
1Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

www.nature.com/scientificreports

A Comparative Analysis of
Community Detection Algorithms
on Artificial Networks
Zhao Yang, René Algesheimer & Claudio J. Tessone

Many community detection algorithms have been developed to uncover the mesoscopic properties
of complex networks. However how good an algorithm is, in terms of accuracy and computing time,
remains still open. Testing algorithms on real-world network has certain restrictions which made their
insights potentially biased: the networks are usually small, and the underlying communities are not
defined objectively. In this study, we employ the Lancichinetti-Fortunato-Radicchi benchmark graph
to test eight state-of-the-art algorithms. We quantify the accuracy using complementary measures
and algorithms’ computing time. Based on simple network properties and the aforementioned results,
we provide guidelines that help to choose the most adequate community detection algorithm for a
given network. Moreover, these rules allow uncovering limitations in the use of specific algorithms
given macroscopic network properties. Our contribution is threefold: firstly, we provide actual
techniques to determine which is the most suited algorithm in most circumstances based on observable
properties of the network under consideration. Secondly, we use the mixing parameter as an easily
measurable indicator of finding the ranges of reliability of the different algorithms. Finally, we study
the dependency with network size focusing on both the algorithm’s predicting power and the effective
computing time.

Relationships between constituents of complex systems (be it in nature, society, or technological applications)
can be represented in terms of networks. In this portrayal, the elements composing the system are described as
nodes and their interactions as links. At the global level, the topology of these interactions – far from being triv-
ial – is in itself of complex nature1,2. Importantly, these networks further display some level of organisation at an
intermediate scale. At this mesoscopic level, it is possible to identify groups of nodes that are heavily connected
among themselves, but sparsely connected to the rest of the network. These interconnected groups are often
characterised as communities, or in other contexts modules, and occur in a wide variety of networked systems3,4.

Detecting communities has grown into a fundamental, and highly relevant problem in network science with
multiple applications. First, it allows to unveil the existence of a non-trivial internal network organisation at
coarse grain level. This allows further to infer special relationships between the nodes that may not be easily
accessible from direct empirical tests5. Second, it helps to better understand the properties of dynamic processes
taking place in a network. As paradigmatic examples, spreading processes of epidemics and innovation are con-
siderably affected by the community structure of the graph6.

Taking into account its importance, it is not surprising that many community detection methods have been
developed, using tools and techniques from variegated disciplines such as statistical physics, biology, applied
mathematics, computer science, and sociology. All these methods aim at improving the identification of mean-
ingful communities, while keeping as low as possible the computational complexity of the underlying algorithm.
Clearly, these algorithms are based on slightly different definitions of community, and therefore the results are not
always directly comparable. Further, in most real-world applications, a ground truth – i.e. a unique identification
of nodes to communities – is simply non-existent, which makes it even more difficult to assess the reliability of
the community detection procedures. To address these shortcomings and test the algorithms’ reliability, different
benchmarks have been developed.

Essentially, testing a community detection algorithm implies analysing computer-generated or real-world
networks with a well defined community structure (a known ground truth) in order to obtain the community
decomposition. One of the most used techniques is the GN benchmark (for Girvan & Newman3), which is a

URPP Social Networks, University of Zürich, Andreasstrasse 15, CH-8050 Zürich, Switzerland. Correspondence and
requests for materials should be addressed to Z.Y. (email: zhao.yang@business.uzh.ch)

received: 31 March 2016

accepted: 07 July 2016

Published: 01 August 2016

OPEN

mailto:zhao.yang@business.uzh.ch

www.nature.com/scientificreports/

2Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

special case of the planted l–partition model7 with a prior specification of the number of nodes (128) and equally
sized communities (4). When the expected number of links joining a node to others in different groups is smaller
than 8, the four groups are strongly defined communities. In these conditions, a well functioning detection algo-
rithm should be able to identify the communities in reasonable time. Different community detection algorithms
can be compared based on their performances on the GN benchmark, which has already been done by Danon
et al.8. However, there are several drawbacks to the GN benchmark: All nodes have the same expected degree,
communities are separated in the same way, and the network is of an unrealistic small size.

It is a well established fact that most real complex networks are characterised by largely heterogeneous degree
distributions1,2,9 and heterogeneous community sizes10–12. For this reason, the GN benchmark cannot be consid-
ered as a good proxy for a real network. By consequence, in a newer stream of research5,13, the authors proposed
an alternative benchmark, which is usually referred to as LFR (for Lancichinetti, Fortunato & Radicchi). This
method introduces power-law distributions of degree and community size to the graphs to generalise the GN
benchmark. The performances of most existing community detection algorithms are good on the GN benchmark.
In contrast, the LFR benchmark presents a harder test for algorithms and makes it easier to unveil their limita-
tions. It has been shown that the mixing parameter, which is defined as

µ =
∑
∑

k
k (1)

i i
ext

i i
tot

is the most influential parameter in the LFR benchmark graphs14. Here ki
ext and ki

tot stand for the external degree
of node i, i.e. the number of edges connecting it to others that belong to different communities, and the total
degree of said node. Although it would be possible to define a mixing parameter for each node, it is assumed that
μ is a global property and is the same for every node in the LFR benchmark. The reason here is to be consistent
with the standard hypotheses of the planted l-partition model15.

According to the definition of community in a strong sense, each node should have more connections within
the community than with the rest of the graph16. Therefore, for μ >​ 1/2 communities in the strong sense disap-
pear. However, it is worth to mention that Lancichinetti and Fortunato15 found a weaker condition for community
detection which can be applied to any version of the planted l-partition model: µ < −N n N()/c

max , where N is
the total number of nodes, and nc

max is the size of the largest community. In our study, although we stick to the
strong definition of communities, we have also taken the general condition of μ into consideration (see Table 1).

