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The discovery of the transforming growth factor b (TGF-b) family ligands and the realization
that their bioactivities need to be tightly controlled temporally and spatially led to intensive
research that has identified a multitude of extracellular modulators of TGF-b family ligands,
uncovered their functions in developmental and pathophysiological processes, defined the
mechanisms of their activities, and explored potential modulator-based therapeutic appli-
cations in treating human diseases. These studies revealed a diverse repertoire of extracellular
and membrane-associated molecules that are capable of modulating TGF-b family signals
via control of ligand availability, processing, ligand–receptor interaction, and receptor ac-
tivation. These molecules include not only soluble ligand-binding proteins that were con-
ventionally considered as agonists and antagonists of TGF-b familyof growth factors, but also
extracellular matrix (ECM) proteins and proteoglycans that can serve as “sink” and control
storage and release of both the TGF-b family ligands and their regulators. This extensive
network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of
TGF-b family signals. This article reviews our knowledge of extracellular modulation of TGF-
b growth factors by diverse proteins and their molecular mechanisms to regulate TGF-b
family signaling.

Transforming growth factor b (TGF-b) fam-
ily signaling uses a large number of secreted

growth factors that engage a limited number of
cell-surface receptors, and regulate diverse pro-
cesses, such as embryonic induction and pat-
terning, tissue maintenance and repair, stem
cell renewal and differentiation, and organism
growth and regeneration. The prevalence of
TGF-b family signaling in almost all metazoan
cell types, the overlapping and distinct func-
tions of many related ligands, and the strict
temporal and spatial requirement for suitable
signaling levels necessitate stringent control of

TGF-b family signaling. A prominent strategy
used by cells to regulate TGF-b family signaling
is through the use of extracellular agonists and
antagonists of TGF-b family ligands. An im-
pressive array of such regulatory molecules has
been identified and they associate with TGF-b
family ligands directly or indirectly to modulate
their processing, secretion, stability, diffusion,
and presentation. Collectively, extracellular ag-
onists and antagonists play crucial roles in de-
termining TGF-b family signaling strength,
range, timing, and duration, and serve as nodes
for signal cross talk with other growth factor
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pathways. Here, I combine the TGF-b family
modulators into two groups, soluble regulators
versus extracellular matrix (ECM) residents
and proteoglycans. My main emphasis is on
the various modes to regulate ligand availability
and activity, with omission of many additional
functions because of limited space.

SECRETED REGULATORS OF TGF-b
FAMILY LIGANDS

Extracellular modulation of TGF-b family sig-
nals is achieved by structurally diverse soluble
TGF-b-binding proteins (Table 1). These se-
creted regulators have overlapping and distinct
substrate specificities, bind to ligands with dif-
ferent affinities, and show differential interac-
tions with ECM components or cell-surface
molecules. Their combined actions are often
crucial elements in defining the outcome of
TGF-b family signals (Figs. 1 and 2).

Follistatin Domain Proteins

Follistatin

The follistatin (FS) domain is defined by 10 spa-
tially conserved cysteines in a �70 amino acid
stretch. Follistatin (FST), the prototype protein,
contains three FS modules and is a monomeric
glycoprotein that binds activin with high affin-
ity (KD 46 to 900 pM) (Nakamura et al. 1990;
Sugino et al. 1993; Schneyer et al. 1994; Hashi-
moto et al. 2000; Sidis et al. 2001; Keutmann et
al. 2004). Interaction with follistatin masks the
receptor binding sites in activin, resulting in
inhibition of activin signaling (de Winter et al.
1996; Thompson et al. 2005; Harrington et al.
2006). Of the three follistatin isoforms, the short
form, Fst288, has a 6- to 10-fold higher affinity
for activin than the long form, Fst315, and
associates uniquely with cell-surface heparan
sulfate proteoglycan (HSPG) to promote endo-
cytosis and subsequent lysosomal degradation
of activin in pituitary cells (Inouye et al. 1991;
Nakamura et al. 1991; Sugino et al. 1993; Ha-
shimoto et al. 1997). The antagonistic interac-
tion between activin and follistatin modulates a
variety of cellular processes in many tissues,

such as gonads, pituitary gland, vasculature,
and liver (reviewed by Phillips and de Kretser
1998; Bilezikjian et al. 2012).

Besides activin, follistatin also interacts
functionally and biochemically with other
TGF-b family members. Follistatin binds
directly to bone morphogenetic protein 2
(BMP-2), BMP-4, and BMP-7, but with much
lower affinities (KD �5.29 nM to 80 nM) than
to activin (Fainsod et al. 1997; Iemura et al.
1998; Amthor et al. 2002). Follistatin does not
block BMP-4 from binding to its type I BMP
receptor. Instead, it forms a nonfunctional ter-
nary complex with BMP and its receptor (Iemu-
ra et al. 1998) and inhibits BMP signaling.
For example, follistatin regulates BMP activities
during dorsoventral patterning of early Xenopus
embryos (Hemmati-Brivanlou et al. 1994; Fain-
sod et al. 1997; Iemura et al. 1998; Yamamoto
et al. 2000), BMP-7 function in muscle growth
(Amthor et al. 2002) and blocks the growth-
inhibitory activity of BMP-7 in mammalian
cell culture (Yamashita et al. 1995). Different
from what is expected from its in vitro measured
affinity, follistatin blocks BMP-7 more efficient-
ly than BMP-4 in functional assays (Liem et al.
1997). Follistatin also binds myostatin (growth
and differentiation factor 8 [GDF-8]) with high
affinity (KD 584 pM) (Amthor et al. 2004),
blocks association of myostatin with its type II
receptor, ActRIIB, and interferes with the func-
tion of myostatin to inhibit muscle growth (Lee
and McPherron 2001; Zimmers et al. 2002;
Amthor et al. 2004). Additionally, follistatin
can form an inactive complex with BMP-15
and prevents it from regulating proliferation
and differentiation of granulosa cells in the ova-
ry (Otsuka et al. 2001). Furthermore, follistatin
antagonizes the activities of BMP-11 and anti-
dorsalizing morphogenetic protein (ADMP)
during early Xenopus development, although
biochemical interactions of follistatin with
BMP-11 or ADMP have not been shown (Ga-
mer et al. 1999; Dosch and Niehrs 2000).

FSTL1 and FSTL3

Follistatin-like 1 (FSTL1, also known as FRP,
Flik, or TSC36) is a secreted glycoprotein with
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a single FS module. Biochemical analyses reveal
some contradictory results on FSTL1 binding to
multiple TGF-b family ligands, possibly because
of different cell types and methods used (Tanaka
et al. 2010; Geng et al. 2011; Xu et al. 2012a).
FSTL1 binds to BMP-2, BMP-4 (KD 0.19 nM

to 7.2 nM), TGF-b1 (KD 12 pM to 36 nM), and
possibly activin A (KD 1.43 nM). FSTL1 is also
reported to bind several type II receptors
(BMPRII, ActR-IIB, TbRII), as well as type I
BMP receptors (ALK-3/BMPRIA and ALK-6/

BMPRIB), to modulate TGF-b family signal-
ing. FSTL1 regulates many developmental pro-
cesses in vertebrates, such as dorsoventral
patterning, lung, skeletal, and ureter develop-
ment, and altered FSTL1 levels are associated
with many diseases, including inflammation,
cardiac diseases, and cancer (reviewed by Sylva
et al. 2013). A related protein, Follistatin-like 3
(FSTL3, also known as FSRP or FLRG), is a
glycoprotein with two FS modules and binds
activin A with an affinity of 40–850 pM and to

TGN

Heterodimeric ligands
Interaction between ligands

Agonists

CHRDL1
BMPER/CV-2
KCP/CRIM2

CTGF

PCs

CRIM1 SOST
GREM1

(Precursor)

Emilin1
Tolloid
BMP-1

(Mature
ligand)

Binding to
receptors

FST, FSTLs, WFIKKNs
Noggin/NOG

Chordin/CHRD
CHRDLs

Brorin/VWC2
BMPER/CV-2
KCP/CRIM2
DAN/NBL1

CER1, CERL-2
GREM1, PRDC/GREM2

SOST, SOSTDC1
CTGF

IGFBP3
Norrie/NDP

FST
FSTL1

BMPER/CV-2
Lefty

BMP-3

(Prodomain
association)

Antagonists

(Ligand
processing,
degradation,

retention,
secretion)

**
*

Figure 1. Regulation of transforming growth factor b (TGF-b) family signals by extracellular agonists and
antagonists. Most extracellular agonists and antagonists act to facilitate or prevent binding of mature TGF-b
family ligands to their receptor complexes, respectively. The secreted proteins CHRDL1, BMPER/CV-2, KCP/
CRIM2, and connective tissue growth factor (CTGF) act both as agonists and antagonists depending on the
particular ligands they regulate and the presence or absence of other factors in cell-type-specific microenviron-
ments they encounter. Certain soluble modulators, including follistatin (FST), FSTL1, BMPER/CV-2, Lefty, and
bone morphogenetic protein 3 (BMP-3), can also bind to type I and/or type II receptors to form a nonsignaling
complex. Regulation of ligand processing, secretion, activation, and/or stability by CRIM1, SOST, GREM1, and
the propeptides in the ligand-producing cells can control ligand availability. Extracellular regulation of ligand
processing by Emilin1 and ligand release by Tolloid/BMP-1 family proteinases also control ligand bioactivity.
Furthermore, TGF-b family ligands can form heterodimers or interact with each other, which leads to either
blocking or enhancing TGF-b family signaling depending on the particular ligands involved. TGN, trans-Golgi
network.
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BMP-2, -6, and -7 with low affinity. Like folli-
statin, FSTL3 inhibits the activities of activin and
BMPs in cell culture (Tsuchida et al. 2000;
Schneyer et al. 2001; Sidis et al. 2002, 2006).
FSTL3 also forms a tight complex with myosta-
tin in serum, and can inhibit myostatin function
(Hill et al. 2002). Crystal structure reveals
a unique association of an amino-terminal do-
main of FSTL3 with myostatin, but not activin A
(Cash et al. 2012). Mice with targeted deletion of
Fstl3 are viable and fertile with defects in glucose
and lipid homeostasis (Mukherjee et al. 2007).
Other follistatin-like proteins also exist. FSTL2,
also known as IGFBP7, may act in the insulin-
like growth factor pathway (Evdokimova et al.

2012), whereas the biological activities of FSTL4
and FSTL5 are not well understood.

WFIKKN1 and WFIKKN2

WFIKKN1 and WFIKKN2 (also known as
GASP-2 and GASP-1 for “growth and differen-
tiation factor-associated serum protein” -2 and
-1) are secreted factors that contain a single
FS module in addition to a WAP, an immuno-
globulin, two Kunitz-type protease inhibitors,
and an NTR domain. Both proteins bind with
high affinity to mature myostatin (GDF-8, KD

33.5 nM and 286 pM, respectively) as well as
GDF-11 (KD 2.25 nM and 164 pM, respectively),

Tolloid
BMP-1

Sizzled
Crescent

Sfrp5

ONT1

(Cells distant from
the BMP source)

**

Tolloid
BMP-1

(Cells proximal to the BMP source)

Cleavaged
Chordin

Chordin

BMPs Chordin
CHRDLs

CV-2
Twsg1/Tsg

Shrew

*

(Diffusion, tra
nsport)

Figure 2. Regulation of bone morphogenetic protein (BMP) signaling by chordin-dependent extracellular
regulatory network. Inhibition of BMP signaling by chordin can be enhanced by formation of a ternary complex
with Twsg1/Tsg. At the same time, this complex promotes transport of the BMP ligands to a distant site to allow
formation of a sharp high BMP activity center. Inactivation of chordin function is achieved by Tolloid/BMP-1-
dependent proteolytic processing to release the associated BMP ligands. Cleavage of chordin is prevented by
Sizzled, Crescent, or Sfrp5, which titrate Tolloid/BMP-1 away from chordin. The scaffolding protein ONT1
binds both Tolloid/BMP-1 and chordin to facilitate chordin processing. The proteins containing chordin-like
cysteine-rich (CR) domains, including CHRDLs and CV-2, can form a similar ternary complex with BMP and
Twsg1 to have stronger BMP-inhibitory activity.
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and they also associate with the propeptide of
myostatin. Domain analysis shows that
WFIKKN1 binds myostatin primarily through
its FS module, whereas it binds the myostatin
propeptide with its NTR domain. WFIKKN
binding inhibits the activity of myostatin
to regulate muscle development (Hill et al.
2003; Kondas et al. 2008; Szlama et al. 2013).
WFIKKN1 and WFIKKN2 also bind TGF-b1,
BMP-2, and BMP-4 with affinities in the micro-
molar range. However, unlike GDF-8 and GDF-
11, WFIKKN binding to these growth factors
does not block their signaling in reporter assays
(Szlama et al. 2010).

TMEFFs

TMEFFs (or tomoregulins) are transmembrane
proteins with two FS modules in their ectodo-
mains (Eib and Martens 1996; Horie et al.
2000). One of these, TMEFF1, inhibits nodal,
Vg1, and BMP signaling in Xenopus without
affecting activin signaling (Chang et al. 2003).
Unlike most FS domain proteins, TMEFF1 does
not bind nodal. Instead, it interacts with the
nodal coreceptor Cripto to prevent assembly
of a signaling ligand–receptor complex. This
represents a novel mechanism for regulation
of TGF-b signaling by FS module–containing
proteins (Harms and Chang 2003).

Other FS domain–containing proteins in-
clude ECM proteins like SPARC and agrin, but
their functions in regulating TGF-b family
growth factors have not been shown, although
they may affect ligand expression at the tran-
scriptional level (Schneyer et al. 2001).

