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The NF-kB signalling module controls transcription through a network of

protein kinases such as the IKKs, as well as inhibitory proteins (IkBs) and tran-

scription factors including RelA/p65. Phosphorylation of the NF-kB subunits

is critical for dictating system dynamics. Using both non-targeted discovery

and quantitative selected reaction monitoring-targeted proteomics, we show

that the cytokine TNFa induces dynamic multisite phosphorylation of RelA

at a number of previously unidentified residues. Putative roles for many of

these phosphorylation sites on RelA were predicted by modelling of various

crystal structures. Stoichiometry of phosphorylation determination of Ser45

and Ser42 revealed preferential early phosphorylation of Ser45 in response

to TNFa. Quantitative analyses subsequently confirmed differential roles for

pSer42 and pSer45 in promoter-specific DNA binding and a role for both of

these phosphosites in regulating transcription from the IL-6 promoter. These

temporal dynamics suggest that RelA-mediated transcription is likely to be

controlled by functionally distinct NF-kB proteoforms carrying different com-

binations of modifications, rather than a simple ‘one modification, one effect’

system.
1. Introduction
The transcription factor RelA (also known as p65) is a key component of NF-kB

signalling. Upon dimerization, RelA regulates expression of a myriad of genes

underpinning diverse cellular processes, including inflammation, cell growth

and transformation. Impairment or dysregulation of the system has been

linked to many severe pathological states, including chronic inflammatory dis-

eases [1], autoimmune disorders [2] and cancer [3]. Like most signalling

pathways, the dynamics of NF-kB is precisely controlled by post-translational

modifications (PTMs), with phosphorylation playing a central rate-limiting

role in transcription [4–6]. Modification of approximately 25 different RelA

residues has been reported to date, although many have been annotated

solely following high-throughput mass spectrometric analysis [7] (www.

phosphosite.org [8]). Distinct phosphorylation events are known to modulate

RelA stability, nuclear localization and/or transcriptional activity by regulat-

ing binding to DNA and/or proteins [5]. It is now appreciated that the
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prevalence of different NF-kB modifications, that constitute

the so-called NF-kB code [9], are likely to be dependent on

both the context and activating stimulus, and the specific

cell type.

Elucidation of the mechanistic control of NF-kB signalling

outputs in response to specific extracellular signals requires

an understanding of the roles and interplay of a dense network

of coexisting RelA modifications. Most studies examining

covalent RelA modification evaluate select sites of interest,

often relying on mutagenesis or site-specific antibodies to

study individual sites. While these strategies have generated

much fundamental information, they fail to examine the com-

posite, biologically relevant picture of the dynamics and roles

of the different post-translationally modified forms (proteo-

forms) of the NF-kB complex. An in-depth investigation of

RelA phosphorylation under defined cellular conditions is

still lacking, yet such studies are essential to understand the

combinatorial role of different modifications. Crucially, this

lack of information significantly impairs our ability to model

the NF-kB system at levels approaching the natural complexity

found in vivo [10,11].

Mass spectrometry (MS) is the method of choice for PTM

characterization owing to its sensitivity and versatility, offering

unique advantages over other approaches. MS permits the

identification and quantification of modification sites even

under extremely challenging conditions, for example when

they occur with low stoichiometry or are located on low abun-

dance proteins such as transcription factors. However, the

substoichiometric nature of most PTM events reduces the

likelihood of their identification in a typical shotgun data-

dependent acquisition (DDA), where only the most abundant

peptide ions will yield sequence information. While these

types of experiments are extremely useful for discovery pur-

poses, more targeted approaches, often based on selected

reaction monitoring (SRM), improve detection and are optimal

for the quantification of (modified) peptides [12–14].

Cellular exposure to cytokines such as tumour necrosis

factor alpha (TNFa) induces IKK-mediated phosphorylation

of IkB, targeting it for degradation via the ubiquitin–

proteosome pathway (reviewed in [15]). Consequently, activated

NF-kB is no longer sequestered in the cytoplasm and can

translocate to the nucleus, where it regulates target gene

transcription. Prolonged stimulation with TNFa promotes

cell type-dependent sustained nuclear–cytoplasmic oscil-

lations of RelA with a typical period of approximately

100 min, regulated by negative feedback loops involving

the continual degradation and re-synthesis of IkB via the

‘canonical’ pathway [16–19]. Although RelA is known to be

phosphorylated on a number of residues following cytokine

stimulation, the lack of consistency in experimental design

makes understanding phosphosite dynamics, their coordi-

nated regulation and physiological functions nigh-on

impossible. Here, we exploit a combination of shotgun and

targeted MS strategies to define the temporal dynamics of

endogenous RelA phosphorylation in SK-N-AS neuroblas-

toma cells in response to TNFa exposure, identifying seven

novel phosphorylation sites on RelA (Ser42, Ser131, Thr136,

Ser238, Ser261, Ser269 and Ser472). Additionally, we charac-

terize a biologically relevant phosphosite (Ser45) only

previously annotated in high-throughput proteomic analyses.

