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Transforming growth factorb (TGF-b) family members signal via heterotetrameric complexes
of type I and type II dual specificity kinase receptors. The activation and stability of the
receptors are controlled by posttranslational modifications, such as phosphorylation, ubiq-
uitylation, sumoylation, and neddylation, as well as by interaction with other proteins at the
cell surface and in the cytoplasm. Activation of TGF-b receptors induces signaling via
formation of Smad complexes that are translocated to the nucleus where they act as tran-
scription factors, as well as via non-Smad pathways, including the Erk1/2, JNK and p38
MAP kinase pathways, and the Src tyrosine kinase, phosphatidylinositol 30-kinase, and
Rho GTPases.

The transforming growth factor b (TGF-b)
family of cytokine genes has 33 human

members, encoding TGF-b isoforms, bone
morphogenetic proteins (BMPs), growth and
differentiation factors (GDFs), activins, inhib-
ins, nodal, and anti-Müllerian hormone (AMH)
(Derynck and Miyazono 2008; Moustakas and
Heldin 2009; Massagué 2012; Wakefield and Hill
2013). The family members are dimeric mole-
cules, which in most cases are stabilized by a
disulfide bond. TGF-b family members are syn-
thesized as large precursors that need to be
cleaved to liberate the carboxy-terminally locat-
ed, active molecule.

The TGF-b family signaling pathways are
well conserved and emerged with the first ani-
mal species (Huminiecki et al. 2009). TGF-b
family members have important roles during

embryonic development and in the regulation
of tissue homeostasis, through their abilities to
regulate cell proliferation, migration, and differ-
entiation. Perturbation of signaling by TGF-b
family members is often seen in different dis-
eases, including malignancies, inflammatory
conditions, and fibrotic conditions. In cancer,
TGF-b has a complicated role; initially, it is a
tumor suppressor because it inhibits prolifera-
tion and stimulates apoptosis, but at later stages
of tumorigenesis TGF-b becomes a tumor pro-
moter because it induces epithelial–mesenchy-
mal transition (EMT), which correlates with
increased invasiveness and metastasis. TGF-b
also promotes angiogenesis and suppresses the
immune system, which contributes to the pro-
tumorigenic effects (ten Dijke and Arthur 2007;
Moustakas and Heldin 2009; Massagué 2012).
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RECEPTORS FOR TGF-b FAMILY
MEMBERS

TGF-b family members signal via binding to
dual specificity kinase receptors at the surface
of target cells. Members of this family of recep-
tors have structural characteristics similar to
both serine/threonine and tyrosine kinases; al-
though the family is most often referred to as
serine/threonine kinase receptors, they are in
fact dual specificity kinases (Lawler et al. 1997;
Manning et al. 2002). This family is rather small
in mammals, with only 12 members, in contrast
to the 58-member family of tyrosine kinase re-
ceptors (Heldin et al. 2014). In contrast, plants
have a large number of different serine/threo-
nine kinase receptors (Champion et al. 2004).

Binding of a TGF-b family member induces
assembly of a heterotetrameric complex of two
type I and two type II receptors. There are seven
human type I receptors and five type II recep-
tors; individual members of the TGF-b family
bind to characteristic combinations of type
I and type II receptors (Fig. 1). The receptors
have rather small cysteine-rich extracellular do-
mains, a transmembrane domain, a juxtamem-
brane domain, and a kinase domain; however,
except for the BMP type II receptor and in con-
trast to tyrosine kinase receptors, the parts car-
boxy terminal of the kinase domains are very
short. Ligand-induced oligomerization of type I
and type II receptors promotes type II receptor
phosphorylation of the type I receptor in a re-
gion of the juxtamembrane domain that is rich
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Figure 1. Schematic illustration of the selective binding of members of the transforming growth factor b

(TGF-b) family to type I and type II serine/threonine kinase receptors.
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in glycine and serine residues (GS domain),
causing activation of its kinase.

The activated type I serine/threonine kinase
receptors in turn phosphorylate members of
the receptor-activated (R)-Smad family; thus,
TGF-b, activin, and nodal generally induce
phosphorylation of Smad2 and 3, whereas
BMPs generally phosphorylate Smad1, 5, and 8
(Feng and Derynck 2005). Activated R-Smads
then form trimeric complexes with the common
mediator Smad4, which are translocated to the
nucleus where they cooperate with other tran-
scription factors, coactivators, and corepressors
to regulate the expression of specific genes.
There are also non-Smad signaling pathways
activated by TGF-b family members, including
the Erk1/2, JNK, and p38 MAP kinase pathways,
the tyrosine kinase Src, phosphatidylinositol-30

(PI3)-kinase, and Rho GTPases (Moustakas and
Heldin 2005).