Noggin

Noggin is a small soluble protein of 210–240
amino acids. It contains a carboxy-terminal cys-
teine-rich domain and is secreted as a homodi-
meric glycoprotein. Noggin was originally iden-
tified in Xenopus embryos as a dorsalizing factor
(Smith and Harland 1992; Lamb et al. 1993;
Smith et al. 1993). Subsequently, four noggin
homologs were identified in zebrafish, Fugu,
Xenopus tropicalis, Xenopus laevis, and chick,
but only one noggin gene exists in mammals
(Furthauer et al. 1999; Fletcher et al. 2004;

Eroshkin et al. 2006). Noggin binds directly to
BMP-2 and BMP-4 with high affinity (KD of
19 pM), and less efficiently to BMP-7, and pre-
vents ligand interaction with their cognate BMP
receptors (Zimmerman et al. 1996). Noggin
also interacts biochemically and functionally
with several other BMP ligands, including
GDF-5 (Merino et al. 1999a), GDF-6 (Chang
and Hemmati-Brivanlou 1999), BMP-5, and
BMP-6 (Aspenberg et al. 2001; Beck et al.
2001; Haudenschild et al. 2004). Noggin2 in
Xenopus has also been shown to associate with
activin B, nodal/Xnrs, and Wnt8 to inhibit their
signaling (Bayramov et al. 2011). The sequences
of BMP-6 and GDF-5 mutants that are not in-
hibited by noggin identify key residues that me-
diate BMP inhibition by noggin (Seemann et al.
2009; Song et al. 2010). The crystal structure of
noggin bound to BMP-7 reveals that the noggin
dimer assumes a cystine-knot structure similar
to that of BMP-7, and that a “back-to-back”
arrangement of noggin and BMP-7 dimers re-
sults in masking of a hydrophobic patch in
BMP-7 that is required for contact with type II
receptors (Groppe et al. 2002). Besides BMPs,
noggin also binds heparan sulfate and is re-
tained at the cell surface by HSPGs. Heparan
sulfate-bound noggin remains functional and
binds BMP-4 at the plasma membrane. Binding
of noggin to cell-surface HSPGs may limit the
diffusion, and thus the action range, of this an-
tagonist (Paine-Saunders et al. 2002), and may
also contribute to noggin’s ability to promote
BMP-2 internalization (Alborzinia et al. 2012).
A developmentally regulated endosulfatase
Qsulf1 can release noggin from HSPGs and
may regulate noggin distribution (Viviano
et al. 2004). Inhibition of BMP signaling by
noggin plays important roles in many processes
during embryogenesis and adult homeostasis,
such as regulation of neural induction, pattern-
ing of the neural tube and somites, guidance of
dorsal root ganglion axons, joint formation and
skeletal development, fusion of cranial sutures,
and hair follicle development (Brunet et al.
1998; McMahon et al. 1998; Botchkarev et al.
1999; Bachiller et al. 2000; Anderson et al. 2002;
Dionne et al. 2002; Warren et al. 2003; Khokha
et al. 2005). Hypomorphic mutations in the
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human NOGGIN gene associate with skeletal
dysplasia syndromes, such as proximal sympha-
langism (SYM1), multiple synostoses syndrome
(SYNS1), and tarsal/carpal coalition syndrome
(TCC) (Balemans and Van Hul 2002), illustrat-
ing the importance of noggin in joint and skel-
etal development.

Besides noggin, several genes in planarians
encode noggin-like proteins (nlgs) that have a
sequence insertion between the fifth and sixth
cysteine residues. Functional assays indicate
that planarian nlg8 and a similar Xenopus Xl-nlg
ventralize embryos and suppress neurogenesis,
partially mimicking effects of ectopic BMP
signals. However, nlg8 and Xl-nlg do not sig-
nificantly affect Smad1 or 5-phosphorylation,
suggesting that they may regulate patterning in-
dependent of Smad activation (Molina et al.
2009, 2011). The functions of these nlg genes
are distinct from that of a noggin-like gene in
Hydra, which encodes canonical BMP-inhibito-
ry activities when expressed in Xenopus (Chan-
dramore et al. 2010).

Chordin and Its Regulators: BMP-1/Tolloid
Proteases, Ogon/Sizzled, Crescent/Frzb2-
Sfrp5, Olfactomedin 1, and Twisted
Gastrulation

The chordin-dependent BMP regulatory net-
work is complex and extensive, and best char-
acterized in Xenopus and Drosophila in the con-
text of early dorsoventral patterning. It utilizes
multiple extracellular factors (Fig. 2) to regulate
the interaction between BMPs and chordin by
controlling the stability of chordin, the trans-
port of the BMP–chordin complex to a distant
site, and the transcription of the network com-
ponents. Together, they constitute a reaction–
diffusion feedback regulatory loop to finely
tune BMP signaling levels for robust embryonic
patterning along the dorsoventral axis.

Chordin

Chordin was originally identified as the product
of a dorsally expressed gene in Xenopus gastru-
lae that showed dorsalizing activities (Sasai
et al. 1994, 1995). This gene encodes a secreted
protein of 941 amino acids that contains four

cysteine-rich (CR) repeats with a long linker
sequence between the first and second CR do-
main. Like noggin, chordin antagonizes BMP
function through direct binding to BMP-2, -4,
and -7, thus preventing the ligands from inter-
acting with the BMP receptors. The affinity of
chordin for BMP-4 (KD 300 pM) is �10-fold
lower than that of noggin (Piccolo et al. 1996),
and the first and third CR domains can individ-
ually bind BMP-4 with a KD of 2 nM and inhib-
it BMP signals less efficiently than full-length
chordin (Larrain et al. 2000). Differentially
spliced variants of human chordin (CHRD)
mRNA encode isoforms with different numbers
of CR domains and distinct abilities to block
BMP signaling (Millet et al. 2001). Besides
BMPs, chordin may bind and block ADMP,
albeit with conflicting results (Joubin and Stern
1999; Dosch and Niehrs 2000; Reversade and
De Robertis 2005). In vertebrate development,
chordin, either alone or in cooperation with
noggin and follistatin, regulates early dorsal
patterning, forebrain formation, mandibular
outgrowth, pharyngeal development, septa-
tion of the cardiac outflow tract, chondrocyte
maturation, and axial skeleton development,
among other processes (Hammerschmidt et
al. 1996a,b; Schulte-Merker et al. 1997; Streit
et al. 1998; Streit and Stern 1999; Bachiller et
al. 2000, 2003; Stottmann et al. 2001; Anderson
et al. 2002; Zhang et al. 2002; Oelgeschlager
et al. 2003a; Khokha et al. 2005). Some pheno-
types in Chrd2/2 mice resemble those in pa-
tients with DiGeorge syndrome, implying that
CHRD mutations may contribute to the etiolo-
gy of this disease (Bachiller et al. 2003).

The antagonism between chordin and
BMPs may have arisen early during metazoan
evolution (Rentzsch et al. 2007). Comparative
studies in Drosophila and vertebrates yield in-
sight into the conservation and divergence of
chordin function in animals. The Drosophila
homolog of chordin, short gastrulation (Sog),
binds and inhibits the BMP ligands Screw
(Scw), Glass-bottom boat (Gbb), and, with
less efficiency, Decapentaplegic (Dpp) to regu-
late dorsoventral patterning of early embryos
and pattern formation in imaginal discs (Fran-
cois et al. 1994; Francois and Bier 1995; Holley
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et al. 1995; Schmidt et al. 1995; Biehs et al. 1996;
Neul and Ferguson 1998; Nguyen et al. 1998).
Interestingly, although Sog blocks BMPs locally,
it can enhance signaling by Dpp/Scw dimer in
cells that are distant from the source of Sog pro-
duction by facilitating transport and presenta-
tion of BMP ligands. This role is essential for
establishing a sharp domain of peak levels of
Dpp/Scw activity in the dorsal region of early
fly embryos (Ashe and Levine 1999; Decotto
and Ferguson 2001; Eldar et al. 2002; Shimmi
and O’Connor 2003; Shimmi et al. 2005a; Wang
and Ferguson 2005). Vertebrate chordin cannot
replace Sog to promote Dpp signaling in Dro-
sophila (DeCotto and Ferguson 2001), although
some evidence suggests that chordin may col-
laborate with BMP-2b in early dorsoventral
patterning of the zebrafish tail (Wagner and
Mullins 2002), and help shuttle BMP ligands
from the intervertebral disc to the vertebral
body during mouse skeletal development (Za-
kin et al. 2010). It is therefore possible that
vertebrate chordin maintains its ability to
transport BMP in certain tissue contexts.

BMP-1/Tolloid Family of Metalloproteinases

Tolloid, a zygotic gene in the Drosophila dorsal
developmental regulatory network, encodes a
protein homologous to human BMP-1 in that
both contain an amino-terminal zinc metallo-
proteinase domain (Shimell et al. 1991). Genes
for a second Drosophila homolog, Tolkin/Tlr-1,
and four genes encoding vertebrate BMP-1/
Tolloid-like (BMP-1/TLL) proteins were subse-
quently identified (Maeno et al. 1993; Nguyen
et al. 1994; Finelli et al. 1995; Scott et al. 1999).
Biochemical, genetic, and embryological stud-
ies in Drosophila, Xenopus, and mammalian
cells show that BMP-1/TLL family members
cleave Sog/chordin at several sites to inactivate
or attenuate this BMP antagonist, and thus pro-
mote BMP signaling (Blader et al. 1997; Mar-
ques et al. 1997; Piccolo et al. 1997; Scott et al.
1999; Serpe et al. 2005). However, some forms
of partially cleaved Sog/chordin may display
stronger BMP-inhibitory activity or an altered
spectrum of preferred BMP ligands (Yu et al.
2000; Troilo et al. 2014, 2015). Although cleav-

age of Sog in Drosophila requires the presence of
Dpp, vertebrate BMP-1/TLLs can process chor-
din in the absence of BMPs (Peluso et al. 2011).
BMP-4 can bind to the CUB domain of BMP-1/
TLL to inhibit its proteinase activity, and this
may provide concentration-dependent feed-
back modulation of BMP signaling (Lee et al.
2009). A further difference between Drosophila
and vertebrates lies in the number and locations
of the processing sites in Sog and chordin (Mar-
ques et al. 1997; Piccolo et al. 1997; Scott et al.
1999). In addition, the four vertebrate BMP-1/
TLL members have differential abilities to cleave
chordin (Scott et al. 1999; Pappano et al. 2003;
Berry et al. 2010). Inactivation of Sog by Tolloid
in Drosophila generates a ventral-high to dorsal-
low gradient of Sog protein (Srinivasan et al.
2002), and is essential to establish a reverse dor-
sal-high, ventral-low Dpp/Scw activity gradient
in the dorsal region of early embryos (Marques
et al. 1997; Shimmi and O’Connor 2003; Peluso
et al. 2011). In vertebrates, BMP-1/TLLs mod-
ulate chordin distribution along the dorsoven-
tral axis and are required for ventral tissue de-
velopment in Xenopus and zebrafish (Piccolo
et al. 1997; Goodman et al. 1998; Connors
et al. 1999, 2006; Wardle et al. 1999; Blitz et al.
2000; Jasuja et al. 2006; Plouhinec et al. 2013).
The activity of Tolloid/BMP-1 is positively
modulated by the ECM proteins fibronectin
and collagen IV, as these proteins bind Tol-
loid/BMP-1 and enhance its processing of
chordin (Huang et al. 2009; Winstanley et al.
2015). Besides chordin, BMP-1 family proteases
target other substrates in the extracellular mi-
lieu, including latent TGF-b-binding protein 1
(LTBP1), and this cleavage contributes to acti-
vation of TGF-b ligands (Pappano et al. 2003;
Ge and Greenspan 2006a,b).

Sizzled/Ogon, Crescent, and Sfrp5

Sizzled (also known as mercedes or short tail)
was first identified as the zebrafish Ogon mutant
that caused ventralization of embryos similar
to chordin mutants. Genetic interactions with
other dorsoventral patterning factors in zebra-
fish suggest that the gene product is a BMP
antagonist that acts upstream of BMP-2b and
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the type I BMP receptor ALK-8 (Miller-Berto-
glio et al. 1999; Wagner and Mullins 2002).
The encoded protein, Sizzled, inhibits BMP
signals in Xenopus and zebrafish, and regulates
dorsoventral patterning (Bradley et al. 2000;
Collavin and Kirschner 2003; Martyn and
Schulte-Merker 2003; Yabe et al. 2003). Inhibi-
tion of BMPs by Sizzled is chordin-dependent
and uses a novel mechanism. Sizzled competes
with chordin to bind BMP-1 and Tolloid-like 1,
but cannot be cleaved by these metallopro-
teinases. In this way, Sizzled prevents BMP-1
proteins from processing chordin, and thus
helps to stabilize chordin and enhance its an-
tagonistic effect on BMP in vivo (Fig. 2) (Lee
et al. 2006; Muraoka et al. 2006). Counterintu-
itively, Sizzled is expressed in the ventral regions
and its expression is stimulated by BMP signal-
ing. Sizzled thus acts as a negative feedback reg-
ulator of BMPs that diffuses over a long distance
to finely tune the BMP signaling levels along the
dorsoventral axis in a chordin- and Tolloid-de-
pendent manner (Inomata et al. 2013). No Siz-
zled-like molecule has been found in Drosophila
to regulate signals by the BMP-like ligands Dpp,
Scw, or Gbb, implying that this mechanism
arose later in evolution.

Crescent and Sfrp5 are secreted Frizzled-re-
lated proteins (sFRP’s) that are closely related
to Sizzled. Similar to Sizzled, Crescent (KD

�11 nM) and Sfrp5 bind BMP-1/TLL and block
their proteinase activity. They thus protect chor-
din from degradation and participate in an
extracellular BMP regulatory network to mod-
ulate dorsoventral patterning of early Xenopus
and zebrafish embryos. Unlike Sizzled, Crescent
is expressed in the dorsal region of Xenopus gas-
trulae, and both Xenopus Crescent and zebrafish
Sfrp5 are expressed in embryonic endoderm
and additionally inhibit canonical and nonca-
nonical Wnt signals (Pera and De Robertis 2000;
Schneider and Mercola 2001; Shibata et al.
2005; Ploper et al. 2011; Stuckenholz et al.
2013). Interestingly, mammalian sFRP-2 en-
hances, rather than inhibits, BMP-1 in process-
ing procollagen C, but has no effect on chordin
processing (Kobayashi et al. 2009). Studies of
other mammalian sFRPs show that they lack
the ability to modify BMP-1 proteinase activity,

suggesting that specific residues in the frizzled
domain may be crucial for sFRP to inhibit BMP-
1/TLL proteinases (Bijakowski et al. 2012).