Structural interrogation and cell-based analyses enable us to

confirm that two of these phosphorylation sites, Ser42 and

Ser45, regulate DNA binding and transcription. Furthermore,
our data provide the first quantitative temporal fingerprint of

RelA phosphorylation dynamics, information that will be

vital to understand, model and ultimately selectively perturb

the NF-kB signalling module.
2. Results
2.1. Endogenous RelA is dynamically phosphorylated

following cellular stimulation with TNFa
Our initial objective was to dissect dynamic (stimulation-

induced) regulation of RelA by PTMs. We first set out to

characterize the sites of modification on endogenous RelA

following exposure of human cells to the pro-inflammatory

cytokine TNFa. Preliminary analyses of a tryptic digest of

SK-N-AS cell extracts fractionated either by strong anion

exchange (36 fractions), high-pH reversed-phase (40 frac-

tions) or GeLC (40 slices from SDS–PAGE) [20] prior to

LC–MS/MS failed to identify RelA-derived tryptic peptides,

indicating that the endogenous transcription factor was

expressed at levels below the detection limit of the nano-

ESI-Orbitrap Velos system used, validated here to be in the

region of 120 000 protein copies (approx. 200 zeptomoles)

per cell [21], owing to limitations in the number of cells

that can be analysed in a single run. All subsequent investi-

gations thus relied on antibody-based enrichment of

endogenous RelA. LC–MS/MS analysis of tryptic peptides

derived from immunoprecipitated (IP’ed) RelA yielded 52%

sequence coverage, with peptides representing most of the

protein N-terminus (amino acids 42–314; figure 1), but lack-

ing coverage over the C-terminus. Of note for ‘bottom-up’

proteomics analysis and PTM discovery, much of the RelA

C-terminal region, which contains the transactivation

domains (TAs), lacks suitable Lys/Arg trypsin cleavage

sites. Indeed, in silico tryptic digestion of RelA predicts that

approximately 40% of theoretical peptides will not be

observed, primarily because the peptide fragments are too

large to elute from a standard C18 reverse-phase column.

Moreover, many of the potential tryptic cleavage sites are

either clustered in basic (e.g. KKK or KxKxK) or acidic (D/E

at positions P2, P10 and P20) motifs, which significantly

increase the likelihood of incomplete proteolysis [22–24].

Incomplete trypsin digestion of NF-kB proteins is further

complicated by extensive PTM, including Ser/Thr phos-

phorylation and Lys acetylation, both of which decrease

proteolytic efficiency [25]. To overcome this problem, alternate

site-specific proteases (chymotrypsin, elastase, GluC) were

employed, and these marginally increased protein sequence

coverage. When combined with tryptic digest information,

this led to the identification of nine sites of RelA phosphoryl-

ation after TiO2 phosphopeptide-enrichment, including six

novel sites: pSer42, pSer131, pThr136, pSer261, pSer269 and

pSer472 (figure 1 and electronic supplementary material,

table S1 and figure S1). In addition, the phosphorylation of

Ser45, a site previously reported in a single high-throughput

MS-based screen [26], was confirmed, and two known sites

of phosphorylation, pThr254 [27] and pSer468 [28–30], were

identified (electronic supplementary material, figure S1).

Interestingly, this extensive analysis still did not account

for several TNFa-induced phosphorylation sites on RelA

originally identified using non-MS-based approaches, includ-

ing pSer536 [29,31,32], most likely owing to an inability to
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Figure 1. TNFa induces dynamic multi-site phosphorylation of endogenous RelA. (a) Phosphorylation sites identified at 5, 20, 40, 60 min post-stimulation of SK-N-AS
cells with the cytokine TNFa are detailed. No phosphorylation sites were observed in the absence of stimulation. CID product ion spectra of a (b) doubly charged ion at
m/z 437.7, indicating phosphorylation of Ser42 and Ser45; (c) doubly charged ion at m/z 570.1, indicating phosphorylation of Ser131; (d ) triply charged ion at m/z 669.7,
indicating phosphorylation of Ser136; (e) doubly charged ion m/z 796.2, indicating phosphorylation of Ser261; ( f ) triply charged ion at m/z 769.2, indicating
phosphorylation of Ser269. (g) Schematic of RelA detailing known and novel (*) sites of modification. Phosphorylation sites are in red, glycosylation sites in green;
a, acetylation; m, methylation; n, nitrosylation; o, oxidation; u, ubiquitination; TA, transactivation domain. Dark grey blocks represent those regions in the primary
sequence identified by shotgun LC – MS/MS analysis following proteolytic cleavage with different enzymes.
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generate suitable peptides for analysis under these con-

ditions. Although we interrogated the LC–MS data for

other types of PTM, including Cys oxidation, sulfhydration,
nitrosylation, acetylation and methylation of Lys, Tyr nitrosy-

lation and ubiquitinylation [33–35], only a single acetylation

site at Lys303 was observed.
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2.2. p50-dependent hyperphosphorylation of RelA is
abrogated by IkBa

To help understand the regulation of RelA phosphorylation

using a biochemical approach and purified components,

LC–MS/MS was employed to map phosphorylation sites on

RelA (12–317) induced by the known NF-kB kinases IKKb

and the catalytic subunit of protein kinase A (PKA; figure 2)

[30,36]. In an attempt to mimic the RelA supramolecular

assemblies found in cells, phosphorylation was also monitored

after inclusion of stoichiometric amounts of the IkBa and/or

p50 partner proteins (electronic supplementary material,

figures S1–S3). In addition to the discovery studies used to

pinpoint the residues phosphorylated under each of these con-

ditions, quantitative SRM assays were developed to assess

stoichiometry of phosphorylation of each of the sites, and

therefore determine the relative change in phosphorylation

upon inclusion of p50 and IkBa (figure 2 and electronic sup-

plementary material, table S2 and figure S3). SRM assays that

target specific peptide ions overcome the stochastic nature of

data-dependent MS-based proteomics, where lack of obser-

vation of a (phospho)peptide is not necessarily indicative of

its absence.

IKKb induced RelA phosphorylation on both the newly

identified Ser131 and at Ser311 (figure 2 and electronic sup-

plementary material, figure S3), a site previously reported to

be PKC-dependent [37,38]. Inclusion of p50, a key RelA hetero-

dimerization partner, increased levels of both pSer131 and

pSer311 by threefold and 1.6-fold, respectively. The increase

in phosphorylation at both sites was markedly reduced

(approx. 7- and 12.5-fold for Ser131 and Ser311, respectively)

upon inclusion of IkBa with the RelA : p50 complex. Likewise,

the PKA and/or IKKb-mediated phosphorylation of Ser238

was abrogated in the presence of p50 and IkBa.
When evaluating relative phosphorylation at Ser45, it was

important to consider total amounts of both the singly

phosphorylated pSer45-containing, as well as the doubly phos-

phorylated Ser42/Ser45 peptides. IKKb phosphorylation of the

singly phosphorylated Ser45 RelA peptide increased significantly

in the presence of p50, but there was a notable reduction in the

levels of this phosphopeptide upon addition of IkBa (figure 2).