The present communication focuses on the
structural and functional characteristics of the
type I and type II signaling TGF-b receptors
(Fig. 2); however, where appropriate, we will
include discussions of other members of this
serine/threonine kinase receptor family.

TGF-b SIGNALS VIA A HETEROTETRAMERIC
TbRI†TbRII COMPLEX

The three TGF-b isoforms, TGF-b1, TGF-b2,
and TGF-b3, bind to a single type II receptor
(TbRII). However, in addition to the ubiqui-
tously expressed type I receptor (TbRI, also
called activin receptor-like kinase 5 or ALK-5),
there is another type I receptor for TGF-b, called
ALK-1 that is more selectively expressed (e.g., in
endothelial cells) (Goumans et al. 2003).

Before ligand binding, TbRI and TbRII oc-
cur as monomers, homodimers, and hetero-
dimers; ligand binding stabilizes a heterotetra-
meric structure (Chen and Derynck 1994; Henis
et al. 1994; Gilboa et al. 1998; Zhang et al. 2009a;
Ehrlich et al. 2012). The heterodimeric and
TbRII homodimeric interactions are stabilized
by contacts between specific epitopes in the cy-
toplasmic parts of the receptors, whereas the cy-
toplasmic part of TbRI is dispensable for TbRI
homodimerization (Rechtman et al. 2009).

The notion that TGF-b binding induces
a heterotetrameric complex of two TbRI and
two TbRII molecules was initially supported
by studies using differential receptor tagging
(Moustakas et al. 1993; Henis et al. 1994; Wells
et al. 1999), two-dimensional gel electrophoresis
(Yamashita et al. 1994), and genetic comple-
mentation (Weis-Garcia and Massagué 1996).
More recently, structural studies have shown
that one dimeric TGF-b molecule binds to two
TbRI and two TbRII molecules forming a sym-
metric 2:2:2 complex. The TGF-b molecule
resembles two hand-like structures that are as-
sembled in an antiparallel manner and are held
together by a disulfide bond in the “wrist” re-
gion. TGF-b contacts TbRIwith the “fingertips”
and TbRII with the underside of the fingers
(Hart et al. 2002; Groppe et al. 2008; Radaev
et al. 2010). In addition, direct receptor–recep-
tor interactions contribute to enhanced stability
of the receptor–ligand complex (Radaev et al.
2010).

TGF-b1 and TGF-b3 bind TbRII with high-
er affinity than TbRI. Thus, the binding occurs
first to TbRII; thereafter, TbRI is recruited
to the complex by recognizing a unique inter-
face generated by the TGF-b–TbRII complex
(Groppe et al. 2008). In contrast, TGF-b2 shows
rather low affinity to TbRII; thus, preformed
TbRII–TbRI heteromeric complexes or co-
receptors, such as betaglycan, assist TGF-b2
into assembling stable receptor complexes (see
further below).

The symmetry of the complex between
TGF-b and its receptors suggests that the two
pairs of TbRI†TbRII may signal as independent
units. This assumption was proven correct using
a mutant TGF-b3 molecule in which one TGF-
b protomer had been mutated to prevent recep-
tor binding; the remaining wild-type half of the
TGF-b3 molecule was still able to assemble a
TbRI†TbRII complex and to induce signaling
with one-quarter to one-half the activity of
wild-type TGF-b3 (Huang et al. 2011).

