible for the generation of
peristalsis and colonic migrating motor complexes have now been identified to lie within the
myenteric plexus and do not require inputs from the mucosa or submucosal ganglia for their
generation, but can be modified by their activity. This review will discuss the recent advances in
our understanding of the different patterns of propagating motor activity in the large intestine
of mammals and how latest technologies have led to major changes in our understanding of the
mechanisms underlying their generation.
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Corresponding author N. J. Spencer: Department of Human Physiology, School of Medicine, Flinders University, South
Australia, Australia. E-mail: nicholas.spencer@flinders.edu.au

Abstract figure legend The mechanism by which distension of the wall of the colon activates intrinsic neurons to generate
peristalsis and the propulsion of colonic contents. Latest findings reveal that the mechanosensory enteric neurons (located
in the myenteric plexus) have essential mechanosensitive nerve endings in the circular muscle. Distension or stretch
of the colon activates these sensory neurons to initiate polarized neural pathways that result in oral contraction and
anal relaxation. These pathways do not require the mucosa but can be modulated by sensory nerve endings that project
into the mucosa. The polarized enteric circuits form the bases of a neuromechanical loop which ensures that polarized
enteric neural circuitry can efficiently propel content with a wide range of physical properties.

Abbreviations CMMC, colonic migrating motor complex; DCMMC, distal colonic migrating motor complex; HAPCs,
high amplitude propagating contractions; ICCs, interstitial cells of Cajal.

Colonic motility

The large intestine in all mammalian species performs a
number of functions essential for the optimal handling
of ingested material. Water, ions and bile salts are also
extracted from the content, and storage, formation and
expulsion of faeces occurs normally in a controlled
fashion suited to the physico-chemical composition of
the contents. The colonic microbiome ferments some
indigestible materials, releasing nutrients (largely short
chain fatty acids) that are absorbed and thus increase
to a small degree the efficiency of digestion. The final
common effectors of motility are longitudinally and
circularly aligned smooth muscle cells. However, the key
component of physiological motility is the temporal and
spatial coordination of smooth muscle contractions and
relaxations. These controlled movements of the intestinal
muscle involve two fundamental mechanisms. One is
responsible for the spontaneous ‘myogenic’ activity of the
muscle and the second involves complex enteric neural
circuits embedded within the gut wall that are influenced

by the extrinsic innervation of the large bowel. In humans,
lesions to extrinsic nerve pathways or spinal cord damage
leads to abnormal colonic motility and often constipation
(Anderson, 2004; Coggrave & Norton, 2010), which can
be improved by stimulation of defaecation centres in the
spinal cord (Ferens et al. 2011; Ellis et al. 2015). Over the
past three decades significant advances have been made in
revealing the bases of these mechanisms and the findings
suggest strongly preserved fundamental features across all
mammalian species.

The identity of enteric neurons forming simple
polarized reflex pathways has been studied in detail in
several species (Fig. 1A). The major transmitter sub-
stances of excitatory and inhibitory motor neurons have
been identified and the properties of intrinsic mechano-
sensitive enteric neurons analysed in detail (Bornstein et al.
2004; Spencer & Smith, 2004; Brookes & Costa, 2006;
Costa & Brookes, 2008; Furness, 2012; Mazzuoli-Weber &
Schemann, 2015). In parallel, an early study showed that
the proto-oncogene c-kit and the tyrosine kinase receptor
that it encodes, Kit, are expressed by pacemaker cells in
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the gut wall and are essential for myogenic pacemaking
functions (Maeda et al. 1992). This led to identification of
several types of interstitial cells of Cajal (ICCs). Some
of the ICCs function as the pacemakers and generate
and coordinate myogenic rhythmicity. Some ICCs act as
intermediaries in motor neuron to smooth muscle neuro-
transmission (see reviews by: Farrugia, 2008; Huizinga &
Lammers, 2009; Sanders et al. 2014).

While the cellular components of these two systems
have been individually studied in detail, how they
interact to coordinate motility has only recently been
actively explored at the whole organ level. Contraction
at any point in the bowel can either propel content,
or impede its progress, depending on the mechanical
state of neighbouring regions. The dynamic nature of the
movements at every point along the gut renders analysis
of the movements of the intestinal wall and the luminal

content a significant challenge in biomechanics. Although
understanding the basis of coordinated motility is in
its infancy, the reality is that in all species contents in
most cases appear to be propelled at a suitable rate with
an appropriate degree of fluid absorption. The intrinsic
neural and myogenic mechanisms operate in conjunction
and extrinsic neural and hormonal influences do play
critical roles.