Olfactomedin 1 (ONT1)

ONT1, a member of olfactomedin family of se-
creted proteins, acts as an extracellular scaffold
to facilitate association of chordin and BMP-1.
ONT1 has a coiled-coil domain near its ami-
no terminus and a conserved olfactomedin
domain in its carboxy-terminal half. These
domains bind BMP-1/Tolloid and chordin, re-
spectively. By bringing the enzyme and its
substrate together, ONT1 promotes chordin
degradation (Fig. 2). This pro-BMP action of
ONT1 is concentration-dependent, as high lev-
els of ONT1 permit binding of chordin and
BMP-1 in distinct complexes and thus separate
the two proteins. ONT1 is expressed in the dor-
sal organizer of early Xenopus embryos; thus,
its expression and activity are opposite to
those of Sizzled. Both ONT1 and Sizzled are
critical in the robust dorsoventral self-regulating
patterning system in Xenopus (Inomata et al.
2008, 2013).

Twisted Gastrulation (TWSG1/tsg)

Twisted gastrulation (tsg) was first identified in
Drosophila as a mutation that affects the devel-
opment of the dorsal midline amnioserosa
(Zusman and Wieschaus 1985). The gene en-
codes a small secreted protein with two cys-
teine-rich domains and is required for peak
Dpp activity in early Drosophila embryos (Ma-
son et al. 1994, 1997; Ross et al. 2001). Tsg en-
hances Sog to bind and inhibit Dpp in the dor-
solateral region. However, at the same time Tsg
promotes the transport of the Sog–Dpp com-
plex to the dorsal midline, and facilitates the
processing and alternative cleavage of Sog by
Tolloid once it reaches the most dorsal region
(Yu et al. 2000; Shimmi and O’Connor 2003).
This Tsg–Sog–Dpp–Tolloid interaction net-
work ensures the establishment of a sharp dorsal
boundary between the peak and immediate
BMP activity levels so that cells adopt either
an amnioserosa or dorsal ectodermal fate (Eldar
et al. 2002; Shimmi and O’Connor 2003;
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Shimmi et al. 2005a; Wang and Ferguson 2005).
Another twisted gastrulation-like gene, shrew,
performs a similar function to promote peak
BMP signaling at the aminoserosa (Bonds
et al. 2007). In addition, a comparable Dpp
transport and release mechanism may operate
during wing development in Drosophila, in
which a Tsg homolog, Tsg2/Crossveinless
(Cv), cooperates with Sog to create a spatially
restricted Dpp/Gbb signaling center in the pos-
terior crossvein of the developing wing (Shimmi
et al. 2005b; Vilmos et al. 2005). Tsg can also
alter the processing of Sog by Tolloid to create a
novel Sog cleavage product, called Supersog,
which has a broader spectrum of BMP inhibi-
tion than full-length Sog (Yu et al. 2000). Tsg
and Tsg2/Cv therefore exert positive as well as
negative effects on BMP signaling in Drosophila
via regulation of Sog and Tolloid activities, and
thus helps to establish a sharp high BMP signal-
ing boundary by local inhibition and long dis-
tance enhancement of BMP signals.

Vertebrate Twisted gastrulation, abbreviated
as Twsg1 and not as Tsg as in Drosophila, has
also been shown to act as both agonist and an-
tagonist of BMPs. Twsg1 binds BMP-2, -4, and
-7 and forms a ternary complex with chordin
and BMPs to enhance the inhibitory activity
of chordin on BMP (Oelgeschlager et al. 2000;
Chang et al. 2001; Larrain et al. 2001; Ross
et al. 2001; Scott et al. 2001; Zakin et al.
2005). In cell culture, Twsg1, either alone or in
combination with chordin, blocks BMP-medi-
ated effects on proliferation and/or differentia-
tion of osteoblasts, osteoclasts, and thymocytes
(Graf et al. 2002; Gazzerro et al. 2005; Petryk
et al. 2005; Pham et al. 2011). However, Twsg1
may also promote chordin degradation by
BMP-1 family metalloproteinases, and thus
promote BMP signaling (Oelgeschlager et al.
2000; Larrain et al. 2001). Twsg1 increases the
rate of chordin processing by Tolloid-like 1 and
alters the processing site of mouse chordin, but
not zebrafish or Xenopus chordin. In Xenopus,
a dominant negative Tolloid-like 1 (Xolloid)
blocks the BMP stimulatory activity of Twsg1
(Larrain et al. 2001; Scott et al. 2001; Xie and
Fisher 2005). In addition, Twsg1 may have a
chordin-independent, BMP-enhancing activity

(Oelgeschlager et al. 2003a, 2004; Little and
Mullins 2004; Xie and Fisher 2005), indicating
that other factors also interact with Twsg1 to
modulate BMP signaling. Although it is tempt-
ing to speculate that Twsg1 may help present
BMP ligands to their receptors when stimulat-
ing BMP signaling, binding of BMPs per se is
not required for this stimulatory activity of
Twsg1 (Oelgeschlager et al. 2003b). In osteoclast
cells, mutations that abolish Twsg1 binding to
BMP change its activity from BMP-inhibitory
to BMP-enhancing, arguing for a ligand-bind-
ing-independent mechanism for Twsg1 to pro-
mote BMP signaling (Huntley et al. 2015).

The in vivo functions of vertebrate Twsg1, as
assessed by loss-of-function studies, reveal an
equally complex story. Depletion of endoge-
nous Twsg1 expression using morpholino anti-
sense oligonucleotides shows that Twsg1 and
chordin coordinate in regulating dorsoanterior
development of early Xenopus embryos (Blitz
et al. 2003; Wills et al. 2006), supporting the
critical role of Twsg1 as a BMP antagonist in
Xenopus. Twsg1 and BMP-7, however, also act
together in controlling the posteroventral me-
soderm and ventral tail fin formation in X.
laevis, suggesting stimulation of BMP activity
by Twsg1 (Zakin et al. 2005). In zebrafish, anti-
sense oligonucleotide-mediated knockdown
experiments show that Twsg1 may promote
rather than inhibit BMP signaling (Little and
Mullins 2004; Xie and Fisher 2005). In mam-
mals, Twsg12/2 mice show defects in axial skel-
eton, thymocyte development, and craniofacial
structures (Graf et al. 2001; Nosaka et al. 2003;
Petryk et al. 2004; Zakin and De Robertis 2004).
Twsg1 may function as a BMP antagonist in
axial skeletal and T-cell development (Nosaka
et al. 2003; Ikeya et al. 2008; Zakin et al. 2008)
and neutralizes the protective activity of BMP-7
in podocyte injury (Yamada et al. 2014). How-
ever, Twsg1 may enhance BMP signaling during
forebrain development and postnatal mam-
mary gland morphogenesis (Zakin and De Ro-
bertis 2004; Forsman et al. 2013). Thus, Twsg1
has context-dependent pro- or anti-BMP activ-
ities. A second twisted gastrulation gene has also
been identified in Xenopus, and shows a tempo-
ral expression pattern that differs from Twsg1
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expression (Oelgeschlager et al. 2004). In addi-
tion, Twsg1 may regulate TGF-b signaling in
T lymphocytes by binding to TGF-b proteins
(Tzachanis et al. 2007), implying a broader
spectrum of TGF-b ligand regulation.

Other Modulators of Chordin

The activities of chordin are regulated by addi-
tional factors, such as proteoglycans and other
cell-surface molecules. Two secreted small leu-
cine-rich proteoglycans, biglycan and Tsukushi,
can each form a ternary complex with chordin
and BMP-4 and enhance the inhibitory func-
tion of chordin on BMP (Ohta et al. 2004; Mo-
reno et al. 2005). Chordin also binds HSPGs,
such as syndecans, but does not associate with
the basement membrane HSPG perlecan. Bind-
ing of chordin to cell-surface HSPGs potenti-
ates the BMP antagonistic function of chordin,
facilitates chordin retention and uptake by cells,
and limits diffusion of chordin over a long dis-
tance in tissues (Jasuja et al. 2004). Interaction
of chordin with HSPGs hence regulates the local
concentration and gradient formation of chor-
din and its ability to block BMP signaling. The
distribution of chordin may also be affected
by its interaction with integrins that act as
receptors for ECM proteins. Chordin binds
a3-integrin in vertebrate cells, and this binding
facilitates endocytosis and uptake of chordin
into cells (Larrain et al. 2003). In Drosophila,
Sog interacts genetically with several integrins,
including bPS, aPS1, and aPS3 (PS stands for
position-specific antigen), during wing vein
specification. Sog and a truncated Sog directly
bind aPS1, and the function of integrins is re-
quired for Sog transport from the intervein to
pro-vein regions (Araujo et al. 2003). Integrins
may thus control the range and the availability
of different forms of Sog and chordin proteins
to regulate BMP signals.

Chordin-Like Cysteine-Rich (CR)
Domain-Containing Proteins

CHL/Neuralin/Ventroptin and CHL2
(CHRDL1 and 2)

Chordin has four CR modules (also known as
von Willebrand factor type C, or VWC do-

mains) that are defined by characteristic spacing
of 10 conserved cysteines within a stretch of
60 to 80 amino acids (Garcia Abreu et al.
2002). Chordin-like CR domains are found in
several extracellular proteins, including matrix
proteins such as procollagen (see below) as well
as soluble factors. Chordin-like (CHL/CHL1,
CHRDL1) is a secreted molecule with three CR
modules and is also known as neuralin in the
mouse, and ventroptin in the chick (Coffinier
et al. 2001; Nakayama et al. 2001; Sakuta et al.
2001). It has an expression pattern complemen-
tary to that of chordin during early mouse em-
bryogenesis. CHRDL1 binds BMP-4, -5, and -6,
but not activin A, and blocks binding of BMPs
to their receptors (Nakayama et al. 2001; Sakuta
et al. 2001). Unlike chordin, CHRDL1 also
binds TGF-b2 (Nakayama et al. 2001). When
overexpressed, CHRDL1 induces secondary
axis formation in early Xenopus embryos, dor-
salizes zebrafish embryos, represses BMP-4 ac-
tivity during dorsoventral patterning of chick
retina, impairs distal digit formation in chick
limbs, and promotes neuronal differentiation
of adult neural stem cells (Coffinier et al.
2001; Nakayama et al. 2001; Sakuta et al. 2001;
Branam et al. 2010; Allen et al. 2013; Gao et al.
2013). Interestingly, CHRDL1 enhances BMP-4
and BMP-7 signaling in several cell lines when
expressed alone, but switches into a selective
BMP-7 antagonist when in complex with
Twsg1. The BMP-inhibitory function of Chrdl1
and Twsg1 may regulate injury repair and ho-
meostasis of mammalian kidney (Larman et al.
2009). Mutations in CHRDL1 are associated
with X-linked megalocornea disorder in hu-
man patients (Webb et al. 2012). Another close-
ly related and secreted factor with 3 chordin-
type CR domains is CHRDL2 (CHL2), which
binds BMP-2, -4, -5, -6, -7, and GDF-5, but
not activin A or TGF-bs. Overexpression of
CHRDL2 blocks BMP-mediated differentiation
of C2C12 cells (Nakayama et al. 2004), and a
ternary complex with Twsg1 and BMP-2 en-
hances the BMP-inhibitory activity of CHRDL2
(Zhang et al. 2007). Recombinant human
CHRDL2, however, interacts with activin A,
but not BMP-2, -4, or -6. The functional signifi-
cance of these differences in interactions is
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unknown (Oren et al. 2004). The discrepancy
between the two studies may be because of the
complex alternative splicing patterns ofCHRDL2
in different tissues, as spliced variants may have
different functions and specificities in the regu-
lation of distinct TGF-b family ligands (Oren
et al. 2004). Like chordin, zebrafish CHRDL can
be processed by BMP-1, which blocks its dor-
salizing activity (Branam et al. 2010).

Brorin/Vwc2 and Brorin-Like (Vwc2l)

Brorin (also known as Vwc2) was isolated from
mouse as a brain-specific secreted protein with
two chordin-like CR domains. Brorin inhibits
BMP-2 and -6 activities in cultured preosteo-
blastic cells and promotes neurogenesis in neu-
ral precursor cells (Koike et al. 2007). A similar
protein, Brorin-like (Vwc2-like or Vwc2l), was
isolated from mouse, human, and zebrafish. It
has an expression profile that partially overlaps
with that of Brorin, but has a weaker BMP-in-
hibitory activity (Miwa et al. 2009).