BMP receptors bind their ligands in similar
symmetric 2:2:2 complexes; but in these com-
plexes, the type I receptors have higher affinities
for the ligand than the type II receptors (Kirsch
et al. 2000; Sebald et al. 2004). The ligands for
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the BMP receptors bind to the receptor complex
with relatively lower affinity than the corre-
sponding affinities of TGF-b1 and its receptors
(Sebald et al. 2004). This leads to a greater flex-
ibility by which BMPs can signal using a more
diverse set of cell-surface receptors (Fig. 1). As
in the case for TbRII, heterotetrameric BMP
receptor complexes are stabilized by interac-
tions between the cytoplasmic domains of the
receptors (Nohe et al. 2002). Such cytoplasmic

domain interactions for the BMP and TGF-b
receptors also support the model of preformed
heterotetrameric receptor complexes that local-
ize on the cell surface before ligand binding
(Ehrlich et al. 2012). Coreceptors, as discussed
later, or other cytoplasmic scaffolding proteins
may facilitate the formation of these complexes.
However, we need to view this model with cer-
tain caution, as it has mainly been analyzed in
cells that express high levels of transfected re-
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Figure 2. Schematic illustration of the characteristics of TbRI and TbRII. Structural motifs, as well as post-
translationally modified residues and proteolytic cleavage sites are indicated. Green chains of circles, N-linked
glycosylations; black circles with white P, phosphorylation sites (auto, receptor autophosphorylation; other
kinases indicated: þ or 2 symbols indicate positive or negative impact on receptor kinase activity); gray circles
with green Ub, ubiquitin chains (the exact locations of the acceptor lysines are not known); gray circles with
purple Su, sumoylation sites; gray circles with blue Ne, neddylation sites. Ubiquitin and NEDD8 are shown as
polymeric chains, whereas sumo is illustrated by a monomer, in accordance with the knowledge about these
modifications. TbRI is also autophosphorylated on serine/threonine and tyrosine residues, but their exact
locations are not known (not shown). Binding of the adaptor protein Shc to a specific phosphotyrosine is
also indicated. N-ter, Amino terminal; C-ter, carboxy terminal.
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ceptors. The interesting possibility that pre-
formed receptor complexes induce signaling
events, which may differ from those of ligand-
induced receptor complexes (Nohe et al. 2002),
requires further rigorous analysis focusing on
endogenous receptors, and on receptor signal-
ing under in vivo conditions.

TGF-b RECEPTORS ARE REGULATED
BY PHOSPHORYLATION

The activities of both TbRI and TbRII are
regulated by several phosphorylation events
(reviewed by Wrighton et al. 2009a). After li-
gand-induced assembly of the heterotetrameric
TGF-b receptor complex, the constitutively
active TbRII phosphorylates TbRI in the GS
domain, located just upstream of the kinase
domain (Fig. 2) (Wrana et al. 1994). The phos-
phorylation occurs on several closely located
residues (i.e., Thr186, Ser187, Ser189, and
Ser191); it appears that no single residue is of
crucial importance for activation, but there
needs to be phosphorylation above a certain
threshold in this area for activation of the
TbRI kinase. The phosphorylation leads to a
conformational change that causes release of
the 12 kDa-immunophilin FK506-binding pro-
tein (FKBPI2), which binds to the GS domain
and inhibits the TbRI kinase (Wang et al. 1996;
Chen et al. 1997; Huse et al. 1999). The phos-
phorylation of the GS domain, furthermore,
enhances interaction with R-Smads, which pro-
motes their phosphorylation (Huse et al. 2001).

The kinase activity of TbRII is regulated
positively by autophosphorylation at Ser213
and Ser409, and negatively by autophosphory-
lation at Ser416 (Fig. 2) (Luo and Lodish 1997).
In addition, TbRII can be autophosphorylated
on tyrosine residues, including Tyr259, Tyr336,
and Tyr424, which also may contribute to the
regulation of the kinase activity of TbRII (Law-
ler et al. 1997), and by Src at Tyr284 (Galliher
and Schiemann 2006, 2007); Tyr470 is also
phosphorylated, either by Src or autophos-
phorylated (Chen et al. 2014). The finding that
TbRII is tyrosine phosphorylated opens up the
possibility that it binds SH2- or PTB-domain-
containing signaling molecules. In fact, phos-

phorylation of Tyr284 has been shown to pro-
mote binding of the adaptors Shc and Grb2;
Grb2 forms a complex with Sos1, a nucleotide
exchange factor for Ras, which in turn activates
the Erk1/2 MAP kinase pathway. Mutation of
Tyr284 was found to lead to decreased growth
and metastasis of breast cancer cells (Galliher-
Beckley and Schiemann 2008).

TbRI can be phosphorylated at Ser165
in the juxtamembrane domain (Souchelnytskyi
et al. 1996). Interestingly, this phosphorylation
modulates TGF-b signaling; growth suppres-
sion and matrix production are enhanced after
mutation of Ser165, whereas the proapoptotic
effect is decreased.