Discoveries, techniques and methodologies that have
advanced understanding of colonic motility

Two technical developments have also led to
improvements in our understanding of intestinal motility.
First, the description, display and analysis of complex
patterns of motility recorded from isolated sections of
intestine have been facilitated by the development of
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Figure 1. Originally proposed enteric neural pathway underlying distension-evoked reflexes (A)
compared with latest understanding of this neural pathway (see B)
A, Originally proposed arrangement of enteric neural pathways in the intestine. Mucosally projecting sensory
neurons (in red) respond to chemical and mechanical stimuli and are responsible for initiating the peristaltic
reflex. Mechanosensory interneurons respond to circumferential stretch and have transduction sites in the circular
muscle. They can initiate polarized neural reflexes to the circular and longitudinal muscle in the distal colon. Possible
other enteric circuits of interneurons generate migrating motor complexes. Extrinsic inputs from sympathetic and
parasympathetic pathways inhibit and excite motility by acting on the enteric circuits. Current knowledge of
submucosal neurons and longitudinal muscle have been deliberately omitted to maintain simplicity. B, the new
model describes how our understanding of these pathways has changed in recent years. We propose a refinement
of the enteric circuits involved in colonic motility. The mechanosensory enteric neurons (located in the myenteric
plexus) have essential mechanosensitive nerve endings located in the circular muscle (see Spencer et al. 2006)
(now shown in red) which initiate polarized neural pathways that result in oral contraction and anal relaxation.
These pathways do not require mucosal inputs and represent the bases of the neuromechanical loop responsible
for propulsion adapted to the consistency of contents. However, stimulation of mucosal sensory nerve endings can
initiate and modulate enteric neural activity. The polarized enteric circuits involved in the neuromechanical loop
are modulated by underlying cyclic neural activity initiated by any maintained distension and providing the bases
of the migrating motor complexes. Extrinsic excitatory inputs from both pelvic and vagal sources are involved in
the greater or lesser permissive role depending on the degree of central control of colonic movements. EC cells,
enterochromaffin cells, with permission.
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spatio-temporal maps. Changes in intestinal diameter
are measured from high resolution video imaging of the
intestine. Maps can be constructed that detail the changes
in diameter (DMaps) in real time, along the length of
the isolated intestinal segments (Bouchoucha et al. 1999;
Hennig et al. 1999; Bercik et al. 2000). Comparable maps
can be created for longitudinal muscle contractions.
These maps provide a simple, readily interpretable visual
summary of motility over periods of seconds to many
minutes, with automated quantitative analysis becoming
increasingly feasible. Using these video-imaging methods
detailed description of motor patterns have been made
on isolated colon preparations of several experimental
animals (Hennig et al. 1999; D’Antona et al. 2001; Lentle
et al. 2008; Huizinga et al. 2011; Costa et al. 2013a).

A second major technical advance has been the
development of high resolution manometry, for recording
motor patterns in the human colon in vivo. For the
most part these recordings have been made using fibre
optic manometry catheters with 10 mm spacing between
the 72 and 120 pressure sensors. This has increased the
spatial resolution of intraluminal pressure sensing by
almost an order of magnitude compared to many older
catheters (Arkwright et al. 2009). Studies have shown that
many previous colonic manometry studies, using more
widely spaced sensors, misinterpreted a large proportion
of propagating motility events (Dinning et al. 2013).

Combining these two technologies, high resolution
manometry with spatio-temporal mapping of diameter, in
isolated sections of intestine has also provided a valuable
type of analysis (Dinning et al. 2011). The separate
pressure traces of high resolution recordings can be inter-
polated to create spatio-temporal maps of pressure along
isolated segments of intestine. These PMaps have been
combined with DMaps to detail the relationships between
changes in diameter and changes in intraluminal pressure,
again represented as 2-dimensional maps (DPMaps)
(Costa et al. 2013b). The application of simplified
principles of muscle mechanics allows the dynamic
state of the intestinal smooth muscle to be determined
at each point along DPMaps (i.e. whether muscle is
actively contracting or relaxing, or passively shortening or
lengthening, during motility patterns (Fig. 2; Costa et al.
2013b). All of this has added to an accurate measurement
and display of the repertoire of colonic motility patterns
and an understanding of how some of the patterns are
generated.

Mechanisms of propulsion of colonic contents

One simple insight from this methodology was the
demonstration that the propulsion of a bolus in the iso-
lated rabbit colon was due to an area of active muscle
contraction occurring at the oral end of the bolus and an
active relaxation at the anal end (Dinning et al. 2014b).

These processes could be blocked by tetrodotoxin (TTX),
suggesting that the active contractions and relaxations
require the activity of excitatory and inhibitory enteric
motor neurons, respectively. These results are a more
detailed investigation of the polarized enteric pathways
demonstrated by Bayliss & Starling (1899) that were shown
to be responsible for propulsion of luminal contents. The
existence of polarized enteric neural pathways capable of
mediating ascending excitation and anal inhibition of the
circular muscle has been demonstrated convincingly in
several species, using localized mechanical stimuli (Crema
et al. 1970; Costa & Furness, 1976; Grider, 1989; Spencer
& Smith, 2001) (Fig. 1A).

‘The Neuromechanical Loop hypothesis’

In the isolated colon of experimental animals, inserting
natural or artificial faecal pellets into the oral end of
the preparation evokes propulsive circular muscle contra-
ctions, after a short delay (Costa & Furness, 1976;
Kadowaki et al. 1996; D’Antona et al. 2001; Spencer et al.
2011; Sia et al. 2013). This is driven by a contraction
oral to the pellet by activation of polarized enteric neural
pathways as described above.