Crossveinless-2 (BMPER/cv-2)

Crossveinless-2 (cv-2) is a gene mutation in
Drosophila that leads to a loss of crossveins in
the wing. The gene encodes a secreted protein
with five chordin-type CR domains followed by
a partial von Willebrand factor (vWF) domain.
Genetic studies suggest that Crossveinless-2 en-
hances BMP signals in the crossveins, which
require a high level of Dpp/Gbb signaling, but
antagonizes BMP signaling during early em-
bryogenesis (Conley et al. 2000; Gavin-Smyth
et al. 2013). Crossveinless-2 binds the type I
BMP receptor Thickveins and shows a concen-
tration-dependent biphasic modulation toward
BMPs (Serpe et al. 2008). Vertebrate Crossvein-
less-2, also known as Bmper, has been identified
in zebrafish, chick, mouse, and human, and
contains an additional carboxy-terminal tryp-
sin-inhibitor-like cysteine-rich domain that is
not found in Drosophila Crossveinless-2. Cv2/
Bmper is expressed in chick and mouse at
sites that require elevated BMP signals, such as
the posterior primitive streak and ventral tail
bud, whereas functional assays suggest BMP ag-

onist and antagonist activities of Cv2/Bmper
in vertebrates. (Coffinier et al. 2002; Coles et
al. 2004; Kamimura et al. 2004). Cv2/Bmper
binds BMP-2, -4, -6, -7, -9 (KD �1.4–3.5 nM

for BMP-2, -4, -7) and GDF-5 (KD � 34 nM).
Structural analysis shows that Cv2/Bmper
binds BMP-2 via the amino-terminal Clip seg-
ment and subdomain 1 in the first CR module
(VWC1 domain), resulting in masking of the
type I and type II receptor-binding interfaces
in BMP-2 (Zhang et al. 2008; Fiebig et al.
2013). As a BMP inhibitor, Cv2/Bmper induces
a secondary axis in Xenopus, blocks BMP-re-
sponsive gene expression in 293T cells, and in-
terferes with BMP-dependent differentiation of
embryonic stem cells into the endothelial lin-
eage and BMP-induced chondrogenic and oste-
ogenic differentiation. However, Cv2/Bmper
also enhances Smad1 phosphorylation in
COS7 cells and promotes premature neural crest
cell migration in chick. The latter results are
consistent with its function in elevating BMP
signaling (Moser et al. 2003; Binnerts et al.
2004; Coles et al. 2004; Kamimura et al. 2004;
Ambrosio et al. 2008; Yao et al. 2012). Gene
silencing in zebrafish and mice suggest that
Cv2/Bmper enhances BMP signaling during
gastrulation, neural crest specification, nephro-
genesis, cardiovascular development, and axial
skeletal formation, although it may block BMP-
9 signaling in vascular endothelium, whereas
Cv2/Bmper overexpression shows activities
that are consistent with functions in both en-
hancing and inhibiting BMP signaling (Ikeya
et al. 2006, 2008, 2010; Rentzsch et al. 2006;
Moser et al. 2007; Zakin et al. 2008; Yao et al.
2012; Reichert et al. 2013; Dyer et al. 2014).
Several mechanisms, including differential ac-
tivities of full-length and processed Cv2/Bmper
and differential association with other BMP
modulators and/or ECM components, may
account for the switch between the two oppos-
ing activities of Cv2/Bmper. Full-length Cv2/
Bmper is a BMP antagonist and binds to HSPG-
containing ECM with high affinity. The cleaved
product of Cv2/Bmper that contains only five
CR domains acts as BMP agonist and does not
associate efficiently with the ECM. Processing
of Cv2/Bmper may thus alter its regulation of
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BMP signaling (Rentzsch et al. 2006). Cv2/
Bmper also interacts genetically and biochemi-
cally with other BMP modulators to affect BMP
signaling. Cv2 binds chordin using sequences
distinct from those for BMP binding and is re-
quired for relocalization of chordin from inter-
vertebral disc to vertebral body during axial
skeletal development. Binding of chordin, rath-
er than BMP, is essential for Cv2’s pro-BMP
effect (Ambrosio et al. 2008; Zakin et al. 2010;
Zhang et al. 2010). Cv2 also complexes with
Twsg1 and BMP and genetically acts with
Twsg1 to regulate axial skeleton and embryonic
nephron development (Ambrosio et al. 2008;
Ikeya et al. 2008, 2010; Zakin et al. 2008). Fur-
thermore, Cv2/Bmper binds LRP1 (low density
lipoprotein receptor-related protein 1) and may
contribute to endocytic regulation of BMP
availability and signaling (Kelley et al. 2009;
Pi et al. 2012). Cross talk with various BMP
modulators, ECM components, and cell-sur-
face proteins may thus provide a basis for the
activities of Cv2/Bmper as agonist or antagonist
of BMP ligands. Mutations in BMPER have
been linked to an autosomal recessive perinatal
lethal skeletal disorder, diaphanospondylody-
sostosis, in humans (Funari et al. 2010; Ben-
Neriah et al. 2011; Zong et al. 2015).

CRIM1

CRIM1 (cysteine-rich motor neuron 1) is a gly-
cosylated type I transmembrane protein with six
chordin-type CR repeats and an amino-termi-
nal insulin-like growth factor–binding protein
(IGFBP)-like motif in its extracellular domain.
CRIM1 can be cleaved to release a soluble ecto-
domain. Although soluble CRIM1 does not
bind BMPs in solution, CRIM1 interacts with
BMP-4 and BMP-7 in the Golgi compartments
when coexpressed in the same cell. This associ-
ation is mediated by the CR domains and can
lead to reduced processing and secretion of
BMPs (Fig. 1) (Wilkinson et al. 2003). CRIM1
thus antagonizes BMP activity using a unique
mechanism in that it regulates the production
and release of mature BMPs cell-autonomously
in BMP-expressing cells. Consistent with this
idea, the Drosophila CRIM1 homolog, Crimpy,

inhibits the BMP ligand Gbb cell-autonomous-
ly in motorneurons (James and Briohier 2011).
However, the Caenorhabditis elegans CRIM1
homolog, Crm-1, facilitates BMP presentation
and promotes BMP signaling to control body
size (Fung et al. 2007). In vertebrates, CRIM1 is
expressed in the notochord, somites, limb, floor
plate, motor neurons, and sensory organs, but
CRIM1 overexpression in chick does not affect
neural patterning in the spinal cord. Instead,
loss-of-function studies in chick, frog, zebra-
fish, and mouse suggest that CRIM1 modulates
the formation of renal vasculature, neural tube
morphogenesis, limb patterning, and eye devel-
opment (Kolle et al. 2000, 2003; Glienke et al.
2002; Kinna et al. 2006; Pennisi et al. 2007; Pon-
ferrada et al. 2012; Fan et al. 2014). CRIM1 may
control some of these processes by acting
through extracellular signals other than BMPs
such as vascular endothelial growth factor
(VEGF)-A and cadherins (Ponferrada et al.
2012; Fan et al. 2014).

Kielin and KCP (CRIM2)

Kielin is a 2327 amino acid protein, containing
27 chordin-like CR modules, an amino-termi-
nal thrombospondin homology region and a
carboxy-terminal vWF type D domain-like se-
quence. Kielin was identified by screening for
secreted molecules in Xenopus and is expressed
in dorsal midline structures during early frog
development. Overexpression of Kielin dorsal-
izes ventral mesodermal explants; however, Kie-
lin is not sufficient to induce secondary axis
formation or neural induction in Xenopus, sug-
gesting that, unlike noggin or chordin, Kielin
may not efficiently inhibit BMP signaling (Mat-
sui et al. 2000). No interaction of Kielin with
TGF-b ligands has been reported and it is un-
clear whether Kielin regulates TGF-b signals
directly or through other signaling pathways.
A kielin/chordin-like protein, KCP (CRIM2),
has also been isolated in the mouse, and con-
tains 18 CR motifs and a carboxy-terminal vWF
type D domain. KCP binds BMP-7, but intri-
guingly increases BMP-7 binding to BMPRIA/
ALK-3 instead of blocking this interaction,
and may form a ternary complex with them.
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KCP enhances Smad1 activation and BMP-re-
sponsive gene expression, and promotes BMP
signaling to attenuate renal interstitial fibrosis
(Lin et al. 2005). KCP also binds activin A and
TGF-b1, and blocks Smad2/3 activation and
Smad2/3-mediated transcription (Lin et al.
2006). KCP hence functions in opposite ways
to regulate activin/TGF-b and BMP signals.
In adult mouse kidney, KCP attenuates acute
and chronic renal injury (Soofi et al. 2013).

Amnionless

Amnionless was discovered as a recessive inser-
tional gene mutation in the mouse that inter-
feres with the development of the primitive
streak that gives rise to trunk mesoderm
(Wang et al. 1996). The gene encodes a type I
transmembrane protein with a single CR mod-
ule in its extracellular region and is therefore
thought to regulate BMP signals (Kalantry
et al. 2001). However, Amnionless acts with cu-
bilin, a multiligand scavenger receptor, to regu-
late vitamin B12 uptake and absorption of low
molecular weight proteins in visceral endoderm
and embryonic kidney (Strope et al. 2004; Pe-
dersen et al. 2010; Zhang et al. 2013). Therefore,
although Amnionless contains a CR domain
homologous to chordin, it may not participate
in the regulation of BMP signals.

DAN/Cerberus/Gremlin Family Members

The DAN/Cerberus/Gremlin family includes
several small soluble proteins with a char-
acteristic cysteine-rich domain (CAN domain)
with the consensus sequence CX6QX6CX6NX2-
CXGXCXSX3PX(8– 13)CX2CXPX8TLXCX(15 –18)-
CXC (Avsian-Kretchmer and Hsueh 2004). All
family members are secreted as glycosylated
monomers or dimers that bind and inhibit
BMPs.

DAN/NBL1

DAN (differential screening-selected gene aber-
rative in neuroblastoma, also known as NBL1) is
the founding member of the family, and was
first identified as the product of a gene that is

down-regulated in oncogene-transformed rat
fibroblasts (Ozaki and Sakiyama 1993). Dan en-
codes a secreted molecule that forms a nonco-
valent homodimer, and has dynamic expression
patterns in mouse, chick, and frog (Hsu et al.
1998; Stanley et al. 1998; Pearce et al. 1999;
Eimon and Harland 2001; Ogita et al. 2001; Ger-
lach-Bank et al. 2002; Kattamuri et al. 2012; No-
lan et al. 2015). Dan binds and antagonizes
BMP-2, BMP-4, BMP-7, and GDF-5, but does
not block nodal-like signaling in Xenopus or
chick (Hsu et al. 1998; Stanley et al. 1998; Di-
onne et al. 2001; Katsu et al. 2012). In the chick,
DAN controls left–right patterning and inner
ear development (Yamanishi et al. 2007; Katsu
et al. 2012). In the mouse, Dan is expressed in the
somites, cranial and facial mesenchyme, and ax-
onal processes. However, Dan2/2 mice do not
display obvious abnormalities, suggesting com-
pensation for loss-of-function in Dan activities
(Dionne et al. 2001).

Cerberus (CER1)

Cerberus/Cer1 was originally isolated in Xeno-
pus by screening for dorsally enriched genes
(Bouwmeester et al. 1996). It encodes a small
secreted protein localized in the anterior orga-
nizer of Xenopus gastrulae. Cerberus binds
Xnr1, Wnt8, and BMP-4 through distinct do-
mains and blocks signal transduction of all
three pathways. By simultaneously inhibiting
these signals, Cerberus promotes the head
structure formation in Xenopus (Glinka et al.
1997; Hsu et al. 1998; Piccolo et al. 1999).
Loss-of-function studies indicate that Cerberus
regulates head and heart development in Xen-
opus (Schneider and Mercola 1999; Silva et al.
2003; Foley et al. 2007). In zebrafish, Cerberus,
also known as Charon, inhibits nodal activity
and is required for left–right patterning of the
body axis (Hashimoto et al. 2004). In chick,
Cerberus (i.e., Caronte) binds BMP-4, -7, and
nodal, but not BMP-5, GDF-5, or activin. Cer-
berus is expressed in the left lateral plate meso-
derm to antagonize BMP signals on the left side,
and participates in left–right axis determina-
tion (Rodriguez Esteban et al. 1999; Yokouchi
et al. 1999; Zhu et al. 1999a; Tavares et al. 2007).
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Chick Cerberus is also expressed in the hypo-
blast cell layer in early embryos and regulates
formation of the primitive streak by antagon-
izing nodal signaling (Bertocchini and Stern
2002; Chapman et al. 2002).

In mouse, Cerberus (also known as Cerber-
us-like/Cer-l, Cerberus-related gene/Cerr1) is
expressed during early gastrulation in anterior
visceral endoderm, a region equivalent to the
Xenopus Cerberus expression domain in the
deep anterior endoderm of the organizer
(Belo et al. 1997; Biben et al. 1998; Shawlot
et al. 1998; Pearce et al. 1999). Like its Xenopus
homolog, mouse Cerberus binds and inhibits
BMP-4 and Xnr1, but unlike the Xenopus
gene, mouse Cerberus does not block Wnt sig-
naling and does not induce a secondary head in
Xenopus (Belo et al. 1997, 2000; Pearce et al.
1999). Mice with targeted disruption of Cerber-
us/Cer1 do not show morphological or molec-
ular defects in the head or other structures,
suggesting compensation for loss of Cerberus
(Simpson et al. 1999; Belo et al. 2000; Shawlot
et al. 2000; Stanley et al. 2000). Indeed, com-
pound mutants lacking functional expression
of Cerl and Lefty1 develop ectopic primitive
streaks and patterning defects of the streaks,
which are rescued by eliminating one copy of
the Nodal gene. The results thus suggest that
Cerberus plays a role in spatially restricting
primitive streak formation by antagonizing
nodal signaling in mouse (Perea-Gomez et al.
2002). Human Cerberus also binds and inhibits
nodal to suppress aggressive phenotypes of
breast cancer cells (Aykul et al. 2015).

Coco/Dante/Cerl-2

Coco is a Xenopus homolog of Cerberus, and,
like Cerberus, binds Xnr1 and BMP-4, blocks
signaling by Xnr, BMP, and Wnt, and induces
neural markers directly in ectodermal explants.
However, Coco is not expressed in the orga-
nizer, but shows maternal expression in an an-
imal-to-vegetal gradient with the highest level
in ectodermal cells, and may regulate cell fate
specification and competence before onset of
gastrulation (Bell et al. 2003). A second gene
encoding Cerberus-like 2 (Cerl-2, previously

known as Dante) was shown to modulate mouse
left–right laterality. Cerl-2 is first expressed in a
symmetric pattern around the mouse node, but
its expression level on the left side gradually di-
minishes, whereas the right side expression re-
mains strong (Pearce et al. 1999; Marques et al.
2004). This positions Cerl-2 as a unique pattern-
ing molecule in left–right axis formation. Cerl2
knockout mice show laterality defects as well as
left ventricular cardiac hyperplasia (Araujo et al.
2014). Like other members of the Cerberus fam-
ily, Cerl-2 binds and inhibits Xnr1 and BMP-4,
and balanced regulation of the activities of these
TGF-b ligands may explain its function in left–
right axis specification (Marques et al. 2004).