Similar to TbRII, the kinase domain of
TbRI has structural elements similar both to
serine/threonine and tyrosine kinases (Man-
ning et al. 2002); like TbRII, TbRI has been
shown to undergo autophosphorylation on ser-
ine/threonine residues, as well as on tyrosine
residues. The phosphorylated tyrosine resi-
due(s) form docking site(s) for the adaptor mol-
ecule Shc via its PTB-domain, followed by its
phosphorylation and recruitment of the Grb2/
Sos1 complex, and activation of Ras and the Erk
MAP kinase pathway (Lee et al. 2007).

The phosphorylation of TGF-b receptors
has been shown to be counteracted by sever-
al phosphatases. Thus, GADD34, a regulatory
subunit of the protein phosphatase 1 (PP1)
was found to bind to Smad7, which in turn
binds to TbRI; the PP1 catalytic activity is there-
by recruited to TbRI and dephosphorylates the
receptor (Shi et al. 2004). In endothelial cells,
PP1a was shown to dephosphorylate ALK-1,
but not the ubiquitous TbRI, ALK-5 (Valdi-
marsdóttir et al. 2006). The PP2A phosphatase
is also implicated in TGF-b receptor dephos-
phorylation. Interestingly, the related PP2A
subunits Ba and Bd modulate TGF-b signaling
in opposite ways; whereas the Ba subunit en-
hances TGF-b signaling, most likely by stabiliz-
ing TbRI, the Bd subunit suppresses TGF-b sig-
naling, most likely by inhibiting the TbRI kinase
activity (Griswold-Prenner et al. 1998; Petritsch
et al. 2000; Batut et al. 2008).

The T-cell protein tyrosine phosphatase
(TCPTP) has been found to dephosphory-
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late tyrosine phosphorylated TbRII in kidney
epithelial cells (Chen et al. 2014). Integrin a1b1
was needed to recruit TCPTP to TbRII; mice
lacking integrin a1b1 showed impaired TCPTP-
mediated dephosphorylation of TbRII, leading
to enhanced TGF-b signaling and renal fibrosis.

In contrast to the detailed analysis of regu-
latory phosphorylation and dephosphorylation
mechanisms that control signaling activity by
TGF-b receptors, similar studies on the BMP
receptors still lag behind. It is likely that con-
served serine residues in the juxtamembrane GS
domain of BMP type I receptors are the accep-
tors for phosphorylation by the paired BMP
type II receptor in the heterotetrameric receptor
complexes, leading to activation of the type I
receptor kinase (Miyazono et al. 2010). Further-
more, in Xenopus embryos, the protein phos-
phatase Dullard associates with the BMP re-
ceptor complex, dephosphorylating the BMP
type I receptor BMPRIA/ALK-3, leading to
polyubiquitylation and degradation of BMPRII
(Satow et al. 2006).

TGF-b RECEPTORS ARE REGULATED
BY UBIQUITYLATION, SUMOYLATION,
AND NEDDYLATION

Whereas phosphorylation events are of critical
importance to regulate the activities of TGF-b
receptors, additional control of receptor activi-
ties and stabilities are exerted by modifications
by ubiquitin and related molecules.

TGF-b receptors are marked for proteaso-
mal degradation by polyubiquitylation via
Lys48 in the ubiquitin molecule, performed by
E3 ligases of the Smurf family, which are recruit-
ed to TbRI in complex with Smad7 (Kavsak
et al. 2000; Ebisawa et al. 2001). The amino
acid residues in the TGF-b receptors that are
polyubiquitylated have not yet been identified.
Because Smad7 and Smurf2 are induced by
TGF-b stimulation, this constitutes an impor-
tant feedback mechanism.

TGF-b stimulation also leads to modifica-
tion of TbRI by SUMO groups at Lys389, which
enhances signaling by promoting Smad phos-
phorylation (Fig. 2) (Kang et al. 2008). Muta-
tion of Lys389 to an Arg residue led to decreased

invasion and metastasis of Ras transformed
cells. On the other hand, a missense mutation
S387Y in TbRI, located close to the sumoylation
site and able to prevent sumoylation, was found
to be enriched in breast and head-and-neck
cancer metastases (Chen et al. 1998, 2001).
These seemingly contradictory observations
most likely reflect the complicated role TGF-b
has in tumor progression, involving both tu-
mor-suppressive and tumor-promoting effects.