When considering these data alongside the marked increase in

the levels of the doubly phosphorylated Ser42/Ser45-containing

peptide, it is apparent that phosphorylation of both Ser42 and

Ser45 is enhanced upon formation of the tertiary complex, equiv-

alent to approximately 60-fold over RelA alone. Like IKKb, PKA

phosphorylation of Ser42/Ser45 is significantly elevated in the

ternary complex of RelA : p50 : IkBa. However, unlike IKKb,

PKA favours phosphorylation of both Ser42 and Ser45 on RelA

for the RelA : p50 heterodimer. pSer45 is thus maximal in the

presence of p50 and IkBa, irrespective of the kinase used.

The levels of pSer261, pSer281 and pThr305, in addition to

pSer131 and pSer311, increased significantly in the presence of

p50 following IKKb incubation, but were reduced (or absent)

when co-incubated with IkBa. p50 thus promotes hyperpho-

sphorylation of RelA by IKKb, and to a lesser extent PKA, and

this is abrogated upon addition of the inhibitor IkBa protein.

Although only three (Ser205, Ser281 and Ser311) of the 13 phos-

phosites identified in our in vitro studies have previously been

described [36,37,39–41], four new in cellulo sites (Ser131,

Thr136, Ser261, Ser269) were validated in these biochemical

assays (electronic supplementary material, table S1).

2.3. Structural modelling predicts putative roles for
RelA phosphorylation sites

To assess functional conservation of RelA phosphosites in

vertebrates, a sequence alignment was performed. Of the
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17 phosphorylation sites identified (combined in vitro and

in vivo), nine residues (five of which have not previously

been described (in italics)) are completely conserved across

all species (Ser42, Ser45, Ser112, Thr136, Ser203, Ser205,

Thr254, Ser281, Thr305), as is the previously reported Ser276

(electronic supplementary material, figure S3). Ser238, Ser240
and Ser472 (and previously identified sites at Ser311, Ser468,

Thr505, Ser529, Ser536 and Ser547) are highly conserved in

most mammals, but exhibit reduced conservation in chicken,

frog and zebrafish. It is interesting to note that sequence con-

servation is considerably higher across the N-terminal RHD,

which regulates binding to proteins such as the NF-kB

subunits, when compared with the C-terminal TA domains.

Co-crystal structures of RelA in complex with p50, IkB

and/or DNA, including PDB IDs: 1NFI (RelA : p50 : IkBa)

[42], 1IKN (RelA : p50 : IkBa) [43], 1K3Z (RelA : IkBb) [44]

and 1LEI (RelA : p50 : DNA) [45] were employed to evaluate

potential roles of RelA phosphorylation on intermolecular

complex assembly. Notably Ser240, which lies at the interface
with IkB (a/b), acts to stabilize the interaction of the complex

by formation of hydrogen bonds with either Arg260 (1IKN) or

Leu256 (1NFI) of IkBa (figure 3a,b). Phosphorylation at Ser240

is predicted to destabilize the interaction of RelA with IkBa by

removing these interactions. Close proximity of Ser238 to resi-

dues regulating the interaction with IkBa through either

hydrogen bonds (Ser240, Gln241, Asp243) or a salt bridge

(Asp243) also supports a role for pSer238 in regulating the

interaction of RelA with IkBa. Furthermore, this modelling

supports our in vitro kinase assay data, where statistically

lower levels (0.7-fold) of IKKb-induced pSer238 in the presence

of IkBa (figure 2) were measured. Likewise, phosphorylation

of RelA at Ser261, which also lies near the interface with

IkBa, was 2.1-fold higher in the absence of IkBa. Structural

comparison of both a RelA homodimer complexed with IkBb

(1K3Z [44] and figure 3c) and a RelA : p50 heterodimer with

IkBa suggests that pSer203 and pThr305 also are likely to regu-

late the RelA : IkB interaction. The interface between RelA, p50

and p105 lies +5 residues either side of Ser205 (figure 3d ),
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indicating a role for pSer205 (and potentially pSer203) in regu-

lating heterodimer formation. Of particular interest were Ser42

and Ser45, given that they appear to be directly involved in

the interaction of NF-kB with the kB DNA sequence

(figure 3e). We thus predicted a critical role for these sites in

regulating the DNA binding propensity of RelA.

2.4. Quantitative selected reaction monitoring-based
temporal profiling of Ser42 and Ser45
phosphorylation in response to TNFa

The DNA binding and transcriptional activity of NF-kB sub-

units is known to be dynamically regulated by reversible

covalent modifications [27–29,31,46–54]. Our observation

that, first, phosphorylation at Ser42 and Ser45 appears to be

temporally regulated in response to TNFa (figure 1), second

that both Ser42 and Ser45 are evolutionarily conserved (elec-

tronic supplementary material, figure S3) and third that

phosphorylation of one or both of these sites may structurally

regulate DNA binding (figure 3e) meant that defining and

quantifying TNFa-induced temporal dynamics of phosphoryl-

ation of these two residues was a priority. SRM, exploiting

isotope-labelled peptides as internal reference standards,

offers significant improvements in detection limits over the dis-

covery-type analyses used for early RelA phosphosite mapping

[14] and is ideally suited to quantitative temporal profiling.