Drm/Gremlin (GREM1)

Drm (down-regulated in mos-transformed
cells) was first identified in the rat as the product
of a gene down-regulated in oncogene-trans-
formed fibroblasts. Like Dan, Drm is a secreted
glycoprotein with growth-inhibitory activities
in cultured cells (Topol et al. 1997, 2000). The
Xenopus Drm homolog, Gremlin (Grem1),
was identified in a screen for genes with dorsal-
izing ability (Hsu et al. 1998). Gremlin binds
and inhibits BMP-2, -4, and -7, but does not
block nodal, Vg1, or activin (Hsu et al. 1998;
Church et al. 2015). Although Gremlin prevents
BMPs from interacting with their receptors, an
intracellular inhibitory mechanism may also
operate, whereby Gremlin binds the BMP-4 pre-
cursor and blocks processing and secretion of
mature BMP-4 (Fig. 1) (Sun et al. 2006). Grem-
lin is expressed in posterior limb mesenchyme
in vertebrate embryos, and is the principal BMP
antagonist in the developing limb bud. It acts
to maintain a Sonic hedgehog (Shh)/fibroblast
growth factor (FGF) feedback regulatory loop
to control limb outgrowth (Capdevila et al.
1999; Merino et al. 1999b; Zuniga et al. 1999;
Khokha et al. 2003; Verheyden and Sun 2008).
Gremlin also regulates myogenesis in the head,
lung morphogenesis, kidney development, an-
giogenesis, and bone formation during verte-
brate embryogenesis (Lu et al. 2001; Tzahor
et al. 2003; Michos et al. 2004, 2007; Gazzerro
et al. 2007; Stabile et al. 2007; Stafford et al.
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2011; Canalis et al. 2012). The Gremlin–BMP
axis is involved in pathogenesis of several dis-
eases, including diabetic nephropathy, pulmo-
nary hypertension, and cancer progression
(Zhang and Zhang 2009; Cahill et al. 2012; Ka-
ragiannis et al. 2015). Besides BMPs, Gremlin
interacts with and activates VEGF receptor 2
to stimulate angiogenesis (Mitola et al. 2010),
and binds and inhibits macrophage migration
inhibitory factor (MIF) to attenuate atheroscle-
rosis (Muller et al. 2013).

PRDC (GREM2)

PRDC (protein related to DAN and Cerberus)
was first identified by gene trapping in embry-
onic stem cells (Minabe-Saegusa et al. 1998).
It encodes a small secreted glycoprotein that
forms noncovalent, hydrogen-bonded homo-
dimers that assume a TGF-b-like two-finger-
wrist conformation (Kattamuri et al. 2012;
Nolan et al. 2013). PRDC binds and inhibits
BMP-2 and BMP-4 efficiently. PRDC and
Gremlin also weakly inhibit BMP-6 and BMP-
7 signaling, but do not affect the activities of
activin, TGF-b, GDF-5, or GDF-9 (Sudo et al.
2004). Heparin binding by PRDC interferes
with its ability to block BMP signaling (Nolan
et al. 2013). PRDC is widely distributed, with
high-level expression in ovary, brain, and
spleen. PRDC regulates BMP signaling to con-
trol placode neurogenesis during cranial nerve
formation in chick and to modulate follicle de-
velopment in ovary (Sudo et al. 2004; Kriebitz
et al. 2009). PRDC also influences osteoblast
differentiation during osteogenesis (Ideno
et al. 2009). Mice deficient for the Prdc gene
have smaller incisors, implying a role of the
gene in tooth morphogenesis (Vogel et al. 2015).

Sclerostin (SOST)

Sclerostin/SOSTwas first identified as the prod-
uct of a gene whose mutations are responsible
for sclerostosis, a recessive autosomal sclerosing
bone dysplasia characterized by progressive
skeletal overgrowth (Balemans et al. 2001;
Brunkow et al. 2001). Sclerostin is a small se-
creted factor with a cystine-knot structure sim-

ilar to that in Dan, Cerberus, and Gremlin, and
was therefore proposed to be a BMP antagonist.
Sclerostin binds BMP-5, -6, and -7, but not
TGF-bs, and prevents binding of BMPs to their
cognate receptors. It is expressed in osteocytes
and inhibits BMP-5- or -6-stimulated bone dif-
ferentiation, but has less effect on BMP-2 and -4
(Kusu et al. 2003; Winkler et al. 2003; van
Bezooijen et al. 2004). In contrast to the loss-
of-function phenotype leading to skeletal over-
growth, transgenic mice overexpressing sclero-
stin show reduced bone mass and bone strength
(Winkler et al. 2003). Subsequently, sclerostin
was shown to inhibit BMP-7 activity only in a
cell-autonomous fashion, when coexpressed,
because of direct binding of sclerostin to both
the pro- and mature peptides of BMP-7 in li-
gand-expressing cells, thus promoting intracel-
lular retention and proteasomal degradation of
BMP-7 (Fig. 1) (Krause et al. 2010). The cata-
bolic effect of sclerostin on bone growth is now
mainly attributed to its ability to inhibit Wnt
signaling by direct binding to the Wnt corecep-
tor LRP5/LRP6 (Li et al. 2005; Semenov et al.
2005; van Benzooijen et al. 2007; Kamiya et al.
2008).

Ectodin/Wise/USAG-1 (SOSTDC1)

SOSTDC1 was isolated as USAG-1 (uterine sen-
sitization-associated gene 1) from sensitized
endometrium of rat uterus, as ectodin from
mouse, and Wise (Wnt modulator in surface
ectoderm) from Xenopus (Simmons and Ken-
nedy 2002; Itasaki et al. 2003; Laurikkala et al.
2003). It is a small secreted factor that is closely
related to sclerostin, and binds and inhibits
BMP-2, -4, -6, and -7 (Laurikkala et al. 2003;
Yanagita et al. 2004). Functional studies with
SOSTDC1-deficient mice reveal its role in reg-
ulation of BMP-7 signaling during renal injury
as well as in teeth patterning during develop-
ment (Kassai et al. 2005; Yanagita et al. 2006;
Murashima-Suginami et al. 2008; Kiso et al.
2014). SOSTDC1/Wise also selectively inhibits
BMP-7, but not BMP-2 or Wnt-3a, in breast
cancer cells (Clausen et al. 2011), and suppress-
es both BMP-7 and Wnt-3a in renal cancer cells
(Blish et al. 2008). Similarly to sclerostin,
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SOSTDC1 binds LRP6 to modulate Wnt signal-
ing, and regulates early Xenopus patterning and
development of bone, teeth, mammary, and
skin appendage placodes in mice (Itasaki et al.
2003; Lintern et al. 2009; Ahn et al. 2010, 2013;
Ellies et al. 2014).

The CCN Family Proteins

The CCN family of growth factors includes six
members, including CYR61 (CCN1), connec-
tive tissue growth factor (CTGF, CCN2), neph-
roblastoma overexpressed (NOV, CCN3), and
WISP1, 2, and 3 (CCN4, 5, 6). These pro-
teins show similar sequence configurations
with four conserved domains, an amino-termi-
nal domain similar to that in IGFBP, a CR mod-
ule found in chordin and vWF, a thrombospon-
din type I repeat (TSP-1)-like sequence, and a
carboxy-terminal motif with the cystine-knot
structure (reviewed in Brigstock 2003; Perbal
2004; Katsube et al. 2009). Several CCN mem-
bers regulate TGF-b signals. CTGF binds BMP-
2 (KD 0.77 nM), -4, -7 (KD 14 nM) and TGF-b1
through its CR domain. By doing so, CTGF
inhibits BMP-4 binding to its type I receptor
but enhances TGF-b1 binding to its receptor
complex. CTGF thus blocks BMP and promotes
TGF-b signaling in cultured cells (Abreu et al.
2002; Nguyen et al. 2008; Maeda et al. 2009).
Disruption of its gene in mouse reveals that
CTGF is required for coordination of chondro-
genesis and angiogenesis during skeletal devel-
opment (Ivkovic et al. 2003), and this may de-
pend on the activity of CTGF to modulate BMP
signaling during chondrocyte differentiation
(Maeda et al. 2009; Mundy et al. 2014). CTGF
also inhibits BMP-7 in the diabetic kidney and
contributes to diabetic nephropathy (Nguyen
et al. 2008). CCN3 blocks BMP-2 function dur-
ing osteoblast differentiation and modulates
bone regeneration as an inhibitor of BMP-in-
duced Smad signaling (Minamizato et al. 2007;
Rydziel et al. 2007; Matsushita et al. 2013).
Targeted disruption of the Ccn3 gene results
in abnormal skeletal and cardiac development
(Heath et al. 2008). In contrast, CCN4 binds
BMP-2 and enhances its signaling during oste-
ogenic differentiation (Ono et al. 2011). Besides

TGF-b family ligands, CCN proteins also inter-
act with many other signaling proteins, includ-
ing integrins, LRP, Wnt, VEGF-A, and Notch, to
control multiple developmental and physiolog-
ical processes (Babic et al. 1999; Segarini et al.
2001; Mercurio et al. 2004; Perbal 2013).

Insulin-Like Growth Factor–Binding
Protein 3 (IGFBP3)

IGFBP3 was originally identified as the main
carrier of IGF1 in serum, and acts as reservoir
and modulator of IGF1 (Baxter 2014). However,
IGFBP3 directly binds and antagonizes BMP-2
and -4 in zebrafish, and induces chordin expres-
sion to further inhibit BMP signaling (Zhong
et al. 2011). IGFBP3 thus exerts an IGF1-inde-
pendent function in modulating early zebrafish
development. In mammals, IGFBP3 also en-
hances TGF-b1 activity and opposes BMP-7
signaling in glomerular podocytes to control
cell survival or apoptosis, although direct asso-
ciation of IGFBP3 with these TGF-b family li-
gands has not been reported in this context (Pe-
ters et al. 2006).

Norrie (NDP)

Norrie is a secreted cysteine-rich protein encod-
ed by the NDP gene whose mutations are asso-
ciated with Norrie disease and familial exuda-
tive vitreoretinopathy (FEVR), two X-linked
recessive disorders that affect neuroretina de-
generation or result in incomplete development
of retinal vasculature (Berger et al. 1992; Chen
et al. 1993). Norrie stimulates the canonical
Wnt-b-catenin pathway to control retinal vas-
culature development (Xu et al. 2004). Howev-
er, Norrie also binds directly to nodal-related
growth factors and BMP-4, and inhibits their
signaling to promote anterior neural patterning
in Xenopus. Norrie blocks BMP-2 and BMP-4
signaling in reporter assays in mammalian cells.
Some Norrie mutants responsible for FEVR and
Norrie disease show normal Wnt-enhancing
ability, but impaired BMP-inhibitory function,
suggesting that control of BMP signaling con-
tributes to the activity of Norrie in eye develop-
ment (Xu et al. 2012b; Deng et al. 2013).
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Propeptides of TGF-b Family Ligands

Proteolytic cleavage to release TGF-b family
proteins from their precursors is mediated by
subtilisin/kexin-like proprotein convertases
(PCs) (reviewed by Nakayama 1997; Taylor
et al. 2003; Constam 2014). Although most of
these enzymes are located in the trans-Golgi
network and act in this compartment to process
ligands, secreted convertases may additionally
function in a non-cell-autonomous fashion to
cleave soluble precursors in vivo (Beck et al.
2002; Birsoy et al. 2005). With the exception
of the nodal-related Xnr2, which has dimin-
ished signaling capacity as precursor (Beck
et al. 2002; Eimon and Harland 2002), other
TGF-b family proteins are not active when the
cleavage sites are mutated, and many such mu-
tants act as dominant-negative ligands (Hawley
et al. 1995; Joseph and Melton 1998; Sun et al.
1999; Eimon and Harland 2002). Regulation of
ligand processing, by intracellular PCs or secret-
ed factors, thus constitutes one of the first steps
in the regulation of TGF-b family signaling
(Constam 2014). Subsequent to ligand process-
ing, cleaved propeptide products regulate the
folding, sorting, stability, and/or activity of the
mature TGF-b family proteins.

The classical example is TGF-b, which is
in a latent state by noncovalent association
with its precursor polypeptide latency-associat-
ed peptide (LAP) (reviewed in Harrison et al.
2011). Similarly, myostatin (GDF-8), its close
relative GDF-11 (BMP-11), and BMP-10 all
form latent, noncovalent complexes with their
respective propeptides. Activation of these li-
gands is achieved by cleavage of the propeptides
by BMP-1/Tolloid metalloproteinases, and/or
by integrin-mediated interaction with the latent
complex, leading to its conformational changes
and release of the mature ligands (Hill et al.
2002; Wolfman et al. 2003; Ge et al. 2005; Sengle
et al. 2011). The prodomain of the BMP-like
ligand dorsalin also associates with the mature
protein, although the functional consequence
of this interaction is unclear (Constam and
Robertson 1999). Besides regulating the bioac-
tivity of mature ligands, propeptides also con-
trol the deposition of the ligands in the ECM,

and stability and secretion of TGF-b family pro-
teins. The prodomain of BMP-4, for example,
associates with mature BMP-4 and directs it to
lysosome- and proteasome-mediated degrada-
tion. A second cleavage inside the prodomain is
required to release mature BMP-4, thereby sta-
bilizing it, enhancing its activation, and allow-
ing long-range signaling by this growth factor
(Cui et al. 2001; Degnin et al. 2004). The pro-
domain of BMP-7 may similarly regulate the
secretion and stability of mature BMP-7, be-
cause a single amino acid mutation in the pro-
region leads to reduced BMP-7 activity in zebra-
fish without affecting its processing (Dick et al.
2000). The prodomain of nodal facilitates deg-
radation of mature nodal after cleavage (Con-
stam and Robertson 1999), which may promote
autocrine signaling and restrict its signaling
range. Because uncleaved nodal precursor is de-
tected in cell culture medium, long-range nodal
signaling may be regulated by nodal transport in
its precursor form to desired sites before pro-
cessing into mature growth factor for signaling
(Le Good et al. 2005). The proregions of Xnr3
and Xnr5, two nodal-related ligands in Xenopus,
also bind and inhibit mature BMP-4, providing
a mechanism for propeptides to regulate TGF-b
family signaling in trans (Haramoto et al. 2004).

TGF-b Family Ligands as Agonists/
Antagonists of TGF-b Family Signaling

TGF-b family signaling is not only regulated
by soluble agonists and antagonists, but often
modulated by heterodimerization or interac-
tion with other TGF-b family polypeptides.
An example is the inhibition of activin homo-
dimer signaling by heterodimeric inhibin (re-
viewed by Bilezikjian et al. 2012). Other ligands
that also modulate TGF-b family signaling in-
clude lefty, Xnr3, GDF-3, and BMP-3.