In the following, we briefly review studies comparing community detection algorithms in chronological
order5,8,13–15,17,18 to highlight the research interests shift. In one of the early studies in comparing community
detection algorithms, Danon et al. had tested ten algorithms on the GN benchmark78 and collected estimates of
how time complexity scales with network observables. However, the authors were not able to compare the actual
computational effort as a result of the small sizes of graphs. Later on, Lancichinetti et al. had employed the LFR
benchmark to measure the accuracy of two algorithms on undirected unweighted networks without overlapping
communities5 and two algorithms on directed weighted networks with overlapping communities13. Concurrently,
the authors tested twelve different algorithms on the GN and LFR benchmarks, and random graphs. For the tests
on the LFR benchmark, the authors had considered various parameters, including undirected unweighted graphs
with non-overlapping communities, directed unweighted graphs with non-overlapping communities, undirected
weighted graphs with non-overlapping communities, and undirected unweighted graphs with overlapping com-
munities15. Orman and Labatut later tested five community detection algorithms on the LFR benchmark14. They
measured the accuracy of algorithms and studied the properties of the LFR benchmark graphs. Later, Peel applied
two algorithms on both weighted and unweighted networks with 100 nodes and examined the performance of
algorithms developed for weighted networks against those for unweighted ones for different parts of the problem
space17. Recently, Hric et al. compared the accuracy of eleven different algorithms on both the LFR benchmark
and a collection of real world graphs with sizes vary from 34 to 5189809 nodes18. Overall, as an extension of the
GN benchmark, the LFR has drawn a lot of attention: Early, researchers employed small artificial and/or real
world networks as benchmarks (e.g. the GN benchmark and the Zachary’s karate club network); while nowadays
people shifted towards the use of large stylised large artificial or real world networks with some kind of ground
truth obtained from metadata information (e.g. the LFR benchmark and the DBLP collaboration network19).
However, as of today, a detailed study of the dependency with the network size is missing as most of the existing

Parameter Value

Number of nodes N 233 ~ 31948

Maximum degree 0.1N

Maximum community size 0.1N

Average degree 20

Degree distribution exponent −​2

Community size distribution exponent −​1

Mixing coefficient μ [0.03, 0.75]

Table 1.  Parameters of LFR benchmark graphs. To deal with possible discrepancies in the network
properties, we have randomly generated 100 network for every set of parameters. Due to the slow computing
speed, Spinglass and Edge betweenness algorithms have been tested only on small networks with N ≤​ 1000.

www.nature.com/scientificreports/

3Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

studies include a few, selected, set of values of the number of nodes and the mixing parameter, and do not con-
sider the real computing time needed to perform the analysis.

In this paper, we evaluate eight different state-of-the-art community detection algorithms available in the
“igraph” package20, which is a widely used collection of network analysis tools in R, Python, C and C+​+​, on the
LFR benchmark for undirected, unweighted graphs with non-overlapping communities. Details of the algorithms
can be found in the methods section. Our contribution is threefold: First and foremost, we provide actual tech-
niques to determine which is the most suited algorithm in most circumstances based on observable properties
of the network under consideration. Secondly, we use the mixing parameter as an easily measurable indicator of
finding the ranges of reliability of the different algorithms. Finally, we systematically study the dependency with
network size focusing on both the algorithm’s predicting power and the effective computing time.

Results
In this section, we compare the results of community detection algorithms in terms of accuracy and computing
time. The former is defined as a measure of similarity between the modular structure generated by the LFR
benchmark  (see Methods Section) and the partition identified by the respective community detection algo-
rithms  . The latter is the real computing time needed to perform the community detection. This section is
organised as follows: First, by employing the LFR generative model, we unveil the relationship between the mix-
ing parameter and the accuracy of the community detection algorithms. Accuracy is measured in two different,
complementary ways: The normalised mutual information8, and the ratio between the number of detected com-
munities and the number of communities given by the LFR generating model. Then, we measure the computing
time of community detection algorithms and show the relationship between the mixing parameter and the com-
puting time. We then present the mixing parameter as computed from the communities detected by the different
algorithms as a function of the input mixing parameter. Last, we present the comparisons of community detection
algorithms in terms of accuracy and computing time as a function of network sizes.

The role of the network mixing parameter on accuracy and computing time.  First, we study the
accuracy of the community detection algorithms as a function of the mixing parameter μ. To measure the accu-
racy we have employed the normalised mutual information, i.e., NMI. This is a measure borrowed from informa-
tion theory which has been regularly used in papers comparing community detection algorithms13.

Defining a confusion matrix N, where the rows correspond to the ‘real’ communities, and the columns cor-
respond to the ‘found’ communities. The element of N, Nij, is the number of nodes in the real community i that
appear in the j-th detected community. The normalised mutual information is then8

=
− ∑ ∑

∑ + ∑

= =

= =

◦ ◦

◦ ◦ ◦ ◦
I

N N N N N

N N N N N N
(,)

2 log(/)

log(/) log(/) (2)

i
C

j
C

ij ij i j

i
C

i i j
C

j j

1 1

1 1

 

where the number of communities given by the LFR model is denoted by C and the number of communities
detected by the algorithm is denoted by C. The sum over the i-th row of N is denoted ◦N i and the sum over the
j-th column is denoted ◦N j. If the estimated communities are identical to the real ones, I (,)  equals to 1. If the
partition found by the algorithm is totally independent from the real partition, I (,)  vanishes.

As pointed out in ref. 21, the mutual information can be normalised in different ways. These different normali-
sation methods are sensitive to different partition properties and have different theoretical properties21–23. To get a
better overview of the accuracy, we have calculated the NMI by using all these five different definitions (cf. SI). We
conclude that in the current study different normalisation procedures provide qualitatively similar behaviours.
Just for the sake of brevity, and consistently with Danon et al.8, we report in this section only Isum (i.e. normal-
isation by the arithmetic mean). The results of the other NMIs are shown in the “Supplementary Information”.

The results are shown in Fig. 1. Each panel presents the accuracy of a given community detection algorithm
and is subdivided into two plots: The lower axis depict the average value of NMI and the upper ones contain the
standard deviation of the measures when repeated over 100 different network realisations. Most of the algorithms
can uncover well the communities when the mixing parameter μ is small, as it is apparent from the large values of
I in the limit μ →​ 0. The accuracy of algorithms decreases, then, with increasing values of both network size
and μ. Different algorithms behave differently: the accuracy of Fastgreedy algorithm decreases monotonically, in
a smooth fashion and has a very small standard deviation along all the range (Panel (a), Fig. 1). Whereas that of
Leading eigenvector algorithm falls rapidly even with small value of μ (Panel (c), Fig. 1). All the other algorithms
display abrupt changes of behaviour: their performances remain relatively stable before a turning point where the
NMI drops very fast as a function of μ. The changes of behaviour are usually around μ =​ 1/2, which corresponds
to the strong definition of community16. Interestingly, Label propagation and Edge betweenness algorithms have
turning points smaller than said value; while Infomap, Multilevel, Walktrap, and Spinglass algorithms have turn-
ing points greater than μ =​ 1/2. We have also noticed that for the Infomap algorithm the normalised mutual
information has a point of discontinuous behaviour at around µ ≅ .0 55. On the other hand, for Label propaga-
tion, I vanishes around µ ≅ .0 5 falling in a continuous fashion. This supports the conjecture that Infomap dis-
plays a first order phase transition as a function of the mixing parameter, while Label propagation algorithm may
have a second order one. Nonetheless, we have not performed an exhaustive analysis on the matter to systemati-
cally analyse the existence (or not) of critical points. Further studies concerning the properties of these points are
definitely needed.