Content-dependent neural propulsion initiated by
liquid or pellet distension has been reported in guinea-pig,
dog, cat, sheep and rat, and have been variously
called ‘peristaltic contractions’, ‘peristaltic waves’, ‘giant
contractions’ or ‘giant migrating contractions’, ‘rhythmic
propulsive motor complexes’, ‘long distance contractions’,
‘antegrade propagating long distance contractions’, or
‘mass peristaltic events’ (Crema et al. 1970; Sarna et al.
1988; Bedrich & Ehrlein, 2001; D’Antona et al. 2001;
Gonzalez & Sarna, 2001; Hipper & Ehrlein, 2001; Lentle
et al. 2008; Dinning et al. 2012a; Chen et al. 2013;
Costa et al. 2013a). Thus the propulsive motor patterns
generated by the neuromechanical loop could be described
generically as ‘neural peristalsis’ to distinguish them from
migrating motor complexes or even possible myogenic
peristalsis.

Importantly, in the colon of guinea-pigs, fluid infusion
generates repeated peristaltic propulsive contractions that
propagate at much higher speeds than solid pellets
(Costa et al. 2015). Thus, the consistency of the contents
influences the rate of progression of the circular muscle
contraction along the colon. This simple observation
indicates that a peristaltic contraction is not a simple reflex
(which would happen in a stereotyped, invariant fashion).
Rather, it is a more complex mechanism that adapts to
the luminal content. Bayliss & Starling (1899) proposed
that polarized reflexes are the basis of propagating
contractions. A bolus activates ascending excitation and
descending inhibition which cause movement of the bolus
aborally. From its new location, it activates another bout
of polarized reflexes, causing further propulsion. We

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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have extended this proposal into the ‘neuromechanical
loop’ hypothesis (Costa et al. 2013b; Dinning et al.
2014b). This hypothesis suggests that distension by
luminal material activates polarized reflexes (as Bayliss
and Starling proposed). However, the physical consistency
of the material influences how it is redistributed by
the contractions and relaxations of smooth muscle in
the gut wall. This, in turn, affects the pattern of
distension along the gut and thus modifies the sub-
sequent re-activation of polarized enteric neural pathways.
In this way, polarized reflex pathways and mechanical
factors, including distributed distension, form a dynamic
functional loop, which adapts gut motility to deal
effectively with a wide range of contents (ranging from
fluid to solid pellets of various dimensions).

How does the ‘neuromechanical loop’ work?

The ‘neuromechanical loop’ hypothesis predicts that the
consistency, shape and size of the luminal contents should
influence the speed of propulsion. This relationship
has been experimentally demonstrated in the isolated
guinea-pig colon (Costa et al. 2015). Using boluses
of various lengths and diameters, a clear relationship
between surface area and speed of propulsion was
demonstrated (Costa et al. 2015; Fig. 3). This relationship
probably reflects the number of enteric mechano-sensitive
neurons activated by the bolus. The larger the surface
area, the more sensory neurons are simultaneously
activated and the greater activation of polarized ascending
excitatory and descending inhibitory pathways. This leads
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Figure 2. Propulsion of luminal contents is modified by differences in the consistency of luminal contents
In the upper half of the figure, five different images are shown where boluses of different sizes and shapes (pellets)
are present in the distal colon. Natural pellets are represented in purple, distal colonic migrating motor complexes
(DCMMCs) in red, fluid pellets in blue, viscous pellets in grey, and peristaltic contractions in green. It was noted
that peristaltic contractions often started approximately half-way along the preparation (white arrow). A–C shows
the relationships between speed of propulsion and the bolus size; speed correlates positively with bolus length
(A); speed in relation to bolus surface area (B); speed in relation to average bolus diameter (C). In the upper
quadrant of each graph (A–C) the probability density is represented on a log scale. The distributions of means
are shaded within their 95% highest density interval (HDI, see text) and the gaps between shaded 95% HDIs
represent significant differences between the various measures. Note that for the average diameter (C) there is
a clear separation between all of the shaded 95% HDIs, indicating that the diameters of different boluses are
significantly different from one another. However, a poor correlation exists between the speed of propulsion and
average diameter. For surface areas (B) from about 1 cm2, the speeds of all bolus types (except DCMMCs) differ
significantly, as shown by the gap between their shaded 95% HDIs (see centre square), with natural, viscous, liquid
and peristaltic liquid boluses moving at increasing speeds. The inset in B depicts the distributions of the steepest
slope of the sigmoid curve for each bolus type. A shows that a significant overlap exists between the length of
the natural, viscous and fluid pellets. DCMMCs (shown in red) are shorter than all other bolus types and peristaltic
contractions (shown in green) are significantly longer than all other bolus types. Figure reproduced from Costa
et al. (2015), with permission.
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to a consequential increase in the amplitude of oral
contraction and anal relaxation, causing a high speed
of propulsion. According to the neuromechanical loop
hypothesis, increasing the fluidity of contents should
increase the speed of propulsion. Indeed natural solid
pellets are propelled at a slower speed than viscous
material or liquid (Fig. 3). The speed of propulsion is
constrained by influences that impede movement of the
content. Increasing the diameter of a faecal-shaped pellet
beyond a limit, or increasing the load against which
propulsion operates, slows the velocity at which contra-
ctions propagate (Costa et al. 2015). These observations

support the existence of a neuromechanical loop which
ensures that simple enteric neural circuitry can efficiently
propel content with a wide range of physical properties. It
may also explain some of the variability of colonic motor
patterns studied under varying conditions in different
laboratories.