Because polyubiquitylation promotes deg-
radation of TGF-b receptors, enzymes capable
of deubiquitylating the receptors would be ex-
pected to enhance TGF-b signaling. Certain
deubiquitylases have been shown to act on
TGF-b receptors. Using a genome-wide gain-
of-function screen, the ubiquitin-specific prote-
ase 4 (USP4) was identified as a strong promoter
of TGF-b signaling by deubiquitylating TbRI
(Zhang et al. 2012). Interestingly, the kinase
Akt, which is activated downstream of PI3-ki-
nase, phosphorylates USP4, and this leads to a
relocation of the molecule from the nucleus to
the cytoplasm and plasma membrane, where it
can act on TbRI. Thus, USP4 has an important
role in the cross talk between TGF-b and Akt
signaling pathways. Using a functional RNAi
screen, USP15 was identified as a key component
of the TGF-b signaling pathway; USP15 binds to
the E3 ligase Smurf2, which is recruited to the
TGF-b receptors in complex with Smad7 and
deubiquitylates TbRI (Eichhorn et al. 2012). In-
terestingly, the USP15 gene was found to be
amplified in glioblastoma, breast cancer, and
ovarian cancer, suggesting that enhanced TGF-
b signaling, as a consequence of USP15 overac-
tivity, promotes progression of these tumors.
USP15 has also been found to deubiquitylate
monoubiquitylated R-Smads, promoting Smad
activity (Inui et al. 2011). In addition, USP11 has
been shown to deubiquitylate TbRI and to en-
hance TGF-b signaling (Al-Salihi et al. 2012).

The stability of TbRII is also controlled
by polyubiquitylation, although the E3 ligase
involved has not been identified (Atfi et al.
2007). In addition, TbRII was recently shown
to be modified also by the ubiquitin-like mole-
cule NEDD8 (neural precursor cell-expressed,
developmentally down-regulated 8) by the E3
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ligase c-Cbl (Zuo et al. 2013). c-Cbl is known
as a ubiquitin E3 ligase and a negative modu-
lator of many tyrosine kinase receptors, but has
been shown to be capable also of neddylating
the epidermal growth factor (EGF) receptor
(Oved et al. 2006). Neddylation of TbRII at
Lys556 and Lys567 was found to promote endo-
cytosis of the receptor to early endosomes and
to prevent its endocytosis to caveolin-positive
compartments, thereby inhibiting degradation
of TbRII (see further below). Interestingly, a
neddylation-defective c-Cbl mutant was found
in leukemias, suggesting that TbRII neddylation
is important to inhibit leukemia progression
(Zuo et al. 2013).

Our knowledge about ubiquitin-based
mechanisms that regulate BMP receptor func-
tion remains at a more primitive stage compared
with TGF-b receptors. Most studies have con-
centrated on the BMPRII, which as described
above, after dephosphorylation of BMPRIA/
ALK-3 by the protein phosphatase Dullard, be-
comes polyubiquitylated and degraded (Satow
et al. 2006). Under pathological conditions,
such as Kaposi sarcoma and certain lymphomas
caused by infection with the Kaposi sarcoma–
associated virus, a virally encoded ubiquitin li-
gase polyubiquitylates BMPRII and promotes
its lysosomal degradation (Durrington et al.
2010). Under more physiological conditions,
the E3 ubiquitin ligase Itch mediates BMPRII
polyubiquitylation at least in pulmonary endo-
thelial cells (Durrington et al. 2010). Finally, the
DUB USP15 that deubiquitylates and stabilizes
TbRI, also deubiquitylates the BMP type I re-
ceptor BMPRIA/ALK-3, causing its stabiliza-
tion and enhancement of BMP signaling in vitro
and in vivo (Herhaus et al. 2014). Whereas
USP15 targets TbRI by binding to Smad7,
USP15 acts on BMPRIA via Smad6, presenting
a conserved mechanism of receptor deubiquity-
lation via the inhibitory (I)-Smads (Eichhorn
et al. 2012; Herhaus et al. 2014).