Lefty

Lefty (also known as antivin) is a divergent
TGF-b family member that is asymmetrically
expressed along the left–right axis (Meno
et al. 1996). It lacks the cysteine involved in
disulfide bond formation between dimer sub-
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units, and thus exists as a monomer. Two lefty
genes are found in vertebrates and play impor-
tant roles in negative feedback regulation of left-
sided nodal signaling during left–right axis de-
termination (Meno et al. 1997, 1998, 1999;
Cheng et al. 2000; Ishimaru et al. 2000). In ad-
dition, lefty expression during gastrulation lim-
its nodal signaling in mesendoderm formation
(Bisgrove et al. 1999; Thisse and Thisse 1999;
Tanegashima et al. 2000; Agathon et al. 2001;
Branford and Yost 2002; Chen and Schier
2002; Feldman et al. 2002; Cha et al. 2006).
Besides nodal, lefty also antagonizes Vg1,
GDF-1, and GDF-3, but has no effect on activin
or TGF-b1 signaling. Lefty binds to the Cripto/
Cryptic coreceptor for nodal and Vg1, GDF-1
and GDF-3, and blocks the formation of a func-
tional ligand–receptor complex (Chen and
Shen 2004; Cheng et al. 2004; Tanegashima
et al. 2004). Lefty also binds directly to mature
nodal and GDF-3 and prevents them from acti-
vating activin receptors (Chen and Shen 2004;
Chen et al. 2006). In addition, lefty has been
implicated in interference with BMP and Wnt
signaling; however, the mechanisms involved
in the regulation of these signals have not been
defined (Meno et al. 1997; Branford et al. 2000;
Ulloa and Tabibzadeh 2001; Branford and Yost
2002). In zebrafish and Xenopus embryos, it
is proposed that nodal-lefty forms a reaction–
diffusion system to pattern embryonic tissues,
as lefty is induced by nodal and diffuses faster
than nodal (Marjoram and Wright 2011; Muller
et al. 2012). However, this view is challenged
by the observation that nodal may only signal
over a short range, and the gradient of nodal
signaling readout may rely on differential tem-
poral regulation of nodal and lefty expression
(van Boxtel et al. 2015).

Xnr3

Xnr3 is a divergent nodal-related factor in Xen-
opus that lacks the carboxy-terminal cysteine
(Cys-7) that is conserved among all other
TGF-b family members, and functions as a
monomer (Smith et al. 1995; Haramoto et al.
2007). Unlike other nodal-related proteins,
Xnr3 does not specify mesendodermal cell

fate; instead, it induces neural marker expres-
sion and blocks mesodermal induction by
BMP-4 and activin, but not by Xnr2, in Xenopus
(Hansen et al. 1997; Haramoto et al. 2004).
Studies of Xnr2 and Xnr3 chimeras suggest
that amino- and carboxy-terminal segments of
mature Xnr3 are required for neural inducing
activity, whereas the central region can be re-
placed with that of mature Xnr2 to induce dor-
sal mesoderm (Ezal et al. 2000). The prodomain
of Xnr3 alone binds and inhibits BMP-4 and is
both necessary and sufficient for Xnr3 to block
BMP-4 activities (Haramoto et al. 2004, 2006).
A role of Xnr3 in blocking ligand–receptor as-
sembly has also been proposed (Ezal et al. 2000).
Loss-of-function studies reveal that Xnr3 regu-
lates convergent extension movements during
gastrulation in Xenopus, and may do so by in-
teracting with the divergent Cripto family pro-
tein FRL1, which binds and activates the FGF
receptor 1. The prodomain of Xnr3 may be im-
portant for activation of FGF signaling in this
process (Glinka et al. 1996; Yokota et al. 2003).

GDF-3

GDF-3 is closely related to Vg1, but lacks the
conserved cysteine used in dimer formation of
TGF-b family ligands (McPherron and Lee
1993). GDF-3 signals through the nodal path-
way, using ALK-4 and ALK-7 receptors and
Cripto coreceptor, during early mouse devel-
opment (Chen et al. 2006; Andersson et al.
2007, 2008). In addition, GDF-3, both as pre-
cursor and as mature peptide, inhibits BMP sig-
naling through direct interaction with mature
BMPs (Levine and Brivanlou 2006; Levine et al.
2009). GDF-3 expression is high in pluripotent
cell types, including human embryonic stem
cells, and may regulate their maintenance and
differentiation (Levine and Brivanlou 2006;
Peerani et al. 2007).

BMP-3

BMP-3 and Xenopus BMP-3b are closely related
BMP-like ligands. Unlike BMPs, however, BMP-
3 and BMP-3b dorsalize Xenopus embryos, im-
plying that they can act as BMP antagonists
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(Hino et al. 2003; Gamer et al. 2005). BMP-3 and
BMP-3b block BMP-2 and ADMP signaling in
Xenopus ectodermal explants. BMP-3 also inhib-
its activin but not Xnr1 or a nodal-like ligand
Derriere, whereas BMP-3b blocks both Xnr1
and Derriere. In addition, BMP-3 inhibits
BMP-2-induced differentiation of osteoproge-
nitor cells and opposes TGF-b1 actions in bone
marrow stromal cells (Faucheux et al. 1997;
Daluiski et al. 2001). BMP-3 and BMP-3b form
heterodimers with BMP-2, ADMP, and Derriere,
suggesting that BMP-3 or BMP-3b may exert
its effects through formation of inactive ligand
dimers (Hino et al. 2003). BMP-3b also binds
Xnr1 noncovalently and may prevent Xnr1
from associating with its receptors (Hino et al.
2003). BMP-3 further interacts with the type II
receptor ActRIIB without inducing Smad acti-
vation, and this provides another means for
the ligand to inhibit activin and BMP signaling
(Gamer et al. 2005; Kokabu et al. 2012). In myo-
blastic C2C12 cells, however, BMP-3b can stim-
ulate Smad2/3 signaling and activin-responsive
reporter expression. It also inhibits BMP-2-in-
duced osteoblastic differentiation in this system,
apparently through competing for the common
Smad4 by activated Smad2/3 (Matsumoto et al.
2012).

Heterodimers

Formation of heterodimers among TGF-b fam-
ily proteins can regulate the activities of the li-
gands (Guo and Wu 2012). As mentioned,
BMP-3 and BMP-3b can form heterodimers
with BMP-2, ADMP, and Derriere, and inhibit
the activities of these factors (Hino et al. 2003).
Nodal also forms heterodimers with BMPs to
antagonize BMP signaling (Yeo and Whitman
2001). Nodal heterodimers with GDF-1, in con-
trast, have higher activity than nodal homo-
dimers (Fuerer et al. 2014). Similarly, hetero-
dimers of BMP-2 and -7 or BMP-4 and -7 are
more active in mesoderm induction or pattern-
ing in Xenopus and zebrafish and in inducing
bone formation in osteoprogenitor cells than
their homodimers (Aono et al. 1995; Israel
et al. 1996; Suzuki et al. 1997; Nishimatsu and
Thomsen 1998; Little and Mullins 2009). Het-

erodimers, but not homodimers, of BMP-2 and
BMP-7 engage simultaneously two different
type I BMP receptors (i.e., ALK-3 or ALK-6
and ALK-2 or ALK-8) in the receptor complex
to activate BMP signaling in zebrafish (Little
and Mullins 2009). BMP-7 and GDF-7 also
form heterodimers in vitro that have a higher
axon-orienting activity than BMP-7 or GDF-7
homodimers (Butler and Dodd 2003). Hetero-
dimers of GDF-9 and BMP-15 are more potent
regulators of ovarian granulosa and cumulus
cells than their corresponding homodimers
(Peng et al. 2013; Mottershead et al. 2015).
BMP-2 and BMP-6 heterodimers are also
more effective than the corresponding homo-
dimers to induce differentiation of human em-
bryonic stem cells (Valera et al. 2010). The for-
mation of heterodimers between Drosophila
Dpp and Scw also facilitates transport of the
ligands in early Drosophila embryos and pro-
motes threshold readout of the BMP morpho-
gen gradient (Shimmi et al. 2005a).

PROTEOGLYCANS AND EXTRACELLULAR
MATRIX PROTEINS

Secreted TGF-b family ligands encounter not
only soluble regulatory factors, as discussed,
but also various ECM proteins. The complex
interplay between TGF-b family proteins, their
soluble regulators and ECM proteins controls
the diffusion of the ligands among target cells,
and ligand availability for receptor binding and
activation. The ECM-associated proteins are
often not dedicated TGF-b modulators. The
HSPG glypicans, for example, regulate signals
from FGF, Wingless/Wnt, and hedgehog family
proteins in addition to TGF-b/BMPs (Lin and
Perrimon 2000). Many ECM molecules can also
act as both agonists and antagonists. A balance
in actions between sequestration, storage, and
presentation of ligands may account for the dual
functions of ECM proteins (Fig. 3).

Small Leucine-Rich Proteoglycans (SLRPs)

The SLRP family consists of 17 members with
similar domain organization (reviewed in
Hocking et al. 1998; Iozzo 1999; Young et al.
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2003; Schaefer and Iozzo 2008). The core
proteins contain six to twelve 24-amino-acid
leucine-rich repeats and a characteristic ami-
no-terminal cysteine-rich region. Chondroi-
tin/dermatan sulfate and keratin sulfate glycos-
aminoglycan (GAG) chains are attached to the
core proteins. Several SLRP proteins are shown
to regulate TGF-b signaling.

Decorin (DCN)

Decorin is a small ECM proteoglycan that is
expressed in connective tissues. It binds to ma-
ture, but not latent, TGF-b1, -b2, and -b3
through its polypeptide core, with GAG modi-
fications reducing this binding. Decorin reduc-
es the interaction of TGF-b1 with its type I and

Glypicans

Ligand trap

and coreceptor
Noggin
Chordin

CV-2

Syndecans

Ligand trap
and coreceptor

Notum

Ligand
release

Antagonist binding to matrix

Ligand storage
and retention

Small la
tent complex

LTBP

Decorin
Biglycan
Tsukushi

Chordin

BMP

Biglycan/Tsukushi

Figure 3. Regulation of transforming growth factor b (TGF-b) family signals by proteoglycans and extracellular
matrix proteins. Small leucine-rich proteoglycans, such as decorin, biglycan, and Tsukushi, interact with both
TGF-b family ligands and extracellular matrix (ECM) proteins. Depending on the composition of ECM
proteins, they may tether the ligands in the ECM to prevent signaling, or release the ligands to create a local
pool of cytokines to enhance signaling. Biglycan and Tsukushi also form a ternary complex with chordin and
bone morphogenetic protein (BMP) to block BMP signaling. Cell-surface heparan sulfate proteoglycans
(HSPGs), including glypicans and syndecans, interact with both TGF-b family proteins and their secreted
modulators. They can serve as ligand coreceptors to enhance TGF-b family signaling, but they can also trap
and facilitate internalization of the ligands and their soluble regulators to modulate signal duration and range.
They, therefore, have cell-context-dependent positive or negative roles in regulation of TGF-b signals. The
Drosophila protein Notum facilitates release of glypicans from the cell surface and can convert glypicans from
ligand-presenting factors to ligand-binding antagonists. Several ECM proteins bind TGF-b family ligands
directly and influence storage, activation, and diffusion of these proteins to control signaling strength and
range. Secreted TGF-b family regulators can also associate with ECM proteins to affect ligand availability. LTBPs
(latent TGF-b-binding proteins) interact with ECM proteins to control TGF-b activation from the small latent
complex (SLC).
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type III receptors, and may sequester the ligand
in the ECM (Hildebrand et al. 1994). Cells de-
ficient in the Dcn gene show enhanced TGF-b
binding to its receptors (Droguett et al. 2006).
Expression of decorin in CHO cells blocks
TGF-b-induced cell proliferation (Yamaguchi
et al. 1990), and administration of decorin in
a mouse kidney disease model can attenuate the
disease manifestation, similarly to TGF-b neu-
tralization with antibody (Border et al. 1992).
Although these data suggest that decorin inhib-
its TGF-b function, other studies imply that
decorin enhances the bioactivity of TGF-b. Ad-
dition of decorin promotes TGF-b1 binding
to the TGF-b receptors and betaglycan, and
strengthens the inhibitory effect of TGF-b1 on
osteoblast cell proliferation, whereas depletion
of decorin reduces myoblast responsiveness to
TGF-b-mediated inhibition of skeletal muscle
differentiation (Takeuchi et al. 1994; Riquelme
et al. 2001). Several explanations may account
for the dual functions of decorin in regulating
TGF-b activities. Decorin binds TGF-b1 at two
interfaces with high and low affinity, respective-
ly (Hildebrand et al. 1994; Takeuchi et al. 1994).
Association of TGF-b1 with different sites may
affect the conformation and/or stability of de-
corin-TGF-b1 complex, thus affecting reten-
tion of TGF-b1 inside the ECM or ligand pre-
sentation to its receptors. In addition, decorin
interacts with many ECM components, such as
collagens and fibronectin. Differential associa-
tion of decorin with distinct ECM proteins may
control the function of decorin (Kresse and
Schonherr 2001). ECM-immobilized decorin
sequesters TGF-b and prevents it from signal-
ing, whereas soluble decorin does not control
TGF-b activity (Markmann et al. 2000). In ad-
dition, dermatopontin, a small ECM compo-
nent, can interact with both decorin and TGF-
b1. Whereas free dermatopontin competes with
decorin for TGF-b1 and decreases the forma-
tion of the decorin–TGF-b1 complex, a derma-
topontin–decorin complex has enhanced bind-
ing to TGF-b1. Thus, dermatopontin may
differentially influence the activity of decorin
depending on whether it forms a ternary com-
plex with decorin and TGF-b1, or interacts with
the two proteins separately (Okamoto et al.

1999). Besides TGF-bs, decorin binds myosta-
tin and reverses its inhibition of myoblast pro-
liferation in vitro (Miura et al. 2006). It also
associates with activin C and may modulate its
activity in stimulating cell growth and migra-
tion of colorectal cancer cells (Bi et al. 2015).