Quantification by SRM is the ‘gold-standard’ in protein quanti-

fication and is significantly more robust than other commonly

exploited techniques such as western blotting [55].

We designed SRM assays for singly (pSer42 or pSer45)

and doubly phosphorylated (pSer42 and pSer45) forms of

the tryptic peptide (p)SAG(p)SIPGER, as well as the sequence

surrounding pSer276 (VSMQLRRPpSDR). SRM transitions

were also designed for a non-modified reference peptide

(DGFYEAELCPDR), whose quantitative profiling was used

to normalize for the total amount of IP’ed endogenous RelA

in the assays (figure 4a and electronic supplementary material,

figures S4 and S5). Phosphopeptide (and thus phosphosite)

quantification as a function of time following cell stimulation

was performed by monitoring the SRM signals (peak areas)

of the three phosphopeptides relative to the non-modified

RelA tryptic peptide. In order to define the absolute amounts

of each of the phosphopeptides, and thus the stoichiometry

of phosphorylation at each of the sites, known amounts

of identical [13C6] Arg peptides were included as internal

quantification standards.

Using this approach, quantitative changes in site-specific

RelA phosphorylation stoichiometry in cellulo were determined

for the first time. As well as confirming cellular phosphoryl-

ation of Ser238, we evaluated time-dependent pSer45,

pSer42pSer45 and pSer276 modification after TNFa exposure,

employing three independent biological replicates for analysis

(figure 4b–e). A series of co-eluting transitions specific for the

peptide phosphorylated at Ser45 (including y7–98) were

recorded, permitting discrimination between pSer42 and

pSer45 positional isomers and quantification of pSer45.
SRM-based quantification of endogenous RelA phos-

phorylation reveals rapid biphasic regulation of pSer42/45 in

response to TNFa stimulation (figure 4). Similar phosphoryl-

ation dynamics were also observed after immunoblotting

with a phospho-specific antibody raised against the dual

Ser42/45 phosphopeptide (figure 4g).
In order to define the stoichiometry and dynamics of

phosphorylation at Ser45, it was important to co-evaluate the

singly and doubly phosphorylated peptides covering pSer45

and pSer42/45 (figure 4b–d ). Total pSer45 levels (pSer45*)

were calculated by summation of the percentage phosphoryl-

ation of the two pSer45-containing phosphopeptides for each

biological replicate (figure 4d). Although the singly phos-

phorylated pSer45-containing peptide peaked 5 min after

TNFa stimulation, subsequently rising again at later time

points (figure 4b), there was a consistent delay in pSer42/45

phosphopeptide dynamics, as determined by SRM (and

validated by western blotting), indicating that Ser45 phos-

phorylation occurs first. Indeed, Ser42 was never observed in

its phosphorylated form in the absence of pSer45 under these

conditions. Phosphorylation of Ser45 (pSer45*, figure 4d )

clearly demonstrates cyclical dynamics, with phosphoryla-

tion peaking rapidly after stimulation (approx. 5–10 min)

before decreasing to basal levels (20 min) and then rising to

maximal values after 40–60 min. Interestingly, this is similar

in timing to the dynamics observed for the pSer276-containing

peptide (figure 4e), a phosphorylation site previously demon-

strated to be essential for transcription from a subset of

NF-kB-dependent genes, exemplified by IL-8 transcription

[36,39,56,57].

The biological variance in phosphosite dynamics identified

between our biological replicates can be explained, in large

part, by the discrete rather than by continuous time-points

employed in our assays: note the much faster initial rate of

pSer42/45 for a single bioreplicate (figure 4c, black) which

consequently shifts the cycling phosphorylation levels earlier.

Perhaps unsurprisingly, the precise stoichiometry of phos-

phorylation at each time point is not identical for the

individual bioreplicate samples, suggesting that it is the vari-

ation or fold-change in levels of a given phosphorylation site

that mediates stimulation-induced responses rather than the

absolute stoichiometry of modification.
2.5. Rapid RelA phosphorylation at Ser42/45 regulates
DNA binding and transcription

As a consequence of our molecular modelling, we hypoth-

esized that phosphorylation of Ser42 and/or Ser45 regulates

the interaction of RelA with kB DNA and RelA transcriptional

activity. To examine potential roles for Ser42 and Ser45, both

phosphomimetic (Ser! Asp) and phosphonull (Ser! Ala)

mutants of RelA were assessed for their effect on RelA

nuclear mobility (figure 5) and DNA binding (figure 6).

Fluorescent recovery after photobleaching (FRAP; figure 5a)

was used to evaluate the nuclear mobility of RelA, under the

hypothesis that differential DNA binding of the RelA protein

variants would alter their diffusion rates. The recovery of fluor-

escent signal of RelA–DsRed after photobleaching is much

slower for protein that is anchored to DNA (figure 5b,c); this

assay is arguably of greater physiological relevance in evaluat-

ing the effect of modification of specific residues when

compared with in vitro electromobility shift assay (EMSA).

We observed no significant difference in the half time to recov-

ery of any of the RelA–DsRed mutants from that of the

wild-type (WT) protein in the cytoplasm of non-stimulated

cells (figure 5d), as would be expected. However, there was a

statistically significant difference in the nuclear dynamics of

Ser42Asp and Ser45Asp mutants compared with WT in
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response to TNFa (figure 5e). Fluorescence signal of the RelA

Ser42/45 phosphomimetics recovered much faster (lower thalf )

than that of WT protein after photobleaching, indicative of

increased mobility of these two proteins under conditions

where RelA is transcriptionally active and is thus expected to
bind DNA. These data are in agreement with a significant

decrease in DNA binding arising owing to phosphorylation

at Ser42 or Ser45. As a control, recovery of fluorescent signal

(a proxy for mobility) was also determined for a Tyr36Ala/

Glu39Asp RelA non-DNA binding mutant (NBM) [47],
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which generated recovery curves similar to Ser42Asp and

Ser45Asp (data not shown). Like the Ser42Ala/Ser45Ala pro-

teins, the NBM only demonstrated a difference in mobility

following TNFa stimulation. These data confirm an inhibitory

effect of Ser42/45 phosphorylation on DNA binding, as pre-

dicted from our modelling. Interestingly, Ser42Ala–DsRed

exhibited a small but statistically significant ( p , 0.1) decrease

in thalf after TNFa stimulation, suggesting a minor decrease in

the ability of this mutant to remain anchored to chromatin.