Neurally dependent cyclic motor activity in the colon

There is considerable evidence for a neurally generated
cyclical motor pattern (colonic migrating motor complex;
CMMC), which is less dependent on content than
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neural peristalsis. CMMCs occur in the colon of many
experimental animals. They have been reported in vivo in
rabbits and sheep (Ehrlein et al. 1982; Bedrich & Ehrlein,
2001), dogs (Sarna, 1986), and in vitro in guinea-pigs
(Costa & Furness, 1976; D’Antona et al. 2001; Costa et al.
2015), rabbits (Lentle et al. 2008; Dinning et al. 2012a)
and mice, where the most detailed studies on the CMMC
have been performed (Fida et al. 1997; Brierley et al. 2001;
Powell & Bywater, 2001; Spencer & Bywater, 2002; Roberts
et al. 2008; Spencer et al. 2013). These complexes can
migrate either orally, aborally, or appear simultaneously
along regions of colon (Sarna et al. 1984), suggesting
that their direction of propagation is not hardwired into
the enteric nervous system. They do not appear to be
lumen-occlusive and in the rabbit and guinea-pig proximal
colon, where they have been correlated with the actual
profile of the colonic wall, they result in indentations that
begin to separate soft faecal material into pellets (Lentle
et al. 2008; Dinning et al. 2012a; Costa et al. 2015).

Recent studies have challenged the idea that CMMCs
occur entirely independently of content. In many studies
of CMMCs, tension or length transducers were attached
to the gut wall to record the complexes; the resting tension
applied by the transducers may constitute an effective
stimulus to drive the initiation of CMMCs. Without trans-
ducers, CMMCs actually occur infrequently and propagate
over shorter distances, with slower propagation velocities
(see Fig. 4) (Barnes et al. 2014). Certainly, distension
can activate premature CMMCs (Zagorodnyuk & Spencer,
2011). This remains a fertile area of research that requires a
combination of recording at both cellular and organ level
to identify the mechanisms of initiation of this cyclical
enteric neural activity.

Neural mechanisms underlying generation
of peristalsis and CMMCs

Considerable work has been carried out analysing the site
of initiation of content-dependent neural peristalsis and of
CMMCs. By removing layers of the gut wall of preparations
of guinea-pig (Spencer et al. 2011) and mouse large
intestine, in vitro, (Keating & Spencer, 2010) it has been
shown that the neural circuits responsible for both neural
peristalsis and CMMCs lie in the myenteric plexus and/or
muscularis externa (Keating & Spencer, 2010; Spencer
et al. 2011). This suggests that the submucosal plexus
and mucosa (including enterochromaffin (EC) cells) are
not essential for either the initiation or propagation
of these neurogenic motor patterns. Distension of the
bowel increases the frequency of CMMCs; this response
is also preserved after removal of the submucosa and
mucosa (Zagorodnyuk & Spencer, 2011). Similar findings
have been reported in the guinea-pig colon where the
frequency of peristaltic waves increased substantially in
response to maintained local distension, after removal of

mucosa and submucosal plexus (Spencer et al. 2011). This
suggests that all of the mechanosensory elements and the
neural circuits controlling CMMCs and neural peristaltic
contractions must reside in the myenteric plexus and/or
muscularis externa, at least in small laboratory animals.
Interestingly, removal of the circular muscle layer, but not
longitudinal muscle layer, has a major inhibitory effect on
stretch-activated polarized neural reflex pathways in the
colon (Spencer et al. 2006) (Fig. 1B). This is why sensory
elements in the circular muscle/or connectivity between
the circular muscle and myenteric plexus was determined
to be critically important in activating stretch-induced
polarized reflexes (Fig. 1B). In larger animals, such as dogs
and pigs (Sanders & Smith, 1986; Furness et al. 1990;
Timmermans et al. 1994; Hens et al. 2002) some motor
neurons have cell bodies in the submucosal ganglia, so
motility circuitry may involve the submucosal plexus in
these species.

Of course given that there are nerve endings of intrinsic
sensory neurons in the mucosa and that reflex responses
can be elicited by mechanical and chemical stimulation of
the mucosa, it is likely that neural input from the mucosa
modulates the circuits underlying the neuromechanical
loop.

It is likely that most of the propulsion achieved by
colonic motility is mediated by the combination of
CMMCs and activation of the neuromechanical loop
by contents working in concert leading to propulsive
movements. Both neural activities involve mechanical
stimuli. While maintained distension generates cyclical
enteric neural activity even in the absence of
moving contents, the neuromechanical loop provides a
self-sustained propulsive mechanism. The flexibility in the
speed of propulsion conferred by the neuromechanical
loop may allow these patterns to propel content of a
wide range of consistencies very effectively. In addition,
in some conditions, extrinsic excitatory neural inputs may
be required for making the enteric circuits more sensitive
to content distension.