CONTROL OF TGF-b RECEPTOR
EXPRESSION BY microRNAs

The levels of TGF-b receptors are negatively
controlled by microRNAs (miRNAs). Almost

every receptor mRNA in the family has been
reported as a target of one or more miRNAs.
Regulation of receptor expression by miRNAs
can take place during normal development,
stem-cell propagation, and differentiation, or
under pathological conditions such as hyper-
tension, cancer, or viral infection. The fact
that a given receptor mRNA in the TGF-b fam-
ily can be regulated by many miRNAs, and that
a given miRNA targets several other mRNAs
in addition to the given receptor, generates a
complex reality of miRNA-mediated posttran-
scriptional control. Here we discuss selected
examples of such miRNAs that provide good
examples of the complexity. In the TGF-b path-
way, TbRII mRNA is targeted by several
miRNAs including miR-302 and miR-372,
which down-regulate the expression of TbRII
during the protocol of induced pluripotent
stem-cell generation (Subramanyam et al.
2011). TbRII down-regulation enhances the de-
differentiation process and promotes a mesen-
chymal to epithelial transition that is required
for the establishment of the stem cells in vitro. In
a different context, miR-302, which is induced
by connective tissue growth factor ([CTGF] also
called CCN2), targets TbRII mRNA and thereby
inhibits kidney fibrosis (Faherty et al. 2012). On
the other hand, during progression of kidney
fibrosis, TGF-b signaling transcriptionally re-
presses the miR-let-7b (commonly known as
let-7b); miR-let-7b targets and down-regulates
TbRI mRNA expression, and, thus, miR-let-7b
repression by TGF-b causes TbRI induction
and enhanced signaling in kidneys where fibro-
sis develops (Yang et al. 2013; Wang et al. 2014).
In human cancer, the expression of TbRII can
also be down-regulated by miRNAs, such as
miR-17-92 in neuroblastoma and miR-520c
and miR-373 in breast cancer (Mestdagh et al.
2010; Keklikoglou et al. 2012). Critical in hepa-
tocellular carcinoma progression is the down-
regulation of TbRI/ALK-5 expression by miR-
140-5p (Yang et al. 2013; Wang et al. 2014).

Early frog development is specified by nodal
signaling, and the spatial restriction of the em-
bryonic cells that respond to nodal is regulated
by two members of the miR-15 family, miR-15
and miR-16, which target the ActRII receptor
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mRNA (Martello et al. 2007). The expression
of the same type II receptor can be down-regu-
lated by miR-181a in granulosa cells of the ova-
ry, which differentiate in response to activin
(Zhang et al. 2013b); activin signaling represses
miR-181a expression so that its type II receptor
can be expressed at significant levels that pro-
mote granulosa cell differentiation. The ex-
pression of the second activin type II receptor,
ActRIIB, is controlled by five miRNAs in the
context of normal kidney homeostasis, whereas
kidney neoplasia in young children is character-
ized by down-regulation of miR-141, miR-192,
miR-194, miR-200c, and miR-215, and conse-
quent up-regulation of ActRIIB in the develop-
ing nephroblastomas (Senanayake et al. 2012).
The expression of activin/nodal type I recep-
tors ActRIB/ALK-4 and ActRIC/ALK-7 is also
negatively regulated by miRNAs; in normal
ovarian granulosa cells, ALK-4 mRNA is target-
ed by miR-145, which controls cell proliferation
(Yan et al. 2012). During erythropoiesis, the
ALK-4 mRNA is targeted by miR-24; ALK-4
down-regulation is required so that early stages
of erythroid cell differentiation can progress
(Wang et al. 2008). During breast cancer inva-
sion and angiogenesis, the ALK-4 mRNA is
down-regulated by miR-98; because ALK-4
positively contributes to breast cancer metasta-
sis, miR-98 acts as a metastasis suppressor (Sira-
gam et al. 2012). Finally, in ovarian cancers, the
nodal/ALK-7 tumor suppressor pathway is in-
activated by miR-376c, which down-regulates
the ALK-7 receptor, showing that miR-376c
has a protumorigenic effect (Ye et al. 2011).