This may potentially be explained by the decreased capabili-

ties of Ala compared with Ser to form hydrogen bonds with

the DNA backbone [58].

To validate the roles of these RelA phosphorylation sites on

cellular DNA binding in a more direct manner, chromatin

immunoprecipitation (ChIP) studies were performed using

either the IL-6 promoter (containing a single kB binding

site—TGGGATTTTCCCA [59]) or the IkBa promoter (contain-

ing three distinct kB binding sites—GAGAAAGTCCCC,

GGAAATTCCCC, GGGAAACC CC [60]) in SK-N-AS cells

transfected with either WT RelA, Ser42 or Ser45 phosphonull

or Ser42 or Ser45 phosphomimetic mutants (figure 6a).

Owing to the presence of endogenous RelA in these ChIP

assays, interpretation of these data has to consider co-

precipitation of both endogenous and transfected RelA

protein. In control cells, where endogenous RelA was expected

to be largely unmodified at Ser42/45 (calculated as less than
20%, figure 4), there was a statistically significantly increase

(2.9-fold) in IL-6 promoter binding of total RelA (endogenous

and overexpressed) in cells transfected with Ser42Ala. No stat-

istical difference was detected in RelA binding in cells

expressing Ser45Ala RelA at this promoter region. As expected

for conditions where RelA DNA binding was low, there was

also no statistical difference in DNA binding in cells expressing

the phosphomimetic mutants compared with those expressing

WT RelA. In marked contrast, there was no difference in the

binding of RelA from cells expressing Ser42Ala to the IkBa

promoter, although increased binding of RelA to this

promoter was observed in cells expressing the phosphonull

Ser45Ala protein, suggesting a differential role for these two

residues in mediating promoter-specific interactions.

Following cellular treatment with TNFa, where cells are

undergoing active kB-mediated transcription, we confirmed

enhanced DNA binding of RelA in the both the control and

WT RelA transfected cells to both promoter sequences. Perhaps

surprisingly, this stimulation-enhanced DNA binding of RelA

was ablated at both promoter sequences upon transfection

with the Ser42Ala RelA mutant. Indeed, there is a significant

decrease in RelA binding following transfection of Ser42Ala

upon stimulation, suggesting a dominant negative effect

of Ser42Ala RelA under these conditions. Overexpression of

Ser45Ala promotes a statistically significant increase in binding

of RelA to the IkBa promoter, an effect not observed for the
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IL-6 promoter, once again indicating a differential effect of

these two residues on promoter-specific binding.

To investigate the regulatory effects of phosphorylation at

either of these two serine residues on transcription, SK-N-AS

cells were transfected with an IL-6-promoter–luciferase repor-

ter construct together with expression vectors for WT RelA,

the single or double phosphonull or phosphomimetic mutants,

or the known transcriptionally deficient Ser276Ala [39] RelA

expression construct (figure 6c). Expression of the Ser42 and/

or Ser45 phosphomimetics (S42D, S45D, S42D/45D) signifi-

cantly repressed transcription from the IL-6 promoter, akin to

that observed for Ser276Ala, when compared with the RelA

phosphonull variants (S42A, S45A, S45A/S45A). However,

no significant difference was observed between the two sites

(Ser42 or Ser45) in terms of relative luciferase reporter activity,

suggesting that phosphorylation at these sites may be partially

redundant, at least in the context of the IL-6 promoter. These

data therefore validate our hypothesis that phosphoryla-

tion of Ser42 and Ser45 abrogates DNA binding, consequently

negatively impacting transcription.

A one-way analysis of variance (ANOVA) with a post hoc
Tukey’s multiple comparisons test was used to probe for

statistical differences: *p , 0.05, **p , 0.01, ***p , 0.001 and

****p , 0.0001.
3. Discussion
In this study, we identified multiple novel phosphorylation

sites on RelA, validating seven novel in cellulo phosphosites—

Ser42, Ser131, Thr136, Ser238 (data not shown), Ser261,

Ser269 and Ser472, and confirming Ser45 as a bona fide cellular

site of regulated phosphorylation.

To the best of our knowledge, this is the most extensive,

unbiased phosphosite analysis of an NF-kB transcription

factor family member. For the first time, we have demonstrated

distinct stimulation-induced temporal regulation of a number

of phosphorylation events, and directly quantified the stoichi-

ometry of TNFa-induced phosphorylation as a function of time

for Ser42, Ser45 and Ser276 sites. Interestingly, the relative

phosphorylation of many of these sites by purified protein

kinases in vitro was dependent on the conditions for dimeriza-

tion employed; modification of most sites was enhanced in the

presence of the RelA heterodimerization partner p50, although

PKA-mediated phosphorylation of Ser45 and Ser238, and

IKKb-mediated Thr136 phosphorylation were more efficient

for RelA homodimers. Furthermore, with the exception of

Ser42/45, phosphorylation was perturbed upon addition of

IkBa, providing evidence for protein complex-specific effects

on phosphorylation.
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Putative functions for RelA phosphorylation sites were