The roles of chemical factors resulting from the diet and
microbiota in the modulation of these highly propulsive
patterns have yet to be identified.

Role of myogenic mechanisms in colonic motility

In all species studied to date, colonic smooth muscle has
rhythmic ‘myogenic’ motor activity, often with several
frequency components. These are generated by networks
of pacemaker ICCs (Sanders et al. 2014). We will not
review here in full the role of myogenic activity, but a
short summary is needed. Three main frequencies have
been described in the colon of most mammalian species
studied.

An intermediate frequency, generated by pacemaker
cells in the deeper part of the circular muscle, drives ‘slow

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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Figure 4. The frequency of colonic migrating motor complexes (CMMCs) is significantly increased by
the presence of faecal contents
A, schematic diagram showing an isolated whole mouse colon containing multiple faecal pellets. B and C show
spatio-temporal maps from the whole colon of different mice in vivo. CMMCs occur frequently and propagate
over significant lengths of colon. D and E, when the colon has expelled all contents, the same segments of colon
shown in B and C, respectively, rarely generate CMMCs. When CMMCs do occur, their velocity of propagation
is significantly slower. This shows that the presence of multiple pellets in the lumen enhances the velocity and
frequency of CMMCs. Figure reproduced from Barnes et al. (2014).
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waves’ in the circular muscle. The likely source of these
intermediate slow waves is the “ . . . ICC at the level of the
submucosal border, as demonstrated in the dog colon”
(Smith et al. 1987b). These often activate shallow contra-
ctions described as ‘ripples’ in isolated preparations of
colon of experimental animals (Fig. 5) (D’Antona et al.
2001; Huizinga et al. 2011; Dinning et al. 2012a; Costa et al.
2013a). Ripples occur at frequencies which correspond to
the intrinsic frequency of slow waves in the colon of each
species. For example, in the rabbit colon, under conditions
where neural activity is abolished, spatio-temporal maps
revealed ripples occurring at just under 10 min−1 and
propagating short distances orally and aborally (Dinning
et al. 2012a).

A second faster set of oscillations is generated by
pacemaker cells located near the myenteric plexus. Myo-
genic activity at over 30 min−1 occurs during distension
of rabbit and rat colon (Lentle et al. 2008; Dinning et al.
2012a; Costa et al. 2013a). This probably reflects activity
driven by myenteric ICCs in the colon – the so-called
‘myenteric potential oscillations’ or ‘MPOs’ described in
dog colon (Smith et al. 1987a). These appear to play an
important role in longitudinal muscle activity but may
sum with intermediate frequency slow waves (Smith et al.
1987a; Sabourin et al. 1990).

A third myogenic activity sometimes appears after
blocking neural activity. It consists of slow phasic contra-
ctions, usually occurring at intervals of 1 min or more. This
type of tetrodotoxin-resistant activity has been recorded
in rat colon (Pluja et al. 2001; Huizinga et al. 2011; Mane
et al. 2015), rabbit colon (Dinning et al. 2012a), dog colon
(Sabourin et al. 1990) and in the guinea-pig colonic flexure
(Fujimoto et al. 2010).

In general, myogenic activity alone is not sufficient for
significant propulsion of content and it is clear that a

functioning enteric nervous system is essential for survival
(Ro et al. 2006; Roberts et al. 2008). Interactions between
the three myogenic rhythmic activities and inputs from
enteric motor neurons play important roles in normal
colonic motility. Distension by luminal content activates
neural pathways for peristalsis or CMMCs which sum with
slow-wave-driven ripples; this activity is readily apparent
in spatio-temporal maps of rabbit colon (Dinning et al.
2012a). Excitatory motor neuron input to a region of
muscle increases the amplitude of ripples in that same
region, so that they form clusters of contractions, which
can fuse into larger summated contractions (Ehrlein et al.
1982; Karaus & Sarna, 1987; Sabourin et al. 1990; Lentle
et al. 2008; Dinning et al. 2012a) although excitatory
and inhibitory inputs can also alter their frequency and
duration resulting in more variable rhythmic activity
(Sanders & Smith, 1986).

Relation between colonic motor patterns in human
and experimental animals

Studies on the cellular bases of intestinal motility indicate
that humans share with other mammalian species similar
fundamental mechanisms. It is therefore valuable to
establish the correspondence of colonic motor patterns
in humans and experimental animals. This is not a
simple process; the conditions used to record human
colonic motility are very different from the experimental
arrangements for animal studies in vivo and in vitro.