Biglycan (BGN)

Biglycan is closely related to decorin in structure
and has similar and distinct functions in bind-
ing and regulating TGF-b ligands (Hildebrand
et al. 1994; Droguett et al. 2006; Wu et al. 2014).
One distinct activity of biglycan is its role in
modulating BMP signals. Targeted disruption
of the Bgn gene leads to age-related osteoporosis
(Xu et al. 1998), and reduced osteoblast respon-
siveness to BMP-4-induced differentiation may
at least partially account for this defect (Chen
et al. 2004b). Although the GAG chains enhance
biglycan’s ability to promote BMP-4 signaling
in osteoblasts, they reduce BMP-2 signaling in
myogenic C2C12 cells (Miguez et al. 2011; Ye
et al. 2012). The conflicting results may be be-
cause of cell-type-specific ECM proteins that
can modify the activity of biglycan. Although
these findings indicate a role of biglycan in pro-
moting BMP signaling in skeletal development,
biglycan can inhibit BMPs in early Xenopus de-
velopment. Biglycan binds BMP-4 directly and
blocks its function upstream of the BMP recep-
tors. It can also form a ternary complex with
BMPand chordin, and enhance the BMP-inhib-
itory activity of chordin (Moreno et al. 2005).
Similarly to decorin, the dual activities of bigly-
can may depend on the microenvironment and
the presence or absence of other factors, such
as chordin, BMP-1/Tolloid metalloproteinases,
or other ECM proteins (Wadhwa et al. 2004).

Tsukushi (TSK)

Tsukushi, a unique SLRP protein, was first dis-
covered in the chick, and vertebrate homologs
were identified in Xenopus, zebrafish, mouse,
and human. Although structurally different
from biglycan (e.g., Tsukushi has 12 leucine-
rich repeats instead of 10 in biglycan), Tsukushi
has similar activities as biglycan in that it binds
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directly to BMP-4 and blocks BMP signaling
in chick and frog. Tsukushi also forms a ternary
complex with BMP-4 and chordin and enhanc-
es the BMP-inhibitory activity of chordin (Ohta
et al. 2004). Differently from biglycan, Tsukushi
associates with Xnr-2 and Vg1, and enhances
nodal-like signaling during germ layer and
primitive streak formation in Xenopus and
chick, respectively (Ohta et al. 2006; Morris
et al. 2007). Besides TGF-b family ligands, Tsu-
kushi can bind and inhibit FGF-8b, interact with
Delta to regulate Notch signaling, and bind Friz-
zled 4 (Fzd4) to antagonize Wnt signaling (Kur-
iyama et al. 2006; Morris et al. 2007; Ohta et al.
2011). Loss-of-function studies indicate that
Tsukushi regulates neural crest formation dur-
ing early Xenopus development and controls an-
terior commissure formation in mouse brain
(Kuriyama et al. 2006; Ito et al. 2010).

Fibromodulin (FMOD) and Lumican (LUM)

Fibromodulin and lumican are both SLRPs with
keratin sulfate GAG chains, in contrast to chon-
droitin/dermatan sulfate found in decorin and
biglycan. Like decorin and biglycan, fibromo-
dulin binds TGF-b1 and may inhibit its signal-
ing through ligand sequestration in the ECM
(Hildebrand et al. 1994; Embree et al. 2010).
Physical interaction between lumican and
TGF-b ligands has not been reported, but lumi-
can may repress TGF-b2 signaling in osteosar-
coma cells (Nikitovic et al. 2011). Lumican also
binds to the type I TGF-b receptor TbRI/ALK-
5 to regulate epithelial wound healing (Yama-
naka et al. 2013).

Heparan Sulfate Proteoglycans

HSPGs are proteins with heparan sulfate glycos-
aminoglycan chains attached. They regulate di-
verse cellular processes ranging from adhesion
and migration to proliferation, differentiation,
and morphogenesis (Bernfield et al. 1999). Two
families of surface HSPGs exist, glypicans,
which are linked to the plasma membrane via
glycosylphosphatidylinositol (GPI) anchor, and
syndecans, which are transmembrane HSPGs.
Four syndecans and six glypicans exist in mam-

mals, whereas a single syndecan and two glypi-
cans are found in Drosophila. Several HSPG
family proteins modulate TGF-b signaling.

Glypicans

The two Drosophila glypican homologs, Dally
and Dally-like, do not regulate signaling from
Dpp/BMP during early embryogenesis. How-
ever, they are critically required at the pupal
stages when imaginal discs, such as eye, anten-
na, genitalia, and wing discs, develop (Jackson
et al. 1997; Tsuda et al. 1999; Fujise et al. 2003;
Belenkaya et al. 2004). Mosaic mutant clone
studies indicate that Dally and Dally-like con-
trol cell-autonomous responses to Dpp as well
as cell-non-autonomous movement of Dpp to
form a Dpp morphogen gradient in the wing
disc. In addition, Dally can act as both positive
and negative regulator of Dpp. Low doses of
Dally are required for Dpp signaling, whereas
high doses of Dally reduce Dpp responses. Dally
may thus serve as a coreceptor for Dpp to en-
hance its signaling but, at the same time, limits
Dpp diffusion to restrict its distribution (Fujise
et al. 2003; Belenkaya et al. 2004). Another se-
creted molecule, Pentagon, interacts with Dally
to facilitate long-range transport of Dpp in the
wing disc (Vuilleumier et al. 2010). Dally-like
can be modified by the secreted enzyme Notum,
which facilitates its cleavage at the GPI anchor.
Notum thus converts this glypican from a mem-
brane-tethered coreceptor to a soluble, ligand-
binding antagonist (Kreuger et al. 2004). Inter-
estingly, in addition to acting as a coreceptor for
Dpp, Dally can also promote Dpp signaling in
trans, in neighboring cells in the Drosophila ova-
ry, to maintain germline stem cells. Stabilization
of Dpp at the cell surface may contribute to this
cell-contact-dependent, trans-Dpp stimulatory
function of Dally (Akiyama et al. 2008; Guo and
Wang 2009; Hayashi et al. 2009; Dejima et al.
2011). A role of heparan sulfate in glypican-de-
pendent modulation of Dpp is implied by the
observation that mutations in heparan sulfate
biosynthesis enzymes in Drosophila attenuate
Dpp signals in the wing imaginal disc (Borne-
mann et al. 2004; Han et al. 2004; Takei et al.
2004). In C. elegans, the glypican LON-2 binds
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BMP-2 to inhibit its signaling in body length
control (Gumienny et al. 2007; Taneja-Bagesh-
war and Gumienny 2012). In mammals, glypi-
can-3 enhances BMP-4 signaling during limb
patterning and skeletal development (Paine-Sa-
unders et al. 2000), and participates in BMP-
regulated renal branching morphogenesis (Gri-
saru et al. 2001). However, increased glypican-3
expression in hepatocellular carcinoma inhibits
BMP-7 signaling (Midorikawa et al. 2003). Gly-
pican-1 is required for optimal TGF-b1 signal-
ing in pancreatic cancer cells (Li et al. 2004), but
inhibits BMP-4 signaling in lymphoblastoid
cells (O’Connell et al. 2007). Both glypican-1
and -3 also bind BMP-2 and block BMP-2
signaling in cranial osteogenesis (Dwivedi
et al. 2013). In zebrafish, glypican-4 attenuates
BMP signaling to regulate cardiac development
(Strate et al. 2015). As glypicans also regulate
Wnt, hedgehog, and FGF signaling (Bernfield
et al. 1999; Lin and Perrimon 2000; Fico et al.
2011), the six vertebrate glypicans may differ-
entially modulate overlapping and distinct sig-
naling pathways during vertebrate embryogen-
esis and homeostasis.

Syndecans

The role of syndecan in signal transduction of
TGF-b family ligands is less understood.
Among four vertebrate homologs, syndecan-2
binds TGF-b1 and Vg1, and less efficiently acti-
vin, through its ectodomain polypeptide back-
bone (Kramer and Yost 2002; Chen et al. 2004a).
A mutant syndecan-2 inhibits signaling by Vg1,
but not activin or nodal, in Xenopus ectodermal
explants. Syndecan-2 may act as a coreceptor
for Vg1 during left–right patterning in Xenopus
(Kramer and Yost 2002). Syndecan-2 also in-
creases TGF-b1-induced fibronectin expression
in renal papillary fibroblasts (Chen et al. 2004a)
and promotes TGF-b2-enhanced fibrosarcoma
cell adhesion (Mytilinaiou et al. 2013). Synde-
can-4 also binds TGF-b1, but does so through
its heparan sulfate chains instead of the core
polypeptide. Syndecan-4-deficient mice show
impaired inhibition of interleukin-1b pro-
duction by TGF-b1 in macrophages (Ishiguro
et al. 2001) and reduced induction of dermal

fibroblast contraction by TGF-b1 (Chen et al.
2005). Enhanced expression of syndecan-4 in
cutaneous T-cell lymphomas traps TGF-b1 at
the cell surface and facilitates its inhibition
of T-cell activation (Chung et al. 2011). Unlike
syndecan-2 and -4, syndecan-3 may block,
rather than promote, BMP-2 signaling during
cartilage differentiation of limb mesenchyme,
although no interaction of syndecan-3 with
BMP-2 or BMP receptors has been shown (Fish-
er et al. 2006). Syndecan-1 has a biphasic effect
on BMP signaling. It enhances BMP signaling
at low doses and inhibits it at high doses. En-
dogenous syndecan-1 regulates BMP signaling
during dorsoventral patterning of embryonic
ectoderm in Xenopus (Olivares et al. 2009).

In addition to binding TGF-b family li-
gands and thus directly regulating their activi-
ties, HSPGs also associate with soluble BMP
regulators such as noggin, chordin, and Cross-
veinless-2 (Paine-Saunders et al. 2002; Jasuja
et al. 2004; Viviano et al. 2004; Rentzsch et al.
2006). These interactions may restrict their dif-
fusion and help define their activities (see
above). HSPGs thus regulate TGF-b family
signaling by controlling the activities of both
the TGF-b family ligands and their soluble
modulators.

Extracellular Matrix Proteins

a2-Macroglobulin

a2-Macroglobulin (a2M) is a large homotetra-
meric plasma glycoprotein that functions as an
extracellular inhibitor of all four classes of pro-
teases, that is, serine, cysteine, aspartate, and
metalloproteases. Cleavage of a2M by bound
proteases results in a conformational change
that traps and inhibits the proteases in nondis-
sociable complexes. Protease-activated a2-mac-
roglobulin (a2M�) then loses protease-inhibi-
tory activity and is recognized by the cell-surface
receptor LRP. The role of a2M in controlling
TGF-b activity was first revealed by the observa-
tion that TGF-b forms an inactive complex with
a2M in serum (O’Connor-McCourt and Wake-
field 1987; Huang et al. 1988). In contrast, latent
TGF-b does not bind a2M (Wakefield et al.
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1988). a2M binds TGF-b2 with higher affinity
(KD �14 nM) than TGF-b1 (KD 320 nM), and,
accordingly, inhibits TGF-b2 more efficiently
(Danielpour and Sporn 1990; Webb et al. 1996).
Protease activation modulates the affinity of
a2M for TGF-bs, as trypsin and thrombin de-
crease and plasmin and methylamine enhance
a2M� binding to TGF-b (LaMarre et al. 1991;
Webb et al. 1996). Methylamine-a2M� promotes
TGF-b1-induced smooth muscle proliferation
using the LRP receptor (Stouffer et al. 1993).
The interfaces that mediate TGF-b interaction
with a2M are mapped to hydrophobic regions
in both proteins, and may mimic the hydropho-
bic interface between TGF-b and TbRII, which
may explain a2M’s ability to block TGF-b bind-
ing to TbRII (Liu et al. 2001; Arandjelovic et al.
2003). Heparin and heparan sulfate reverse the
inhibition of TGF-b by a2M by promoting the
dissociation of TGF-b from a2M, and does so
more efficiently for TGF-b1 than TGF-b2
(McCaffrey et al. 1989; Lyon et al. 1997). a2M
may function with other tissue-specific ECM
components to control TGF-b ligand availability.

Collagens

Collagens have long been shown to bind TGF-b
family ligands, including TGF-bs, BMPs, and
activin (Paralkar et al. 1992), and are used as
collagen sponges to protect and deliver BMPs
during interventions aimed at bone and carti-
lage repair (Geiger et al. 2003). Type IV collagen
directly controls BMP signaling in Drosophila
(Wang et al. 2008; Bunt et al. 2010; Sawala
et al. 2012). The carboxy-terminal region of
collagen IV binds the BMP ligand Dpp, but
not Scw or Gbb, and serves as a scaffold to fa-
cilitate formation of the Dpp shuttling complex
with Sog/chordin and Tsg, thus augmenting
long-range Dpp signaling by promoting Dpp
gradient formation. Collagen IV may use a sim-
ilar mechanism to enhance BMP signaling in
Drosophila renal tubule morphogenesis (Bunt
et al. 2010). However, collagen IV sequesters
Dpp and restricts its signaling range in the Dro-
sophila ovary (Wang et al. 2008), suggesting that
the function of collagen IV in BMP signal reg-
ulation depends on cellular context.

Type II procollagen also modulates BMP sig-
naling. Type IIA procollagen contains an amino-
terminal 69-amino acid CR sequence, which is
spliced out in the type IIB isoform that is ex-
pressed in mature chondrocytes. The CR
domain is homologous to that in chordin and
mediates type IIA procollagen binding to BMP-
2 and -4 and TGF-b1. This domain does not
bind activin or epidermal growth factor (EGF),
and the type IIB form that lacks this domain
does not interact with BMP or TGF-b (Zhu
et al. 1999b; Larrain et al. 2000). Binding of pro-
collagen IIA to BMPs can inhibit BMP function
in Xenopus and induce a secondary axis (Larrain
et al. 2000). Procollagen IIA may control storage
and release of BMPs and TGF-bs and, thus, the
availability of active TGF-b family ligands for
cell differentiation and tissue homeostasis.

Matrilin-3 (MATN3)

Matrilins are a family of four ECM proteins that
share structural features that consist of vWF A
(vWFA) domains, EGF-like repeats, and a car-
boxy-terminal coiled-coil module. Matrilins
form oligomers and can bind to other ECM
components such as collagens and aggrecan
(Deak et al. 1999). Both matrilin (MATN)-1
and -3 regulate cartilage homeostasis. MATN3,
but not MATN1, inhibits BMP-dependent col-
lagen X expression in hypertrophic chondro-
cytes via its EGF repeats and coiled-coil do-
main. MATN3 directly binds BMP-2 with a
KD of 217 nM, suggesting that binding of BMP
ligands may explain its role in blocking BMP
signaling in chondrocytes (Yang et al. 2014).
Mutations in MATN3 result in several skeletal
diseases, such as multiple epiphyseal dysplasia
and age-related osteoarthritis (Mostert et al.
2003; Stefansson et al. 2003).