evaluated by bioinformatic and structural analysis, and new

roles in regulating DNA binding predicted specifically for

Ser42 and Ser45. In agreement with our hypothesis, Ser42

and Ser45 phosphomimetic versions of RelA exhibited

increased nuclear mobility demonstrating decreased DNA

anchoring, similar to that observed for the previously

described RelA NBM (figure 5). Furthermore, the differential

binding of RelA observed by ChIP upon transfection of the

Ser42 and Ser45 mutants to either the IL-6 or IkBa promoters

indicates a complex role for modification of these two residues

in regulating promoter-specific interactions (figure 6). Based on

a luciferase reporter assay, the inability to phosphorylate either

or both of these residues promotes transcription from the IL-6

promoter, whereas RelA variants that mimic phosphorylation

at Ser42 and/or Ser45 repress transcription from the same pro-

moter. Interestingly, phosphorylation at Ser45 rather than at

Ser42 appears to preferentially regulate binding to the IkBa

promoter with a statistically significant increase in binding of

the phosphonull Ser45Ala RelA. Curiously, Ser42Ala exhibits

unexpected behaviour with respect to DNA binding at both

promoters following cellular stimulation with TNFa. This

may be owing to differential binding of other transcription

factors to Ser42Ala, or potentially that Ser45 can still be phos-

phorylated in this Ser42Ala variant. These remain avenues

for further exploration. It is interesting to note that in vitro phos-

phorylation of Ser45 by IKKb (but not PKA) is significantly

enhanced by p50, suggesting that this is heterodimer-specific

phosphorylation event. The notable increase in phosphoryl-

ation at Ser42 and Ser45 upon inclusion of IkBa in the in vitro
assay, and the close proximity of these two residues to the inter-

face of RelA with IkB suggests a conformational change in this

region that increases residue accessibility upon IkB binding. It

will thus be interesting to evaluate the effect of modification of

these sites on the conformation and interactome of RelA.

The dynamics of Ser42/45 phosphorylation is consistent

with a model that modification of one or both of these

residues serves to directly regulate RelA-mediated transcrip-

tion by disrupting association with the kB promoter on

DNA. For example, rapid phosphorylation 5 min after TNF

exposure probably inhibits the function of RelA already loca-

lized to the nucleus, whereas the latter peak in pSer42/45

might act to prevent transcriptional activity after TNFa-

induced RelA nuclear translocation. That pSer42 is never

observed in the absence of pSer45 in response to this stimu-

lus suggests that these residues may work together in a

concerted ‘belt and braces’ mechanism to efficiently regulate

DNA binding.

More generally, our in vitro kinase assays suggest a p50-

induced change in the structure of RelA that facilitates its

hyperphosphorylation. Abrogation of a number of these phos-

phorylation sites, particularly those localized to the C-terminal

region of the RHD upon inclusion of IkBa, under conditions

where native (inhibitor bound) RelA : p50 heterodimer is pre-

sent, suggests either a masking effect by IkB on the otherwise

available phosphorylation sites on RelA, or (more likely) a

structural change in the heterodimer upon IkB binding which

reduces accessibility of this region of the RHD. More generally,

our data support the idea that different RelA dimers are prob-

ably subject to differential regulation and functional

modulation.

Taken together, our biochemical, structural and cellular

evaluation of RelA provides compelling evidence for a dynamic
pool of post-translationally modified (primarily phosphorylated)

proteoforms of RelA, which are rapidly and dynamically regu-

lated in response to an extracellular stimulus (TNFa). The high

complexity of the RelA phosphorylation patterning increases

the likelihood of distinct combinations, or fingerprints, of protein

modification (sometimes referred to as the NF-kB barcode

hypothesis) [9,32] as one key for the formation of transcriptional

complexes that support differential transcriptional output. While

these studies focused primarily on phosphorylation of RelA at

Ser42 and Ser45, it will be interesting to assess the dynamics of

modification of these (and other) sites under different cellular

conditions, with the ultimate view of identifying different RelA

‘codes’ or proteoforms that engage distinct promoters.

The inherent problems with ‘bottom-up’ peptide-based

proteomics analyses are particularly acute for the comprehen-

sive investigation of RelA (and other NF-kB) proteoforms. The

analysis of the intact RelA protein by top-down proteomics

[61,62] will therefore be particularly powerful when used in

conjunction with our bottom-up discovery and targeted

quantification strategies. The first top-down investigation

using an overexpressed Halo-tagged form of RelA has recently

been reported [63], although the myriad of phosphoforms that

we know are present were not annotated, probably owing to

the inherent difficulties of working on low abundance,

highly modified protein species the size of RelA. Our new

platform for RelA analysis should rapidly permit unique

‘NF-kB fingerprints’ and their functional relationships with

promoter-specific transcription to be assessed.

4. Methods
4.1. Cell culture and lysis
SK-N-AS cells were grown in RPMI medium to 80% conflu-

ence and stimulated with TNFa (10 ng ml21; Calbiochem)

for up to 60 min. Growth medium was removed, and cells

washed three times with PBS. Cells were lysed on ice by

addition of lysis buffer (25 mM Tris–HCl pH 8, 0.15 M

NaCl, 0.1% (v/v) NP-40, 1 mM EDTA, 1 mM EGTA, 10 mM

b-glycerophosphate, 10 mM NaF, 300 mM Na3VO4, 1 mM

benzamidine, 2 mM PMSF, mini EDTA-free protease inhibitor

cocktail tablet and 1 mM DTT). Lysates were cleared by

centrifugation (14 000g, 10 min, 48C) and supernatants har-

vested. For the cross-linking IP experiments, the lysis buffer

was modified to include 0.25% (v/v) Triton X-100 instead

of 0.1% (v/v) NP-40 and 500 mM NaCl.