Network size also plays the role here that a larger network size will lead to loss of accuracy at a lower value
of μ. For small enough networks (N ≤​ 1000), Infomap, Multilevel, Walktrap, and Spinglass outperform the
other algorithms with higher values of I and very small standard deviations, which shows the repeatability of

www.nature.com/scientificreports/

4Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

the partitions detected. Besides, the turning point for accuracy is after μ =​ 1/2. For larger networks (N >​ 1000),
Infomap, Multilevel and Walktrap algorithms have relatively better accuracies and smaller standard deviations.
Label propagation algorithm has much larger standard deviations such that its outputs are not stable. Due to the
long computing time, Spinglass and Edge betweenness algorithms are too slow to be applied on large networks.

Figure 1.  (Lower row) The mean value of normalised mutual information depending on the mixing parameter
μ. (upper row) The standard deviation of the NMI as a function of μ. Different colours refer to different
number of nodes: red (N =​ 233), green (N =​ 482), blue (N =​ 1000), black (N =​ 3583), cyan (N =​ 8916), and
purple (N =​ 22186). Please notice that the vertical axis on the subfigures might have different scale ranges. The
vertical red line corresponds to the strong definition of community, i.e. μ =​ 0.5. The horizontal black dotted line
corresponds to the theoretical maximum, I =​ 1. The other parameters are described in Table 1.

www.nature.com/scientificreports/

5Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

Second, we study how well the community detection algorithms reproduce the number of communities. To do
so, we compute the ratio C C/ as a function of the mixing parameter. C is the average number of detected com-
munities delivered by the different algorithms when repeated over 100 different network realisations. C is the
average real number of communities provided by the LFR benchmark on the same 100 networks. If =C C/ 1, the
community detection algorithms are able to estimate correctly the number of communities. It is important to
remark that this parameter has to be analysed together with the normalised mutual information because the dis-
tribution of community sizes is very heterogeneous. With respect to the networks generated by the LFR model,
for small network sizes the real number of communities is stable for all values of μ, while for larger network sizes
(N > 1000), C grows up to µ .⪆ 0 2 and then it saturates.

The results for the ratio C C/ as a function of the mixing parameter are shown in Fig. 2 on a log-linear scale for
all the panels. The Fastgreedy algorithm constantly underestimates the number of communities, and the results
worsen with increasing network size and μ (Panel (a), Fig. 2). For μ ⪅ 0.55, the Infomap algorithm delivers the
correct number of communities of small networks ⪅N(1000), and overestimates it for larger ones. For µ .⪆ 0 55,
this algorithm fails to detect any community at all for small networks and all nodes are partitioned into a single
community (Panel (b), Fig. 2). The leading eigenvector algorithm slightly overestimates the number of commu-
nities of small networks and the prediction worsens with increasing μ. Moreover, it underestimates the number
of communities in large networks and even the behaviour do not change monotonically with μ (Panel (c), Fig. 2).
The Label propagation algorithm is able to deliver the correct number of communities with small values of μ
regardless of the network size. However, in the range µ. .⪅ ⪅0 3 0 6, it underestimates the number of communities
and the prediction worsens with increasing network size and μ. For µ .⪆ 0 6, this algorithm fails to detect any
community and all nodes are placed into the same community (Panel (d), Fig. 2). It is apparent that the Mutilevel
algorithm constantly underestimates the number of communities and such behaviour worsens with increasing
network size and μ (Panel (e), Fig. 2). In Fig. 2, Panel (f), for μ ⪅​ 0.4, the Walktrap algorithm delivers the correct
number of communities regardless of network sizes, although the change of behaviour at which the prediction is
correct depends on system size. For μ ⪆​ 0.4, this algorithm behaves differently depending on network size: it
slightly underestimates the number of communities of small networks and significantly overestimates it for large
ones. For µ .⪅ 0 6, the Spinglass algorithm constantly overestimates the number of communities, and its predic-
tion worsens with network size. When µ .⪆ 0 6, it fails and tends to put nodes into a few giant communities
(Panel (g), Fig. 2). The Edge betweenness algorithm is able to deliver the correct number of communities for
µ .⪅ 0 4 regardless of network size. It overestimates C for µ .⪆ 0 4 and the accuracy of the prediction worsens with
increasing network size (Panel (h), Fig. 2). Overall, for µ⪅ 1/2, Infomap, Leading eigenvector, Multilevel,
Spinglass, and Edge betweenness algorithms are able to deliver a reasonable estimator of the number of commu-
nities for small networks, while the number of communities obtained by Label propagation and Walktrap algo-
rithms are relatively close to the real value regardless of network size. For µ⪆ 1/2, all the algorithms are much
worse at detecting the correct number of communities, and among all the algorithms, Multilevel, Walktrap, and
Spinglass algorithms have better outputs when the network sizes are small.

Third, we turn to the real computing time of the algorithms. This measure is usually represented in theoretical
estimations as a function of the number of nodes and edges. However, the real computing time may be also
affected by the structure of the network. Given the number of nodes and a fixed average degree, we illustrate the
computing time as a function of the mixing parameter. The results are shown in Fig. 3 on log-linear scale. Each
panel presents the computing time of a given community detection algorithm and it is subdivided in two plots:
the lower one depicts the average computing time, while the upper sub-panel contains the standard deviation of
the computing time when repeated over 100 different network realisations. Some algorithms barely depend on the
mixing parameter. This is not the case for Multilevel, Spinglass, and Edge betweenness algorithms (Panel (e,g,h),
Fig. 3). There is a slight dependency for Infomap algorithm that cannot be disregarded (Panel (b), Fig. 3). The
decrease of computing time for Infomap, Leading eigenvector, and Label propagation algorithms (Panel (b–d),
Fig. 3) are accompanied with the significant worsening of NMI and C C/ in Figs 1 and 2. Among all the algo-
rithms, Label propagation and Multilevel algorithms are much faster than the others (Panel (d,e), Fig. 3), while
Spinglass and Edge betweenness are the slowest ones (Panel (g,h), Fig. 3).