Solely because of their amplitude, the most striking
colonic motor patterns in humans are the ‘mass
movements’ first described in 1909 (Holzknechtg, 1909).
These are associated with powerful contractions of circular
muscle which propagate down the colon; similar events
have been observed in animals in vivo, including sheep
(Bedrich & Ehrlein, 2001), pigs (Hipper & Ehrlein, 2001),

Oral

Anal
60 s

4 cm

10 mm

5 mm

Distal
colon

Figure 5. Myogenic ‘ripples’ recorded from isolated rabbit distal colon
In the presence of hexamethonium and tetrodotoxin, random chaotic ripple contractions can be visualized, with
initiation sites that vary and an irregular direction of propagation. Figure reproduced from Dinning et al. (2012a).
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dogs (Sarna et al. 1988) and rabbits (Ehrlein et al. 1982,
1983). Luminal infusion of a laxative induces large, single
pressure waves that propagate considerable distances along
the human colon (Hardcastle & Mann, 1968; Torsoli et al.
1971). These motor patterns were called ‘true peristalsis’
or ‘colonic peristalsis’, and were associated with ‘mass
movements’ (Torsoli et al. 1971). These peristaltic motor
patterns were neurally mediated because their initiation by
bisacodyl could be blocked by prior application of the local
anaesthetic lidocaine (lignocaine) (Hardcastle & Mann,
1968).

Narducci et al. recorded similar motor patterns
occurring spontaneously and coined the name ‘high
amplitude propagating contractions’ (HAPCs) to
describe them (Narducci et al. 1987) (Fig. 6A). These high
amplitude events were infrequent, occurring between 6
and 20 times per 24 hours in normal human subjects,
but were often prevalent after morning waking (Bampton
et al. 2001). They often appeared shortly after a high
calorie meal (Bassotti & Gaburri, 1988; Bassotti et al.
1989, 1990) and were often followed by defaecation
(Kamm et al. 1992; Bampton et al. 2000). These large
propagating contractile events stand out in manometric
recordings of colonic motility and have received more
attention than any other pattern.

HAPCs are strikingly similar to the neurogenic peri-
staltic contractions evoked by fluid or pellet distension of
the colon of experimental animals, in vitro and described
above. Large peristaltic contractions in the human colon,
as in experimental animals, are usually initiated by luminal
distension, and probably modulated by mucosal stimuli.
In conscious human patients, HAPCs are almost absent
in the empty ‘prepared’ bowel (Dinning et al. 2014a)
suggesting that they require distension to be initiated.
Further, they are likely to require extrinsic autonomic
input because they can be triggered by a meal (see above) or
by stress. This suggests an involvement of vagal and sacral
parasympathetic pathways to the bowel (Bharucha, 2012).
The distinctive nature of the HAPCs/peristaltic contra-
ctions is supported by discriminant and multivariate
analysis applied to pressure waves (duration, gradient
and amplitude) from high-resolution recordings from
human colon. This showed that these neurally mediated,
high amplitude propagating peristaltic sequences formed
a category that was clearly distinguishable from all other
propagating motor patterns in the human colon (Dinning
et al. 2014a).

As described above, activation of enteric ascending
excitatory and descending inhibitory neural pathways,
linked in neuromechanical loops, can explain this
powerful pattern of highly propulsive motility in the
human colon. Consistent with this, polarized reflexes
can be activated by local luminal distension in isolated
specimens of human colon (Spencer et al. 2012).

Colonic migrating motor complexes in humans

In humans CMMCs have been recorded less often, but
there are a few reports suggesting they can occur (Adler
et al. 1941; Cook et al. 2000; Hagger et al. 2002).
Hagger et al. (2002) showed repetitive small amplitude
contractile complexes in ambulant studies of normal
subjects. Furthermore, a recent study of human colon
in vitro reported motor complexes that travelled in both
directions, measured with force transducers (Spencer et al.
2012). The paucity of recordings of CMMCs in human
colon may be because the associated contractions are of
small amplitude, or because widely spaced sensors used
in traditional manometry were unable to detect them.
Some evidence of motor complexes is apparent in high
resolution colonic recordings where sensors are spaced at
1 cm intervals (Fig. 7).

Myogenic colonic activity in humans

As in experimental animals, in humans extensive nets
of pacemaker cells generate at least three independent
frequencies of myogenic activity. Cyclic contractions at
an intermediate frequency of 2–8 min−1 (Narducci et al.
1987; Rao & Welcher, 1996; Dinning et al. 2014a) are
frequently recorded in human colon or rectum . These
are probably due to the myogenic slow waves which
have a similar frequency in human colonic tissue in vitro
(Rae et al. 1998; Auli et al. 2008) and correspond to the
intermediate slow wave-generated ripples in experimental
animals.