4.2. Immunoprecipitation of RelA using antibody cross-
linked magnetic protein G beads

Cell lysates were pre-cleared by incubation with 20 ml of

protein G beads (48C for 10 min) followed by centrifugation

(14 000g, 48C, 1 min). RelA antibody (sc372, Santa Cruz

Biotechnology; 2 mg) was cross-linked to magnetic protein G

beads (20 ml) using the cross-linking magnetic IP kit (Pierce,

USA) according to the manufacturer’s instructions (see elec-

tronic supplementary material, Methods for full details). Cell

lysate (500 mg) was added to the antibody-cross-linked beads

and incubated for 1 h at room temperature. Unbound material

was collected using a magnetic stand, beads were washed

twice with 200 ml of lysis buffer, twice with 200 ml of IP

buffer (40 mM Tris–HCl pH 8, 0.1% (v/v) NP-40, 1 mM

EGTA, 6 mM EDTA, 6 mM DTT, 0.5 M NaCl, 1 mM
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benzamidine, 10 mM NaF, 10 mM b-glycerophosphate, 2 mM

PMSF, 300 mM Na3VO4, mini EDTA-free protease inhibitor

cocktail), once with 500 ml of HPLC water and three times

with 500 ml of 25 mM NH4HCO3 pH 8. Beads were resus-

pended in 160 ml of 25 mM NH4HCO3, to which 10 ml of a

1% (w/v) solution of RapiGest SF [64] (Waters, UK) in

25 mM NH4HCO3 was added. Samples were heated at 968C
for 10 min, and supernatants containing the eluted RelA were

recovered using a magnetic stand and used for in-solution

digestion.

4.3. In vitro kinase assays
Purified truncated RelA (12–317; 5 mg [65]) was incubated

with IKKa or PKA (Invitrogen, UK) in kinase buffer

(25 mM Tris–HCl pH 7.5, 10 mM MgCl2, 0.5 mM EGTA,

2.5 mM DTT and 200 mM ATP) for 2 h at 378C, 50 ml total

volume. Assays were also performed with equimolar concen-

trations of p50 (35–381) [65], with or without equimolar

GST-IkBa (59981, Abcam, UK). Phosphorylated proteins

were diluted to 0.1 mg ml21 in 50 mM NH4HCO3 and prepared

for digestion.

4.4. Sample preparation for LC – MS/MS analysis
Disulfide bonds were reduced by addition of DTT (4.2 mM,

608C, 10 min) and free Cys alkylated with iodoacetamide

(IOA; 16 mM, dark, RT, 30 min). DTT was added to a final

concentration of 8 mM and proteins digested by addition of

trypsin (0.2 mg ml21 in 10 mM AcOH, O/N, 378C) to 2%

(w/w). Digestion was stopped by addition of 5.5 ml 100%

AcN and RapiGest SF hydrolysis induced with neat TFA

(2.5 ml). Samples were incubated (378C for up to 2 h,

400 r.p.m.) until a white precipitate was observed and then

for a further 2 h at 48C for 2 h. Insoluble hydrolysis product

was removed by centrifugation (13 000g, 15 min, 48C). Diges-

tion was also performed without reduction and alkylation to

preserve oxidative modifications of cysteine residues.

4.5. TiO2 enrichment of phosphorylated peptides
Digests were dried by centrifugal evaporation (10 ml) and reso-

lubilized in loading buffer (65% (v/v) AcN, 2% (v/v) TFA,

saturated with glutamic acid, 200 ml). Phosphopeptides were

enriched using 200 ml pre-packed TiO2 spin tips (ProteaBio,

France) [66]. Unbound peptides were dried by centrifugal

evaporation, re-suspended in 20 ml of 0.1% (v/v) TFA and

desalted using C18 Zip Tips (Millipore, USA). The eluates

were dried as above, resolubilized in 200 ml of 2% (v/v)

AcN, 0.1% (v/v) FA and dried again. After repeating the resus-

pension and drying, peptides were stored at 2208C for nano

LC–ESI–MS/MS analysis.

4.6. Data-dependent nano LC – ESI – MS/MS
nLC–ESI–MS/MS analyses were performed on a Bruker

amaZon ETD ion trapTM arranged in-line with an Ultimate

3000 nanoflow uHPLC systemTM (Thermo Scientific, USA).

Peptides were directly eluted over a 35 min LC gradient and

a full scan mass spectrum acquired over m/z 300–1800, with

the three most abundant ions being selected for isolation and

activation with either CID and/or ETD (alternating). Peaklists

from both the CID and ETD MS/MS spectra were extracted
using DATA ANALYSIS software v. 4.0 (Bruker, Germany) and

converted into mascot generic files (.mgf). .mgf files were

searched against the concatenated SwissProt database

(2011.05.03) and decoy using Mascot (v. 2.2.06), specifying H.
sapiens for taxonomy. Parameters were set as follows: precursor

mass tolerance at 0.4 Da; product ion tolerance at 0.6 Da; less

than or equal to one missed cleavage; fixed modification: car-

bamidomethyl Cys; variable modifications: deamidation of

Asn and Gln, oxidation of Met, phosphorylation of Ser, Thr

and Tyr. Top-ranking peptide matches in Mascot were using

ion score greater than or equal to 25 and an expectation value

of less than or equal to 0.1. False-discovery rates at the protein

and peptide level were assessed by searching against the decoy

database (max. 1%). All CID and ETD tandem mass spectra of

phosphorylated peptides were manually inspected.

4.7. Quantification of protein phosphorylation by
selected reaction monitoring

Transitions for SRM were defined either using experimentally

observed precursor and product ion m/z values of RelA (phos-

pho)peptides, or SKYLINE (v. 1.2) [67] where this information

was unavailable. All samples were analysed by nano

uHPLC-SRM–MS/MS using a nanoACQUITY UPLCTM

system in-line with a Xevo TQ MS (Waters, UK). Transition

lists were divided to achieve a minimum dwell time of 50 ms

per transition. Each peptide was defined by six transitions,

including neutral loss of H3PO4 and (H3PO4 þ H2O) for the

phosphorylated peptides. Chromatographic traces of the tran-

sitions were manually inspected using SKYLINE (v. 1.2).