The observed mixing parameter.  Unlike the number of nodes in a network, the exact value of the mixing
parameter of a graph is unobservable if ground truth is unavailable for the community assignment of nodes. In
this section, we study the mixing parameter delivered by the community detection algorithms µ as a function of
the mixing parameter μ (see Eq. 1). The results of the different algorithms are shown in the different panels of
Fig. 4. Each panel is subdivided in two plots: the lower has the average computed value of µ, while the upper
sub-panel contains the standard deviation of the measures when repeated over 100 different network realisations.
All algorithms have a linear (identity) relationship between µ and μ except for the Leading eigenvector algorithm,
which overshoots the results (Panel (c), Fig. 4). Most of the algorithms display a turning point where the estima-
tion of µ breaks down. For the Fastgreedy, Multilevel, Walktrap, Spinglass, and Edge betweenness algorithms,
µ changes in a smooth fashion (Panel (a,e–h), Fig. 4). For the Infomap and Label propagation algorithms, the
estimated mixing parameter µ has a steep change at around µ ≅ .0 55 and µ ≅ .0 5, separately (Panel (b,d), Fig. 4).

Overall, the mixing parameter obtained by the algorithms µ fits well with the real mixing parameter at small
value of μ, but it differs from the real value with increasing μ. For certain algorithms, the estimation fails com-
pletely for larger values of μ (Infomap, Label propagation), and for the others it is either overestimated (Edge
betweenness) or slightly underestimated (Fastgreedy, Walktrap, Spinglass). Remarkably, in the Multilevel algo-
rithm, the estimation is very accurate for values as large as μ =​ 0.75 for all network sizes analysed.

www.nature.com/scientificreports/

6Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

The role of network size.  So far we have only discussed the role of the mixing parameter μ to the accuracy
and the computing time of community detection algorithms. Now, as an important ingredient, we consider the
effect of network size. In our definition of the benchmark graphs, with a fixed average degree, network size can be
represented as the number of nodes in the network. The results are shown in Fig. 5 on a linear-log scale. Each of

Figure 2.  The mean value of the estimated number of communities delivered by different algorithms over
the real number of communities given by the LFR benchmark, i.e., C C/ , dependent on the mixing parameter
μ on a log-linear scale. Different colours refer to different number of nodes: red (N =​ 233), green (N =​ 482), blue
(N =​ 1000), black (N =​ 3583), cyan (N =​ 8916), and purple (N =​ 22186). Please notice that the vertical axis might
have different scale ranges. The vertical red line corresponds to the strong definition of community where μ =​ 0.5
and the horizontal green line represents the case that =C C. The other parameters are described in Table 1.

www.nature.com/scientificreports/

7Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

them presents the accuracy of a given community detection algorithms and is subdivided in two plots: one for the
computed value of NMI and the upped sub-panel contains the standard deviation of the measures when repeated
over 100 different network realisations. Most of the algorithms can well uncover the communities when µ .⪆ 0 2.

Figure 3.  (Lower row) The mean value of the computing time of the community detection algorithms (in
seconds) dependent on the mixing parameter μ on a log-linear scale. (upper row) The standard deviation of
the measures on a log-linear scale. Different colours refer to different number of nodes: red (N =​ 233), green
(N =​ 482), blue (N =​ 1000), black (N =​ 3583), cyan (N =​ 8916), and purple (N =​ 22186). Please notice that
the vertical axis might have different scale ranges. The vertical red line corresponds to the strong definition of
community where μ =​ 0.5. The other parameters are described in Table 1.

www.nature.com/scientificreports/

8Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

In this case, the detecting abilities of Fastgreedy, Infomap, Label propagation, Multilevel, Walktrap, Spinglass and
Edge betweenness algorithms are independent of network size (Panel (a,b,d–h), Fig. 5). For Leading eigenvector,
the accuracies decrease smoothly with network size (Panel (c), Fig. 5). For very large µ .⪆ 0 75, most of the algo-

Figure 4.  (Lower row) The mean value of the mixing parameter estimated by the community detection
algorithms µ dependent on the mixing parameter μ. (upper row) The standard deviation of µ dependent on μ.
Different colours refer to different number of nodes: red (N =​ 233), green (N =​ 482), blue (N =​ 1000), black
(N =​ 3583), cyan (N =​ 8916), and purple (N =​ 22186). Please notice that the vertical axis on the subfigures might
have different scale ranges. The vertical red line corresponds to the strong definition of community where
μ =​ 0.5. The green line y =​ x corresponds to the case which µ µ= . The other parameters are described in Table 1.

www.nature.com/scientificreports/

9Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

Figure 5.  (Lower row) The mean value of normalised mutual information dependent on the number of nodes
N in the benchmark graphs on a linear-log scale. (upper row) The standard deviation of the normalised mutual
information dependent on N on a linear-log scale. Different colours refer to different values of the mixing
parameter: red (μ =​ 0.03), green (μ =​ 0.18), blue (μ =​ 0.33), black (μ =​ 0.48), cyan (μ =​ 0.63), and purple (μ =​ 0.75).
Please notice that the vertical axis on the subfigures might have different scale ranges. The horizontal black dotted
line corresponds to I =​ 1. Due to the computing speed, Spinglass and Edge betweenness algorithms have been
tested only on networks with N ≤​ 1000, and Infomap algorithm has been tested on networks with N ≤​ 22186. The
other parameters are described in Table 1.

www.nature.com/scientificreports/

1 0Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

rithms fail to detect the community structure except for the Walktrap and Edge betweenness algorithms and the
accuracy barely depends on network size. In the intermediate region of μ, NMI is usually decreasing with network
size and μ.

Finally, we present the computing time as a function of the network size. The results are represented in Fig. 6
on a log-log scale. Each panel presents the computing time of a given community detection algorithms and is sub-
divided in two plots: one for the measured value of computing time in second and the upped sub-panel contains
the standard deviation of the measures when repeated over different network realisations. In the log-log scale,
there is a significant linear correlation between the computing time and the network size. To further compare the
computing speed of every algorithm, we have fitted the curves according to the exponential function T ∝​ Nα. The
fitted α together with the corresponding adjusted R-squared values are listed in Table 2. Only algorithms with
small α can be applied to large networks. Overall, Label propagation algorithm is the method that scales best on
network size; at the same time, Leading eigenvector, and Multilevel algorithms also have reasonable computation
speeds on large networks. Fastgreedy, Infomap, Walktrap, and Spinglass algorithms scale much worse than the
previous ones, and Edge betweenness algorithm is only suitable for small networks (with an almost cubic relation
between network size and computing time).

Discussion
Traditionally, the aim of community detection in graphs has been to identify the modules by only using the infor-
mation encoded in the graph topology4. In this study we have performed a comparative analysis of the accuracy
and computing time of eight different community detection algorithms available in the “igraph” package. Each
algorithm has been tested on a set of LFR benchmark graphs5,13. The size of the benchmark graphs varies from
approximately 200 to 32,000 nodes. With a fixed average degree, we have changed the structure of networks by
using different values of the mixing parameter μ.