An early study in the human descending and sigmoid
colons distinguished several types of pressure waves (Adler
et al. 1941) which usually occurred asynchronously in
adjacent balloon sensors. It was concluded that many
colonic contractions lack close coordination along the
colon (Adler et al. 1941). Segmental, non-propagating,
uncoordinated motor activity was believed to be the major
pattern of activity between HAPCs in the healthy human
colon. This description was widely accepted for the next
70 years (Narducci et al. 1987; Soffer et al. 1989; Bampton
et al. 2001; Rao et al. 2001). However, in the rectum,
several reports identified regular, rhythmic pressure waves
(Kumar et al. 1989; Rao et al. 2001), with similar frequency
(2–8 min−1) to those described by Adler (Adler et al. 1941).
They proposed that this activity was stimulated by the
arrival of stool or gas, and might act to retard the flow of
colonic contents into the rectum (Rao & Welcher, 1996).
Other studies showed that pressure waves with a similar
frequency could be occasionally recorded in other regions
of the colon (Kerlin et al. 1983; Soffer et al. 1989; Bampton
et al. 2001). Hagger et al. (2002) provided evidence that
the events can migrate either orally or aborally (Rao &
Welcher, 1996).
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Figure 6. Colonic manometry recordings made using high resolution fibre optic technology taken from
healthy adult human colon
The left-hand images are displayed as spatio-temporal colour plots and on the right is the same image displayed
as a conventional line plot. A shows the well-described high amplitude propagating sequences. In B, three long
single propagating motor patterns can be seen (black arrows). These motor patterns rapidly propagate across the
transverse and descending colon and the component pressure waves have a lower amplitude than the pressure
wave shown in A. In C, an example of a slowly propagating retrograde motor pattern is shown (solid white arrow).
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In recent years, high resolution catheters have greatly
improved the ability to detect small amplitude propagating
motor patterns in the healthy adult colon. It has become
apparent that earlier studies using balloons and other
widely spaced sensors mis-categorized much of the contra-
ctile activity of the human colon (Dinning et al. 2013)
(Fig. 7). Indeed when colonic motor patterns are recorded
with sensors spaced at �7 cm intervals, approximately
half of all propagating motor patterns are either missed or
mislabelled compared to recordings with sensor spacing
of 1 cm (Dinning et al. 2013).

High resolution recordings have now shown that these
intermediate frequency cyclic contractions (2–6 min−1)
are the most common motor pattern in the human colon.
These ripples propagate antegradely or retrogradely, or

sometimes occur synchronously over several centimetres
of bowel (Dinning et al. 2013, 2014a), just as in
other species (see above). As noted previously, these
short-extent, small amplitude contractions occur in all
regions of the colon but are most often evident in the distal
colon, sigmoid and rectum (Fig. 6D). The predominant
retrograde direction of these complexes in the sigmoid
colon and rectum supports the suggestion that they resist
anally directed flow and assist in the maintenance of con-
tinence and control of defaecation (Dinning et al. 2014a).

Ingestion of a meal (Dinning et al. 2014a) or electrical
stimulation of sacral nerves (Dinning et al. 2012b; Patton
et al. 2013) rapidly increases the occurrence and amplitude
of this cyclic activity, suggesting that extrinsic nerves can
modulate it.

These originate in the sigmoid colon and over several minutes propagate into the transverse colon. These motor
patterns appear during an unstimulated period of recording (i.e. before a meal). Preceding the slow retrograde
motor patterns is a short single motor pattern (short white arrow). In D, the cyclic propagating motor pattern is
shown. This is the most common postprandial propagating motor pattern. It is largely confined to the distal regions
of the colon and propagates predominantly in a retrograde direction, although in this instance both antegrade
and retrograde propagation can be seen. The cyclic propagating motor patterns occur at the colonic slow wave
frequency of 2–4 cycles min−1. Figure constructed from data published in Dinning et al. (2014a).
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Figure 7. Colonic motor patterns recorded with a fibre optic manometry catheter in the sigmoid colon
and rectum
A shows the low-resolution recording (10 cm spaced sensors) used for most colonic manometry studies. In B, the
complete data set is shown. With the high resolution recording (1 cm spaced sensors) four propagating motor
patterns can be seen (blue arrows indicate the actual direction of propagation). These propagating contractions
may represent the colonic motor complex. Figure constructed from data published in Dinning et al. (2013).
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Other colonic motility patterns in humans

Three other patterns of colonic motility have been
distinguished in human colon by high resolution
manometry:

(1) Short single motor pattern. As their name suggests,
these are isolated patterns that propagate antegradely
or retrogradely and occur in the proximal or distal
colon. Their rate of propagation overlapped with
cyclic myogenic contractions, as did their amplitude
and duration (Fig. 6C).
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Figure 8. Examples of pan-colonic pressurizations recorded
from descending colon of a patient with slow transit
constipation, using a fibre optic manometry catheter
Figure constructed from data published in Dinning et al. (2015).

(2) Long single motor patterns. These consist of a single
pressure event which propagates along the colon at
rate slightly higher than cyclic myogenic contractions
(1.8 ± 1.2 cm s−1). They had similar durations to
the myogenic cyclic contractions, but propagated
over much longer distances. These occurred more
than 1 min apart when occurring repetitively, and
generally originated proximal to the mid-descending
colon (Fig. 6B).

(3) Retrograde slow propagating motor patterns. These
were recorded in only 2 out of 10 subjects, but were
a distinctive pattern, travelling slowly at less than
0.5 cm s−1 over distances exceeding 40 cm, starting in
the sigmoid colon and extending into the transverse
colon (Fig. 6C).