A peptide was considered as positively identified when at

least two co-eluting transitions could be observed. When avail-

able, retention times and relative abundance of product ions of

in vitro generated RelA phosphopeptides were used as an

additional filter. The most intense chromatographic peak of n
co-eluting transitions for a single peptide (n ¼ from 2 to 6)

was classified as ‘top rank’ and its peak area value extracted.

4.8. Generation of pSer42/45 antibody
Phosphopeptide (and dephosphopeptide for purification) was

synthesized corresponding to residues 38–50 (CEGRpSAGp-

SIPGER) where p indicates the sites of phosphorylation at

Ser42 and Ser45. The phosphopeptide was used to generate a

novel custom rabbit polyclonal antibody (Eurogentec).

4.9. Sequence alignment and interface analysis
RelA sequences were aligned using MUSCLE [26], and the con-

servation of phosphorylation sites was manually determined.

Structural files containing RelA were recovered from the Protein

Data Bank and protein : protein interfaces identified using

Protein interfaces, surfaces and assemblies service (PISA;

http://www.ebi.ac.uk/pdbe/prot_int/pistart.html [68]). Inter-

faces predicted to be the result of crystal artefacts were not

analysed.

4.10. Fluorescence recovery after photobleaching
Cells were transfected using FuGENE HD (Promega) with

RelA–dsRed-Express (dsRedxp) species and seeded in 2 ml

of MEM (100 000 cells ml21) in 35 mm single and four

http://www.ebi.ac.uk/pdbe/prot_int/pistart.html
http://www.ebi.ac.uk/pdbe/prot_int/pistart.html
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compartment glass base Greiner dishes and mounted in a

Ziess XL incubator (378C, 5% CO2). TNFa (10 ng ml21) was

added for 30 min to allow for a maximal first translocation

prior to performing the FRAP analysis for the following

15 min. Images were collected using a Zeiss LSM 710 confo-

cal microscope. dsRedXP was excited using 561 nm diode

laser light, the resultant fluorescent emissions were collected

between 580 and 630 nm, defining a 3.14 mm2 region of

interest in the nucleus. Relative fluorescent intensity was

normalized to the pre-bleached plateau with 100% corre-

sponding to the highest recorded fluorescent intensity of a

given cell and 0% corresponding to an absence of fluorescent

signal. A ‘one-phase association, nonlinear regression’ curve

([Y ¼ Y0 þ (plateau – Y0) � (1 2 exp(2K � x))], where Y0 is

the y-value when x is zero, plateau is the Y value at infinite

times and K is the rate constant) was fitted to the FRAP recov-

ery curves; traces with an R2 value less than 0.7 were

removed from the dataset. The derived rate constant (K )

was used as a measure of nuclear mobility.

4.11. Cell transfection and chromatin
immunoprecipitation assay

SK-N-AS cells were transfected in duplicate with 1 mg

DsRed empty vector (control) or DsRed-RelA WT or mutant

(including S42A, S42D, S45A, S45D) vectors using Effectene

transfection reagent as per manufacturer’s instructions

(Qiagen). Cells were then grown for 48 h; one half of the dupli-

cate cultures were treated with 5 ng ml21 TNFa for 3 h and

fixed in 1% formaldehyde, harvested by scraping into PBS

with protease inhibitors and cell pellets resolubilized in lysis

buffer (1% SDS, 10 mM EDTA, 50 mM Tris–HCl (pH 8.0))

for 30 min, then sonicated for 10 cycles (30 s on, 20 s off) in

Diagenode Bioruptor. The sonicated samples were centrifuged

(13 000 r.p.m., 48C, 10 min), the cleared supernatant collected

and chromatin content measured based on OD260 nm. Chroma-

tin immunoprecipitation (ChIP) assays were carried out using

50 mg cross-linked pre-cleared chromatin which was incubated

with 5 mg anti-RelA or control antibodies; the complexes were

precipitated, washed and eluted. Cross-links were reversed

and genomic DNA purified. Each PCR was performed in

duplicate and the analysis repeated at least three times from
independent ChIP experiments. A signal intensity value for

each sample was calculated from the average of the exper-

iments. Average values of eluates were normalized to

average values of the control antibody sample and expressed

as fold enrichment above background (i.e. control antibody).

Quantitative PCR amplification was carried out using primers

that encompass RelA binding site(s) within the human IL-6 or

IkBa promoters (sequences available on request).
4.12. Luciferase reporter assay
SK-N-AS cells were transfected in triplicate with 100 ng of

Renilla luciferase vector (pRLTK, transfection efficiency con-

trol, Promega), 0.5 mg IL-6 promoter–luciferase reporter

(pIL6-Lux) and 1 mg RelA expression constructs, either WT

or mutant (S42A, S42D, S45A, S45D, S42A/S45A, S42D/

S45S, S276A, using Effectene transfection reagent as per the

manufacturer’s instructions (Qiagen). Luciferase assays were

performed using a dual luciferase kit (Promega) according

to the manufacturer’s instructions. IL-6 promoter-driven

expression of firefly luciferase was normalized for differences

in transfection efficiency by measurement of the activity of

the co-transfected Renilla luciferase vector (pRLTK). In

brief, 48 h post-transfection cells were harvested into passive

lysis buffer (part of dual luciferase kit). The firefly luciferase

reagent (100 ml; LARII) was added to the test sample, with a

10 s equilibration time and measurement of luminescence

with a 10 s integration time, followed by addition of 100 ml of

the Renilla luciferase reagent and firefly quenching (Stop &

Glo), 10 s equilibration time, and measurement of luminescence

with a 10 s integration time. The data are represented as the

ratio of firefly to Renilla luciferase activity (Fluc/Rluc).
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