In this study, the limited network sizes considered here pose no challenge for modern day computers in terms
of Random-Access Memory (RAM). Therefore, the memory consumption is not analysed here. However, it is
worth mentioning that the maximal memory consumption could be crucial for larger scale networks: if one algo-
rithm is implemented in a way that it needs more memory for the optimal calculation, then it can easily happen
that the process slows down for large networks due to low available RAM, or it switches to a suboptimal imple-
mentation, which needs less memory. A previous study showed24 that (theoretically) many community detection
methods have minimum memory consumption needs that scale linearly with the size of the graph  +m n(2 2),
where m is the number of edges and n is the number of nodes. In practice, many of them need at least

+m n(2 3) in case of unweighted undirected graphs and when the Yale sparse matrix format is used24.
Our results indicate that by taking both accuracy and computing time into account, the Multilevel algo-

rithm, which was proposed by Blondel et al.25, outperforms all the other algorithms on the set of benchmarks
we have examined (although the modularity-based methods are known to suffer from the resolution limit of
modularity26). We can further apply the results in three aspects: First, since the computing time is not relevant for
small networks, one should choose algorithms based their accuracies. Among all the algorithms, Infomap, Label
propagation, Multilevel, Walktrap, Spinglass, and Edge betweenness algorithms are able to successfully uncover
the structure of small networks when the mixing parameter μ is small. With increasing value of μ, Infomap,
Label propagation, and Edge betweenness algorithms’ accuracies drop for smaller values of μ than Multilevel,
Walktrap, and Spinglass algorithms. Second, for large networks, one should first choose algorithms which are able
to detect the organisation of nodes in a reasonable time. In this sense, Infomap, Label propagation, Multilevel,
and Walktrap algorithms are the a priori choices. After that, by taking the accuracy into account, Multilevel is
superior to the other algorithms as it displays a performance drop for a larger value of the mixing parameter μ.
Importantly, the exact value of the mixing parameter of a graph is usually unobservable. To get a rough idea about
the value of μ, one may employ either the Spinglass or the Multilevel algorithm. Limited by the computing time
required, Spinglass algorithm cannot be applied on large networks.

Based on the previous results, and taking into account both factors, accuracy and computing time, it is possi-
ble to suggest under which situations to use each algorithm depending sorely on topological properties of the
network under study. Our recommendations for the use of community detection algorithms are summarised in
Fig. 7. In the first region, µ .⪅ 0 5 and the network size is small, ⪅N 1000. There, most of the communities detec-
tion algorithms tested give accurate results (and the computing time is affordable): Infomap, Label propagation,
Multilevel, Walktrap, Spinglass, and Edge betweenness can all be used in a trustworthy fashion. A second region
has a relatively larger value of μ µ. .⪅ ⪅(0 5 0 6), and equally small sizes of network ⪅N 1000. There, it is possible
to use Multilevel, Walktrap, and Spinglass algorithms. A third region encompasses again smaller values of mixing
parameter µ .⪅(0 5) but an intermediate number of nodes ⪅ ⪅N(1000 6000). In this region, the best choices are
Infomap, label propagation, Multilevel, and Walktrap algorithms. With increasing number of nodes in the net-
works ⪅ ⪅N(6000 32000), Infomap and Multilevel algorithm are very likely to provide the wrong number of
communities and therefore they are no longer suitable in the fourth region. The last region has the highest
requirement for the community detection algorithms. None of the algorithms performs very well in this region
but the Multilevel algorithm outperforms all the others.

Besides, we illustrate the suggestion for the adaptive use of the methods for community detection process in a
simplified flow diagram (see Fig. 8). With any given network, one should first employ either Spinglass algorithm
or Multilevel algorithm in order to obtain an estimate of the value of the mixing parameter μ. Notice that the
former one can only be used for small networks ⪅N(1000) due to the prohibitive computing time for larger net-
work sizes. Second, one can choose a suitable method according to the values of N and μ to conduct the commu-
nity detection such that both the accuracy and the computing time are acceptable. Third, as we have already
shown, in certain situations, there might exist large standard deviations of NMI, i.e., the community detection

www.nature.com/scientificreports/

1 1Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

algorithms are not stable and therefore not reliable. Thus, the value of µ must be recalculated to get an idea of the
repeatability of the results and confirm its validity. In some situations, one might need to repeat the detection
processes several times or switch to another algorithm to ensure the validity of the community detection results.

Figure 6.  (Lower row) The mean value of the computing time of the community detection algorithms (in
seconds) dependent on the number of nodes in the benchmark graphs on a log-log scale. (upper row) The
standard deviation of the computing time on a log-log scale. Different colours refer to different values of the
mixing parameter: red (μ =​ 0.03), green (μ =​ 0.18), blue (μ =​ 0.33), black (μ =​ 0.48), cyan (μ =​ 0.63), and purple
(μ =​ 0.75). Please notice that the vertical axis might have different scale ranges. Due to the computing speed,
Spinglass and Edge betweenness algorithms have been tested only on networks with N ≤​ 1000, and Infomap
algorithm has been tested on networks with N ≤​ 22186. The other parameters are described in Table 1.

www.nature.com/scientificreports/

1 2Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

Our suggestions have to be applied in conjunction with the concomitant research questions. As a pure appli-
cation of the recommendations could bias the results. Once a researcher has decided to use a specific community
detection algorithm, it is of crucial importance for her to keep in mind the limitations and the expected validity
of the output of the community detection algorithm chosen. It is noteworthy that metadata would be helpful for
evaluating network community detection methods and can be used to improve the analysis and understanding
of network structure19,27. In real-world networks where metadata is available, researchers should also take into
account the research question, the properties of the network, the interpretation and meaning of the communities
while choosing the community detection algorithms. Different research questions together with the metadata
might lead to different definitions of community, and further change the ground truth of the network.

Compared to previous works on benchmarking community detection algorithms, our study has many obvious
advantages: First, we have considered networks which contain a wide spectrum of number of nodes and mixing
parameters. Second, the algorithms we have tested are integrated in a cross-platform package which has been
widely used in academic research in network science and related fields. Third, we have used the LFR benchmark
graphs which have shown more realistic properties than the earlier computer-generated networks such as the GN
benchmark.

Fastgreedy Infomap Leading eigenvector Label propagation

α 2.048 [0.006] 1.421 [0.009] 1.123 [0.005] 0.959 [0.005]

R2 0.956 0.933 0.951 0.947

Multilevel Walktrap Spinglass Edge betweenness

α 1.126 [0.003] 2.04 [0.002] 1.282 [0.013] () 2.915 [0.005]

R2 0.957 0.962 0.867 0.884

Table 2.  Indexes of the exponential function T ∝ Nα with the corresponding adjusted R-squared values.
The standard errors are listed in brackets. All the results are statistically significant at the significance level of
0.05. Spinglass and Edge betweenness algorithms have been tested only on small networks with N ≤​ 1000, there
might be some biases in the indexes of these two methods.