Interestingly, miR-302, which down-regu-
lates TbRII expression, also down-regulates
BMPRII expression; BMP-4 signaling represses
miR-302 to promote BMPRII expression and
signaling in smooth muscle cells of the pulmo-
nary vasculature (Kang et al. 2012). Osteogen-
esis induced by BMP signaling in mesenchymal
stem cells depends on BMPRII receptor expres-
sion, which is regulated by miR-100 (Zeng et al.
2012). The miR-17 family is another central
regulator of BMPRII expression in physiological
and pathological contexts in the brain cortex
(Mao et al. 2014); BMP-2 induces miR-17 fam-
ily members, forming a negative feedback loop

that limits the extent of BMPRII signaling
in developing neurons (Sun et al. 2013). Artery
stenosis depends on vascular smooth muscle
cell proliferation, which is prohibited by BMP
signaling and promoted by TGF-b; TGF-b
causes miR-17 up-regulation during stenosis,
which down-regulates BMPRII expression and
releases the cells from the antiproliferative BMP
control (Luo et al. 2014). During the develop-
ment of pulmonary arterial hypertension
(PAH), interleukin-6 signaling via STAT3 up-
regulates the miR-17 cluster and causes BMPRII
down-regulation, a hallmark of this pathologi-
cal condition (Brock et al. 2009). Alternatively,
BMPRII expression can also be down-regulated
by miR-21 during PAH (Parikh et al. 2012).

miRNAs are also involved in control of
TGF-b signaling in malignancies. In glioma,
BMPRII down-regulation is achieved via miR-
135a, whose expression is elevated in this cancer
(Wu et al. 2012). In the same tumor type,
miR-656 targets BMPRIA/ALK-3 mRNA;
however, expression of miR-656 is frequently
down-regulated in human glioma (Guo et al.
2014), which is paradoxical based on the estab-
lished tumor-suppressive role of BMP signaling
in this tumor. On the other hand, BMPRIB/
ALK-6 expression is down-regulated by miR-
125b in breast cancer cells (Saetrom et al.
2009). Breast cancer patients show allele-specif-
ic polymorphisms in the 30-untranslated region
of BMPRIB/ALK-6 mRNA where miR-125b
binds, disrupting the down-regulation mecha-
nism and characterizing patients with higher
risk for disease progression (Saetrom et al.
2009). The same polymorphism has been con-
firmed in prostate cancer, which generates a
cancer susceptibility allele (Feng et al. 2012),
whereas in endometriosis, the polymorphic se-
quence of the miR-125b site on the BMPRIB/
ALK-6 mRNA correlates with protection from
disease progression and an antiproliferative role
of the elevated BMPRIB/ALK-6 receptor sig-
naling (Chang et al. 2013).

The expression of the third BMP type I re-
ceptor, ActRIA/ALK-2, is also controlled by
several miRNAs. In differentiating adipocytes,
miR-30c is up-regulated and silences ALK-2 ex-
pression (Karbiener et al. 2011); miR-148b and
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miR-365 target the 30-untranslated region of
ALK-2 mRNA (Mura et al. 2012); down-regu-
lation of ALK-2 mRNA by miR-148a is relevant
for the cancer stem-cell population in hepato-
cellular carcinoma (Li et al. 2015); in the
liver, BMP signaling is coordinated with the
homeostasis of iron; and, after depletion of
iron levels, miR-130a expression is up-regulated
causing ALK-2 silencing and decrease in BMP-6
signaling, leading to down-regulation of the
BMP target gene hepcidin, which produces
the liver hormone that regulates iron homeosta-
sis (Zumbrennen-Bullough et al. 2014).

All of the above examples underscore the
necessity to understand whether each miRNA
regulates the expression of a specific TGF-b
family receptor only during a specific biological
condition, or whether multiple miRNA-based
mechanisms operate in parallel to assure effec-
tive cross talk and coordination with other sig-
naling pathways.

SIGNALING VIA TGF-b RECEPTORS
IS REGULATED BY CORECEPTORS

Signaling via TGF-b family member receptors
is modulated by interactions with other trans-
membrane proteins and proteins anchored in
the membrane by glycophosphoinositol (GPI).
Many of the coreceptors control ligand presen-
tation or availability to the signaling receptor
kinases. However, some of the coreceptors also
mediate signaling by other growth factor recep-
tors, and may thus act as broader platforms of
integration of signal transduction that has im-
pacts on diverse pathophysiological conditions.