Discriminant analysis suggested that all three of these
patterns were more similar to cyclic myogenic contra-
ctions than they were to HAPCs/peristaltic contractions in
terms of amplitude and duration (Dinning et al. 2014a).
This raises the possibility that the time course of the
contractions may be influenced by myogenic mechanisms.
However, the distinctive velocities, directions, extents and
intermittency of these contractions suggest involvement
of neural coordination. Exactly how neural activity and
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Figure 9. Schematic interpretation of the neuro-mechanical loop mechanisms for propulsion of
intestinal content initiated and sustained by a bolus
Three separate images have been taken of a bolus (yellow dashed line) moving along the rabbit distal colon at
2 s intervals. The inferred state of enteric motor neuron activity was determined from the relationships that exist
between changes in diameter (video image) and the corresponding changes in intraluminal pressure (manometry).
These relationships allow for the calculation of the mechanical state of the muscle (Costa et al. 2013b; Dinning
et al. 2014b). The red regions indicate activation of excitatory motor neurons and the blue regions indicate the
activation of enteric inhibitory motor neurons. The liquid bolus is propelled by oral excitation and anal inhibition,
as proposed by Bayliss & Starling (1899), and predicted by the neuro-mechanical loop mechanisms. The bolus
distends the gut and activates the polarized ascending excitatory reflex pathways resulting in oral active contraction
of the muscle (red) and anal active relaxation (blue). This results in a mechanical event of propulsion of the bolus in
the anal direction distending a new area of intestine, then initiating neural activity of polarized enteric pathways,
resulting in further propulsion of the bolus, which becomes self-sustained.
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myogenic activity interact to drive these patterns is
currently unclear.

In the human colon, as in other species, there are two
other frequencies of myogenic activity. A faster pacemaker
system with higher frequency than slow waves has been
demonstrated both electrophysiologically (Rae et al. 1998)
and mechanically (Carbone et al. 2013). A third type of
slower myogenic activity has also been observed in human
colon preparations, when neural activity is blocked. It
consists of contractions of longer duration and larger
amplitude (Mane et al. 2015). Isolated specimens of
human colon in vitro show slow spontaneous contra-
ctions, at intervals of 0.5–5 min, called ‘slow phasic contra-
ctions’ (Carbone et al. 2013). They could be initiated
prematurely by electrical activation of enteric neural
pathways, which then re-set their rhythmicity. After
tetrodotoxin similar slow phasic contractions persisted,
confirming that also in the human colon, as in other
species, all three myogenic frequencies exist. These slow
phasic contractions continued after the submucosa and
mucosa had been removed, suggesting that, as in other
species they were initiated by myenteric or intramuscular
pacemakers. In fact, this rhythm appears to be seen most
commonly in colonic preparations that lack submucosal
ICCs, suggesting that it may normally be suppressed when
the gut wall is intact.

The existence of the slower myogenic activity in vivo
in an intact colon has not been clearly demonstrated.
However, in recent high-resolution manometry recordings
a ‘pan-colonic pressurization’ has been described (Corsetti
et al. 2015). This motor pattern consists of a pressure
increase of 15 ± 3 mmHg amplitude and 24 ± 4 s
duration, which occurs simultaneously in all colonic
sensors (Corsetti et al. 2015). These motor patterns are
recorded in both healthy controls and patients with
constipation and can occur in isolation or in a rhythmic
pattern ranging from 3 min−1 to �1 min−1 (Fig. 8). The
physiological role of this motor pattern in the human
colon remains unknown, but it has been associated with
relaxation of the internal anal sphincter (Corsetti et al.
2015).

Complex interaction between neural inputs
and myogenic mechanisms

The relationship between enteric neural circuitry and ICCs
is complex. There is considerable evidence that neuro-
transmission from excitatory and nitrergic inhibitory
enteric motor neurons to gut smooth muscle is mediated
via ICCs (Sanders et al. 2010), although this has been
disputed (Goyal & Chaudhury, 2010). More recent
evidence, based on inducible knockdown of kit expression,
has confirmed that ICCs play a critical role in motor
neurotransmission, including in the colon (Klein et al.
2013). ICCs also play an important role in the stretch

sensitivity of smooth muscle excitability (Won et al. 2005),
another potent contributor to smooth muscle excitability
(Bulbring, 1955). Enteric neurons are also capable of phase
shifting or altering the frequency of myogenic activity
(Smith et al. 1989; Beckett et al. 2003; Bayguinov et al.
2010).

Important challenges for future studies

The relation between enteric neural inputs and the slow
phasic myogenic contractions remains one important
issue to be resolved. In fact, the role of the myo-
genic slow phasic contractions is an area of uncertainty.
Certainly, they can mimic some of the propulsive,
content-dependent contractions, but generally they show
considerably less spatial coordination. As these slow large
phasic myogenic contractions appear only after blocking
neural activity it is possible that they are normally
suppressed, presumably by enteric inhibitory circuits, and
that they may emerge either in experimental conditions,
or in colonic dysfunction. The contributions of the
fast myogenic events is also uncertain. While they play
a role in patterning longitudinal muscle contractions,
their role in shaping circular muscle activity and inter-
actions with motor neuronal input remain uncertain. The
muscularis mucosa is the Cinderella of the muscle layers
with little or no investigations addressing the role of this
muscle layer in motility. Furthermore, how the enteric
nervous system coordinates its activity to give rise to
short and long-extent contractions is another area lacking
a good understanding (Fig. 9). Working out the details
of the interactions between enteric neural pathway and
local myogenic mechanisms promises to be a difficult
but fruitful target for future study. The other major
challenge for the future remains to determine how these
patterns are modified in gastrointestinal disease and which
mechanisms can be selectively targeted.
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