Figure 7.  Recommendation for the choice of adaptable community detection algorithms. The x-axis is the
mixing parameter μ and the y-axis is the number of nodes N. The y-axis is on a log scale for better visualisation.
The coordinates of certain important points are: A(0.48, 1000), B(0.6, 1000), C(0.48, 6192), D(0.36, 31948), and
E(0.42, 31948). In different regions we would like to recommend different algorithms, which are represented
by different abbreviations: IM is the Infomap algorithm, LP is the Label propagation algorithm, ML is the
Multilevel algorithm, WT is the Walktrap algorithm, SG is the Spinglass algorithm, and EB represents the Edge
betweenness algorithm.

www.nature.com/scientificreports/

13Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

There are also some limitations in our work: Although the LFR benchmark has generalised the previous GN
benchmark by introducing power-law distributions of degree and community size, more realistic properties are
still needed. We have mainly focused on testing the effects of the mixing parameter and the number of nodes.
Other properties, such as the average degree, the degree distribution exponent, and the community distribution
exponent may also play a role in the comparison of algorithms.

In the end, we stress that detecting the community structure of networks is an important issue in network
science. For “igraph” package users, we have provided a guideline on choosing the suitable community detection
methods. However, based on our results, existing community detection algorithms still need to be improved to
better uncover the ground truth of networks.

Methods
In this section, we first describe in detail the procedure to obtain the benchmark networks used, then enumerate
the community detection algorithms employed.

When comparing community detection algorithms, we can use either real or artificial network whose com-
munity structure is already known, which is usually termed as ground truth. Among the former, the celebrated
Zachary’s karate club28 or the network of American college football teams3 have been extensively used. Among
the latter, the ones used more pervasively are the GN3 and LFR13 benchmarks. However, obtaining real networks
to which a ground truth can be associated is not only difficult, but also costly in economic terms and time. Due
to the complexity of data collection and costs, real world benchmarks usually consist of small-sized networks.
Further, since it is not possible to control all the different features of a real network (e.g. average degree, degree
distribution, community sizes, etc.), the algorithms can only be tested – if resorting in this kind of graphs – on
very specific cases with a limited set of features. In addition, the communities of real world networks are not
always defined objectively or, in the best case, they rarely have a unique community decomposition. On the other
hand, artificially generated networks can overcome most of these limitations. Given an arbitrary set of meso- or
macroscopic properties, it is possible to generate randomly an ensemble of networks that respect them, in what
is usually called generative models. However, as one of the most popular generative models, GN benchmark
suffers from the fact that it does not show a realistic topology of the real network5,29 and it has very small network
size. A recent strand of the literature on benchmark graphs tried to improve the quality of artificial networks by
defining more realistic generative models: Lancichinetti et al. extended the GN benchmark by introducing power
law degree and community size distributions5. Bagrow had employed the Barabási-Albert model9 rather than
the configuration model30 to build up the benchmark graph31. Orman and Labatut proposed to use evolutionary
preferential attachment model32 for more realistic properties33.

Figure 8.  Suggestion for the community detection process. Small networks are those with number of nodes
less than 1000, and small μ corresponds to µ .⪅ 0 5. To be noticed that in the case that N ≥​ 1000 and µ .⪅ 0 5,
Infomap and Multilevel algorithms are no longer suitable choices if N ≥​ 6000.

www.nature.com/scientificreports/

1 4Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

The first step to generate the LFR benchmark graph is to construct a network composed of N nodes, with
average degree k̂, maximum degree kmax and a power-law degree distribution with exponent α by using the con-
figuration model. Once this step is finished, each node has a defined total degree. Then, given a power-law distri-
bution of community sizes with exponent β, a set of community sizes is drawn (between arbitrarily chosen
minimum and maximum values of community sizes that act as additional parameters). Nodes are then sequen-
tially assigned to these communities. The mixing parameter μ, which represents the fraction of edges a node has
with nodes belonging to other communities with respect to its total degree, is the most relevant value in terms of
the community structure. To conclude the generative algorithm, edges are rewired in order to fit the mixing
parameter, while preserving the degree sequence. This is achieved keeping fixed total degree of a node, the value
of external degree is modified so that the ratio of external degree over the total degree is close to the defined mix-
ing parameter. The LFR model was initially proposed to generate undirected unweighted networks with mutually
exclusive communities, and was extended to generate weighted and/or directed networks, with or without over-
lapping communities. In this study, we focus on the undirected unweighted networks with non-overlapping com-
munities since most of the existing community detection algorithms are designed for this type of networks. The
parameter values used in our computer-generated graphs are indicated in Table 1.

In this paper, we have evaluated the most widely used, state-of-the-art community detection algorithms on the
LFR benchmark graphs. In order to make the results comparable, and reproducible, we use the implementation of
these algorithms shipped with the widely used “igraph” software package (Version 0.7.1)20. Here is the list of algo-
rithms we have considered. For notation purposes when giving the computational complexity of the algorithms,
the networks have N nodes and E edges.

Edge betweenness.  This algorithm was introduced by Girvan & Newman3. To find which edges in a net-
work exist most frequently between other pairs of nodes, the authors generalised Freeman’s betweenness
centrality34 to edges betweenness. The edges connecting communities are then expected to have high edge
betweenness. The underlying community structure of the network will be much clear after removing edges with
high edge betweenness. For the removal of each edge, the calculation of edge betweenness is E N() ; therefore,
this algorithm’s time complexity is  E N()2 3.

Fastgreedy.  This algorithm was proposed by Clauset et al.12. It is a greedy community analysis algorithm that
optimises the modularity score. This method starts with a totally non-clustered initial assignment, where each
node forms a singleton community, and then computes the expected improvement of modularity for each pair of
communities, chooses a community pair that gives the maximum improvement of modularity and merges them
into a new community. The above procedure is repeated until no community pairs merge leads to an increase in
modularity. For sparse, hierarchical, networks the algorithm runs in  N N(log ())2 12.

Infomap.  This algorithm was proposed by Rosvall et al.35,36. It figures out communities by employing random
walks to analyse the information flow through a network17. This algorithm starts with encoding the network into
modules in a way that maximises the amount of information about the original network. Then it sends the signal
to a decoder through a channel with limited capacity. The decoder tries to decode the message and to construct a
set of possible candidates for the original graph. The smaller the number of candidates, the more information
about the original network has been transferred. This algorithm runs in E() 37.