Cartilage Oligomeric Matrix Protein (COMP)

COMP (also known as thrombospondin-5,
or TSP-5) is a large pentameric extracellular
glycoprotein that interacts with many ECM
proteins, such as fibronectin, collagens, matri-
lins, and aggrecan, and plays an important role
in ECM assembly (Acharya et al. 2014). Each
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COMP monomer consists of an amino-termi-
nal coiled-coil domain, four EGF repeats, eight
calcium-binding type III TSP repeats, and a car-
boxy-terminal globular domain. COMP binds
TGF-b1, BMP-2, -4, and -7 using its carboxy-
terminal domain. This binding enhances TGF-
b1 and BMP-2 signaling in human bone mes-
enchymal stem cells (Haudenschild et al.
2011; Ishida et al. 2013), but inhibits BMP-2
signaling in vascular smooth muscle cells
by preventing BMP-2 binding to its receptors
(Du et al. 2011). COMP thus regulates TGF-b
signaling in a cell-type-specific fashion. Muta-
tions in human COMP are linked to the skeletal
diseases pseudoachondroplasia (PSACH) and
multiple epiphyseal dysplasia (MED) (Acharya
et al. 2014).

Tenascin-X

Tenascin-X (TNX) is a member of tenascin fam-
ily of ECM glycoproteins. Like other tenascin
proteins, it has many EGF and fibronectin mod-
ules and a carboxy-terminal fibrinogen-like
(FBG) domain. It binds several ECM compo-
nents, such as collagen and decorin, and regu-
lates the three-dimensional ECM organization.
TNX binds the small latent TGF-b complex
through its FBG domain and activates TGF-b
ligands, most likely by inducing a conforma-
tional change in the complex. This activity re-
quires the cell-surface integrin a11b1, and may
enable TNX to promote epithelial-to-mesen-
chymal transition in mammary epithelial cells
(Alcaraz et al. 2014).

Matrix GLA Protein (MGP)

MGP is a small (10 kDa) ECM-associated pro-
tein that binds BMP-2 and -4, and regulates
osteogenesis, vascular endothelial cell prolifer-
ation and migration, and sympathetic neuron
growth (Bostrom et al. 2001, 2004; Moon and
Birren 2008; Yao et al. 2010). The interaction of
MGP with BMP enhances or attenuates BMP
signaling, which may relate to the opposite ef-
fects of the amino- and the carboxy-terminal
domains of MGP on BMP signaling (Bostrom
et al. 2001; Zebboudj et al. 2002). MGP also

enhances TGF-b1 activity in cultured endothe-
lial cells (Bostrom et al. 2004). Mice deficient
in MGP show arteriovenous malformations
in lungs and kidneys and vascular calcification
(Yao et al. 2010, 2011).

Emilin1

Emilin1 was first isolated from chick aorta
as the secreted glycoprotein gp115 (Bressan
et al. 1983) and contains an amino-terminal CR
domain, followed by coiled-coil, collagen, and
C1q domains (Doliana et al. 1999). Emilin1
binds pro-TGF-b1, but not mature TGF-b1
or LAP, through its CR motif. In this way, it
blocks pro-TGF-b1 processingby furin-like pro-
protein convertases in the extracellular space
and inhibits TGF-b signaling. This represents a
unique mechanism for an ECM protein to mod-
ulate TGF-b availability. Emilin1 also inhibits
Xnr1 and TGF-b3 activities. Lack of emilin1 ex-
pression in mice leads to elastic fiber defects in
aorta and skin and increased blood pressure as a
result of elevated TGF-b signaling in the vascular
wall (Zanetti et al. 2004; Zacchigna et al. 2006).

Fibulins (FBLNs)

The fibulin family of extracellular glycoproteins
contains seven members with multiple calcium-
binding EGF motifs and a carboxy-terminal
fibulin-type module. They bind diverse ECM
proteins and proteoglycans and regulate tissue
structures during development and in disease
processes (Timpl et al. 2003; de Vega et al.
2009). Fibulin-1 (Fbln1) binds BMP-2 and is
required for BMP-2-mediated induction of Os-
terix expression during bone formation. Fbln1-
deficient mice show defects in membranous
and endochondral bone formation in the skull
(Cooley et al. 2014). Fibulin-3 inhibits TGF-b
signaling in breast cancer and endothelial cells
to prevent cancer progression. Interestingly, fi-
bulin-3 does not bind TGF-b1 appreciably, but
instead interacts with the type I receptor TbRI/
ALK-5 and blocks formation of a functional
ligand–receptor complex (Tian et al. 2015).
Other fibulins may also regulate TGF-b signal-
ing (Renard et al. 2010; Radice et al. 2015), but
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the underlying molecular mechanism has not
been elucidated.

Latent TGF-b-Binding Proteins (LTBPs)
and Fibrillins (FBNs)

The LTBPs and FBNs are related ECM proteins
with multiple calcium-binding EGF domains
and characteristic eight-cysteine-containing
TGF-b-binding (TB) modules (reviewed in Oli-
vieri et al. 2010; Davis and Summers 2012;
Robertson et al. 2015). LTBPs form a covalent
bond with the TGF-b prodomain in the latent
TGF-b complex and facilitate secretion and fold-
ing of TGF-b ligands, target latent TGF-b com-
plexes to ECM, and control activation of TGF-bs.
LTBPs bind the amino-terminal region of fibril-
lins and target the large latent TGF-b complex
to ECM microfibrils to control TGF-b availabil-
ity (Massam-Wu et al. 2010). Fbn-1, best known
as encoded by the gene whose mutations lead to
type I Marfan syndrome, and Fbn-2 both regu-
late TGF-b signaling through LTBP-mediated
sequestration (Neptune et al. 2003; Chaudhry
et al. 2007; Nistala et al. 2010). Fibrillins also
interact through their amino-terminal regions
with the propeptide of BMP-2, -4, -5, -7, -10,
and GDF-5 and target these cytokines to the
ECM. Fbn1 – , but not Fbn2 – , deficient mice
show enhanced BMP signaling (Gregory et al.
2005; Sengle et al. 2008, 2011; Nistala et al.
2010). LTBPs and fibrillins thus serve both as
structural components of ECM to maintain tis-
sue architecture and to control the bioavailabil-
ity of TGF-b family ligands.

SUMMARY AND PERSPECTIVES

Since the discovery of TGF-b ligands in latent
forms and the realization that extracellular fac-
tors regulate the bioactivity of TGF-bs, an esca-
lating number of secreted modulators of TGF-b
family proteins has been identified, and the
mechanisms underlying their functions are in-
creasingly clear. One insight gained from the
studies is that agonists and antagonists originate
very early during evolution, probably around
the time that TGF-b family ligands arose. Nog-

gin, for example, is found in sponges, the most
basal metazoans (phylum Porifera) (Muller
et al. 2003); and, although lost in some clades
(e.g., Ctenophore) (Pang et al. 2011), noggin
is expressed in a wide range of metazoans, in-
cluding Hydra (Cnidaria) (Chandramore et al.
2010), Planaria (Platyhelminthes) (Molina et al.
2009, 2011), sea urchin (Echinodermata) (La-
praz et al. 2006), and all vertebrates. Similarly,
chordin is expressed in Hydra and sea anemone
(Cnidaria) (Matus et al. 2006; Rentzsch et al.
2007), sea urchin (Echinodermata) (Lapraz
et al. 2006), and ascidians (Urochordata) (Dar-
ras and Nishida 2001). The appearance of mul-
tiple agonists and antagonists in metazoans is
accompanied by extensively overlapping func-
tions in development. This is shown, for in-
stance, by the absence of a severe phenotype in
mice with inactivated expression of individual
regulators (e.g., Dan, Cerberus), and the dra-
matic disruption of embryonic axes and tissue
development only when multiple regulators are
silenced (De Robertis and Kuroda 2004; Kuroda
et al. 2004; Khokha et al. 2005; Vonica and Bri-
vanlou 2006; Stafford et al. 2011). Conversely,
proteins with similar biochemical properties
and expression patterns can have distinct ac-
tivities. This is evident by differential effects of
noggin and chordin in mesodermal patterning
and somite formation during early chick de-
velopment (Streit and Stern 1999). It is also
increasingly appreciated that endogenous ago-
nists and antagonists interact extensively with
other extracellular molecules. Tissue-specific
cellular landscapes can influence the actions of
soluble modulators of TGF-b family ligands,
resulting in distinct signal outcomes. Thus, in
contemplating how agonists and antagonists
control TGF-b family signaling, one needs to
determine not only which regulators are present
in which isoforms at which places, but also their
specificities and affinities toward ligands, and to
also integrate information on the ECM proteins
and cell-surface molecules in their environ-
ments. The following points should be consid-
ered in building a holistic picture (Figs. 1–3).

First, although most abundant agonists and
antagonists are soluble or membrane-associat-
ed ligand-binding factors, some do not directly
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interact with ligands and nonetheless control
TGF-b family signals by modifying ligand-
binding proteins. Examples include BMP-1/
Tolloid metalloproteinases, Sizzled, and the gly-
pican-modifying enzyme Notum. Such non-
dedicated regulators can both promote and in-
hibit TGF-b family signaling depending on the
cellular environment.

Second, although most agonists and antag-
onists enhance or block TGF-b family signals by
regulating ligand–receptor interactions, others
control secretion, storage, maturation, stabiliza-
tion, transport, and release of TGF-b family li-
gands in a spatiotemporal manner. The actions
of CRIM1 and emilin1 illustrate this point nice-
ly. These modulators help shape the patterns of
ligand distribution in tissues and determine the
range and the duration of TGF-b family signals.

Third, agonists and antagonists can interact
with each other in competitive or cooperative
modes, and collectively modulate the outcome
of TGF-b family signaling in different contexts.
The BMP antagonists noggin and sclerostin, for
example, show reduced BMP-inhibitory activity
when associated with each other (Winkler et al.
2004). In contrast, Twsg, biglycan, and Tsukushi
all interact with chordin to enhance inhibition
of BMPs. Association of soluble agonists and
antagonists with ECM proteins and cell-sur-
face proteoglycans can also change the proper-
ties of these modifiers and the tissue responses
to TGF-b family signals. An example is the in-
fluence of HSPGs on retention, diffusion and
activities of the BMP regulators noggin, chor-
din, and Crossveinless-2.

Fourth, the functions of agonists and antag-
onists are not absolute. Depending on cellular
localization (soluble or membrane-associated),
and presence or absence of interacting factors
in the tissue, an agonist may be converted into
an antagonist, and vice versa. Proteins that act
as both agonists and antagonists in different
cellular contexts include decorin, biglycan, gly-
pican, betaglycan, Crossveinless-2, Twsg, chor-
din/Sog, and COMP. A regulator can also act as
agonist of one ligand and antagonist of another;
CTGF is one example. The detailed mechanisms
responsible for functional switch of these mol-
ecules may vary, and all of them are not equally

understood. These examples highlight the im-
portance of integrating all tissue-specific extra-
cellular components to fully understand the ac-
tions of agonists and antagonists.

Fifth, agonists and antagonists often act in
feedback control through transcriptional regu-
lation by TGF-b family proteins. TGF-b mod-
ulates the expression of its regulators decorin
and a2-macroglobulin, whereas BMP-2 induces
the expression of its antagonists noggin and
Gremlin in osteoblasts (Shi et al. 1990; Heimer
et al. 1995; Gazzerro et al. 1998; Pereira et al.
2000). Noggin expression is also induced by
BMP-4 in chick somites, and GDF-11 induces
follistatin expression in chick limb bud (Am-
thor et al. 1999; Gamer et al. 2001). Stimulation
of TGF-b antagonists by ligands often serves to
restrict signaling range, strength, and duration.
A consequence of such negative feedback regu-
lation is the generation of stable patterns during
development (Turing 1952; Meinhardt and
Gierer 2000). Nodal-lefty feedback regulation
establishes a nodal activity gradient in zebrafish
(Chen and Schier 2001, 2002), whereas BMP-
Sizzled and noggin/chordin-ADMP feedback
loops regulate dorsoventral patterning in Xeno-
pus (Collavin and Kirschner 2003; Reversade
and De Robertis 2005; De Robertis 2009; Ino-
mata et al. 2013).

Sixth, agonists and antagonists of TGF-b
family proteins can be regulated by other signal-
ing pathways and often cross-modulate other
signals as well. This is illustrated with the regu-
lation of Wnt signal transduction by CTGF, scle-
rostin, and ectodin/Wise/USAG-1. Cerberus
coregulates nodal, BMP, and Wnt signals by as-
sociating with these ligands. Tsukushi modu-
lates the Delta-Notch pathway in addition to
BMPs, and IGFBP3 controls IGF1 signaling.
Cross-regulation among signals is a general
rule for cells to integrate different stimuli, and
agonists and antagonists of TGF-b ligands rep-
resent a node for integrating the ever-expanding
extracellular signaling networks.

In summary, although our knowledge on
individual agonists and antagonists of TGF-b
family ligands has increased dramatically, fur-
ther studies need to reveal dynamic interactions
of these molecules with tissue-specific extracel-
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lular components. It is reasonable to expect that
we will continue to uncover new agonists and
antagonists of TGF-b family ligands, novel ac-
tivities of these regulators in development and
diseases, and unsuspected links of these proteins
with other signaling pathways. Additional direc-
tions will likely include detailed characteriza-
tion of biochemical interactions of these factors
with relevant ligands, other modulators, ECM
components, and secreted protein modification
enzymes. The research will not only investigate
the strength, kinetics, and feedback regulation
of physical associations among these molecules,
but also analyze the roles of these interactions in
protein localization, stability, processing, bio-
availability, and local and long-range signaling.
These studies will lead to more in-depth under-
standing of the mechanisms used by agonists
and antagonists of TGF-b family ligands to con-
trol TGF-b signaling in various tissue contexts
in normal and diseased conditions.
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