Label propagation.  This algorithm was introduced by Raghavan et al.38. It assumes that each node in the
network is assigned to the same community as the majority of its neighbours. This algorithm starts with initialis-
ing a distinct label (community) for each node in the network. Then, the nodes in the network are listed in a
random sequential order. Afterwards, through the sequence, each node takes the label of the majority of its neigh-
bours. The above step will stop once each node has the same label as the majority of its neighbours. The computa-
tional complexity of label propagation algorithm is E() 38.

Leading eigenvector.  This algorithm was proposed by Newman39. The heart of this algorithm is the spectral
optimisation of modularity by using the eigenvalues and eigenvectors of the modularity matrix. First, the leading
eigenvector of the modularity matrix is calculated, and then the graph is split into two parts in a way that modu-
larity improvement is maximised based on the leading eigenvector. After that, the modularity contribution is
calculated at each step in the subdivision of a network. It stops once the value of the modularity contribution is
not positive. Its computational complexity of each graph bipartition is  +N E N(()), or  N()2 on a sparse
graph40.

Multilevel.  This algorithm was introduced by Blondel et al.25. It is a different greedy approach for optimising
the modularity with respect to the Fastgreedy method. This method first assigns a different community to each
node of the network, then a node is moved to the community of one of its neighbours with which it achieves the
highest positive contribution to modularity. The above step is repeated for all nodes until no further improvement
can be achieved. Then each community is considered as a single node on its own and the second step is repeated
until there is only a single node left or when the modularity can’t be increased in a single step. The computational
complexity of the Multilevel algorithm is  N N(log)40.

Spinglass.  This algorithm was first proposed by Reichardt & Bornholdt41. It is based on the Potts model42. The
basic principle of the method is that edges should connect nodes of the same spin state (community, in the

www.nature.com/scientificreports/

1 5Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

current context), whereas nodes of different states (belonging to different communities) should be disconnected.
Therefore, the aim of this algorithm is to find the ground state of a spin glass model with a Potts Hamiltonian.
Simulated annealing43 has been used to minimise the system’s free energy44. In a sparse graph, the computational
complexity of this algorithm is approximately  .N()3 2 45.

Walktrap.  This algorithm was proposed by Pon & Latapy46. It is a hierarchical clustering algorithm. The basic
idea of this method is that short distance random walks tend to stay in the same community. Starting from a
totally non-clustered partition, the distances between all adjacent nodes are computed. Then, two adjacent com-
munities are chosen, they are merged into a new one and the distances between communities are updated. This
step is repeated (N −​ 1) times, thus the computational complexity of this algorithm is  E N()2 . For sparse net-
works the computational complexity is N N(log())2 40.

We have employed virtual machines to implement all the computation. For each network size and for each
algorithm, a virtual machine is created using a pre-defined installation that guarantees the same execution envi-
ronment conditions. The installation is tuned to guarantee that each virtual machine makes use of an entire
physical node, and, at the same time, that all physical nodes where the virtual machines will be hosted have the
very same hardware specifications. The workload distribution and collection for the results are commanded by a
master-slave approach.

References
1.	 Newman, M. E. The structure and function of complex networks. SIAM Review 45, 167–256 (2003).
2.	 Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: Structure and dynamics. Physics Reports 424,

175–308 (2006).
3.	 Girvan, M. & Newman, M. E. Community structure in social and biological networks. Proceedings of the National Academy of

Sciences 99, 7821–7826 (2002).
4.	 Fortunato, S. Community detection in graphs. Physics Reports 486, 75–174 (2010).
5.	 Lancichinetti, A., Fortunato, S. & Radicchi, F. Benchmark graphs for testing community detection algorithms. Physical Review E 78,

046110 (2008).
6.	 Lancichinetti, A., Kivelä, M., Saramäki, J. & Fortunato, S. Characterizing the community structure of complex networks. PloS ONE

5, e11976 (2010).
7.	 Condon, A. & Karp, R. M. Algorithms for graph partitioning on the planted partition model. Random Structures and Algorithms 18,

116–140 (2001).
8.	 Danon, L., Díaz-Guilera, A., Duch, J. & Arenas, A. Comparing community structure identification. Journal of Statistical Mechanics:

Theory and Experiment 2005, P09008 (2005).
9.	 Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

10.	 Palla, G., Derényi, I., Farkas, I. & Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and
society. Nature 435, 814–818 (2005).

11.	 Guimerà, R., Danon, L., Díaz-Guilera, A., Giralt, F. & Arenas, A. Self-similar community structure in a network of human
interactions. Physical Review E 68, 065103 (2003).

12.	 Clauset, A., Newman, M. E. & Moore, C. Finding community structure in very large networks. Physical Review E 70, 066111 (2004).
13.	 Lancichinetti, A. & Fortunato, S. Benchmarks for testing community detection algorithms on directed and weighted graphs with

overlapping communities. Physical Review E 80, 016118 (2009).
14.	 Orman, G. K. & Labatut, V. A comparison of community detection algorithms on artificial networks. In Discovery Science 242–256

(Springer, 2009).
15.	 Lancichinetti, A. & Fortunato, S. Community detection algorithms: a comparative analysis. Physical Review E 80, 056117 (2009).
16.	 Radicchi, F., Castellano, C., Cecconi, F., Loreto, V. & Parisi, D. Defining and identifying communities in networks. Proceedings of the

National Academy of Sciences 101, 2658–2663 (2004).
17.	 Peel, L. Estimating network parameters for selecting community detection algorithms. In 13th Conference on Information Fusion 1–8

(IEEE, 2010).
18.	 Hric, D., Darst, R. K. & Fortunato, S. Community detection in networks: Structural communities versus ground truth. Physical

Review E 90, 062805 (2014).
19.	 Yang, J. & Leskovec, J. Defining and evaluating network communities based on ground-truth. Knowledge and Information Systems

42, 181–213 (2015).
20.	 Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Systems 1695, URL http://

igraph.org (2006).
21.	 Vinh, N. X., Epps, J. & Bailey, J. Information theoretic measures for clusterings comparison: Variants, properties, normalization and

correction for chance. The Journal of Machine Learning Research 11, 2837–2854 (2010).
22.	 Romano, S., Bailey, J., Nguyen, V. & Verspoor, K. Standardized mutual information for clustering comparisons: one step further in

adjustment for chance. In Proceedings of the 31st International Conference on Machine Learning (ICML-14), 1143–1151 (2014).
23.	 Zhang, P. Evaluating accuracy of community detection using the relative normalized mutual information. Journal of Statistical

Mechanics: Theory and Experiment 2015, P11006 (2015).
24.	 Papadopoulos, S., Kompatsiaris, Y., Vakali, A. & Spyridonos, P. Community detection in social media. Data Mining and Knowledge

Discovery 24, 515–554 (2012).
25.	 Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. Journal of Statistical

Mechanics: Theory and Experiment 2008, P10008 (2008).
26.	 Fortunato, S. & Barthélemy, M. Resolution limit in community detection. Proceedings of the National Academy of Sciences 104, 36–41

(2007).
27.	 Newman, M. & Clauset, A. Structure and inference in annotated networks. arXiv preprint arXiv:1507.04001 (2015).
28.	 Zachary, W. W. An information flow model for conflict and fission in small groups. Journal of Anthropological Research 452–473

(1977).
29.	 Danon, L., Díaz-Guilera, A. & Arenas, A. The effect of size heterogeneity on community identification in complex networks. Journal

of Statistical Mechanics: Theory and Experiment 2006, P11010 (2006).
30.	 Molloy, M. & Reed, B. A critical point for random graphs with a given degree sequence. Random Structures and Algorithms 6,

161–180 (1995).
31.	 Bagrow, J. P. Evaluating local community methods in networks. Journal of Statistical Mechanics: Theory and Experiment 2008,

P05001 (2008).
32.	 Poncela, J., Gómez-Gardeñes, J., Floria, L. M., Sánchez, A. & Moreno, Y. Complex cooperative networks from evolutionary

preferential attachment. PLoS One 3, e2449 (2008).

http://igraph.org
http://igraph.org

www.nature.com/scientificreports/

1 6Scientific Reports | 6:30750 | DOI: 10.1038/srep30750

33.	 Orman, G. K. & Labatut, V. The effect of network realism on community detection algorithms. In International Conference on
Advances in Social Networks Analysis and Mining 301–305 (IEEE, 2010).

34.	 Freeman, L. C. Centrality in social networks conceptual clarification. Social Networks 1, 215–239 (1979).
35.	 Rosvall, M. & Bergstrom, C. T. An information-theoretic framework for resolving community structure in complex networks.

Proceedings of the National Academy of Sciences 104, 7327–7331 (2007).
36.	 Rosvall, M., Axelsson, D. & Bergstrom, C. T. The map equation. The European Physical Journal Special Topics 178, 13–23 (2010).
37.	 Mukherjee, A., Choudhury, M., Peruani, F., Ganguly, N. & Mitra, B. Dynamics On and Of Complex Networks, Volume 2: Applications

to Time-Varying Dynamical Systems (Springer Science & Business Media, 2013).
38.	 Raghavan, U. N., Albert, R. & Kumara, S. Near linear time algorithm to detect community structures in large-scale networks.

Physical Review E 76, 036106 (2007).
39.	 Newman, M. E. Finding community structure in networks using the eigenvectors of matrices. Physical Review E 74, 036104 (2006).
40.	 Xie, J. & Szymanski, B. K. Community detection using a neighborhood strength driven label propagation algorithm. In Network

Science Workshop 188–195 (IEEE, 2011).
41.	 Reichardt, J. & Bornholdt, S. Statistical mechanics of community detection. Physical Review E 74, 016110 (2006).
42.	 Wu, F.-Y. The Potts model. Reviews of Modern Physics 54, 235 (1982).
43.	 Kirkpatrick, S. Optimization by simulated annealing: Quantitative studies. Journal of Statistical Physics 34, 975–986 (1984).
44.	 Traag, V. & Bruggeman, J. Community detection in networks with positive and negative links. Physical Review E 80, 036115 (2009).
45.	 Dahlin, J. & Svenson, P. Ensemble approaches for improving community detection methods. arXiv:1309.0242 [physics.soc-ph]

(2013).
46.	 Pons, P. & Latapy, M. Computing communities in large networks using random walks. In Computer and Information Sciences-ISCIS

2005, 284–293 (Springer, 2005).

Acknowledgements
The authors acknowledge financial support from the URPP Social Networks at University of Zürich. The authors
are thankful to the S3IT (Service and Support for Science IT) of the University of Zurich, for providing the
support and the computational resources that have contributed to the research results reported in this study, as
well as Santo Fortunato for useful comments.

Author Contributions
Z.Y., R.A. and C.J.T. designed the analysis. Z.Y. and C.J.T. devised the methodology. Z.Y. analysed the data. Z.Y.,
R.A. and C.J.T. wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Yang, Z. et al. A Comparative Analysis of Community Detection Algorithms on
Artificial Networks. Sci. Rep. 6, 30750; doi: 10.1038/srep30750 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images
or other third party material in this article are included in the article’s Creative Commons license,

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	A Comparative Analysis of Community Detection Algorithms on Artificial Networks

	Results

	The role of the network mixing parameter on accuracy and computing time.
	The observed mixing parameter.
	The role of network size.

	Discussion

	Methods

	Edge betweenness.
	Fastgreedy.
	Infomap.
	Label propagation.
	Leading eigenvector.
	Multilevel.
	Spinglass.
	Walktrap.

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ (Lower row) The mean value of normalised mutual information depending on the mixing parameter μ.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ The mean value of the estimated number of communities delivered by different algorithms over the real number of communities given by the LFR benchmark, i.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ (Lower row) The mean value of the computing time of the community detection algorithms (in seconds) dependent on the mixing parameter μ on a log-linear scale.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ (Lower row) The mean value of the mixing parameter estimated by the community detection algorithms dependent on the mixing parameter μ.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ (Lower row) The mean value of normalised mutual information dependent on the number of nodes N in the benchmark graphs on a linear-log scale.
	﻿Figure 6﻿﻿.﻿﻿ ﻿ (Lower row) The mean value of the computing time of the community detection algorithms (in seconds) dependent on the number of nodes in the benchmark graphs on a log-log scale.
	﻿Figure 7﻿﻿.﻿﻿ ﻿ Recommendation for the choice of adaptable community detection algorithms.
	﻿Figure 8﻿﻿.﻿﻿ ﻿ Suggestion for the community detection process.
	﻿Table 1﻿﻿. ﻿ Parameters of LFR benchmark graphs.
	﻿Table 2﻿﻿. ﻿ Indexes of the exponential function T ∝ Nα with the corresponding adjusted R-squared values.

 application/pdf

 A Comparative Analysis of Community Detection Algorithms on Artificial Networks

 srep , (2016). doi:10.1038/srep30750

 Zhao Yang
 René Algesheimer
 Claudio J. Tessone

 doi:10.1038/srep30750

 Nature Publishing Group

 © 2016 Nature Publishing Group

 © 2016 Macmillan Publishers Limited
 10.1038/srep30750
 2045-2322

 Nature Publishing Group

 permissions@nature.com

 http://dx.doi.org/10.1038/srep30750

 doi:10.1038/srep30750

 srep , (2016). doi:10.1038/srep30750

 True