Betaglycan/TbRIII

Betaglycan (also called type III TGF-b receptor)
is a transmembrane proteoglycan with both
chondroitin sulphate and heparan sulphate
polysaccharide chains (López-Casillas et al.
1991, 1993). The extracellular domain of beta-
glycan has two lobular subdomains separated
by a linker domain; each lobular subdomain
separately contributes to ligand binding and
together forms a high-affinity ligand-binding
site (Mendoza et al. 2009). The polysaccharide

chains are not necessary for TGF-b binding; in
contrast, large polysaccharide chains may per-
turb TbRI–TbRII interaction and thus inhibit
TGF-b signaling (Eickelberg et al. 2002). Beta-
glycan has been shown to promote both Smad
and non-Smad signaling (You et al. 2007).
However, betaglycan binds TbRI and TbRII in-
dependently, and overexpression of betaglycan
in MDA-MB-231 cells was found to inhibit
TGF-b-induced Smad2 and Smad3 phosphory-
lation (Tazat et al. 2015). Betaglycan is basolat-
erally located in polarized breast epithelial cells,
and loss of the basolateral localization promotes
EMT (Meyer et al. 2014). Thus, depending on
expression levels and subcellular localization,
betaglycan can promote or suppress TGF-b sig-
naling.

Betaglycan binds all three TGF-b isoforms
and stabilizes the complex between TbRI and
TbRII; this function is particularly important
for TGF-b2, which binds to TbRII with rather
low affinity. Betaglycan-deficient mouse em-
bryo fibroblasts show reduced Smad2 nuclear
translocation and reduced growth suppression
in response to TGF-b2 stimulation, but not in
response to TGF-b1 and TGF-b3 (Stenvers et al.
2003). Betaglycan also binds and promotes sig-
naling by inhibin (Lewis et al. 2000; Wiater et al.
2006) and BMPs (Kirkbride et al. 2008; Lee et al.
2009).

The extracellular domain of betaglycan can
be released by proteolytic cleavage; because the
soluble extracellular domain retains its TGF-b
binding capacity, it acts as a scaffold that in-
hibits TGF-b signaling (López-Casillas et al.
1994). This process is biologically relevant as
betaglycan mutations that inhibit shedding
enhance cellular responses to TGF-b; the op-
posite experiment with betaglycan mutants
that show more efficient proteolytic shedding
resulted in relative reduction of cellular re-
sponses to TGF-b (Elderbroom et al. 2014).
Moreover, betaglycan expression was found to
decrease during breast cancer progression and
low betaglycan levels correlated to poor prog-
nosis; betaglycan appears to inhibit tumor in-
vasion by undergoing ectodomain shedding
thereby sequestering and inhibiting TGF-b
(Dong et al. 2007).
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Betaglycan may have functions that go be-
yond presenting the ligand to TbRI and TbRII.
Knockout of the betaglycan gene results in
embryonic lethality (Stenvers et al. 2003); beta-
glycan has been shown to interact with the scaf-
folding protein arrestin and thereby activate
Cdc42 and inhibit cell migration (Mythreye
and Blobe 2009) and to promote neuronal dif-
ferentiation by interacting with fibroblast
growth factor 2 (FGF-2) and FGF receptor 1
(Knelson et al. 2013). Betaglycan has also been
shown to affect TbRI and TbRII trafficking and
signaling (see further below).

Endoglin

Endoglin is expressed preferentially on endo-
thelial cells and acts as an accessory protein for
TGF-b binding to signaling TGF-b receptors; it
lacks glycosaminoglycan chains and occurs as a
disulfide-bound dimer (Barbara et al. 1999;
Guerrero-Esteo et al. 2002). Endoglin has been
shown to differentially affect TGF-b signaling.
Thus, endoglin negatively regulates ALK-5-in-
duced Smad2 and Smad3 pathways but posi-
tively regulates signaling by ALK-1 to Smad1,
5, and 8 (Lebrin et al. 2004; Scherner et al.
2007). Phosphorylation of endoglin at Ser646
and Ser649 by TbRI was shown to be necessary
for ALK-1-mediated activation of Smad1, 5, and
8 in endothelial cells (Ray et al. 2010).

Endoglin occurs as two splice forms, the
predominant long (L)-endoglin with a cyto-
plasmic tail of 47 amino acid residues, and a
short (S)-endoglin with a cytoplasmic tail of
only 14 amino acid residues (Velasco et al.
2008). Interestingly, L-endoglin enhances sig-
naling via ALK-1 to activate Id1 expression,
whereas S-endoglin promotes signaling via
ALK-5 to induce plasminogen activator inhib-
itor-1 (PAI-1) expression. The cytoplasmic tail
of L-endoglin contains a PDZ-binding motif,
with which it interacts with GAIP interacting
protein, carboxyl terminus (GIPC), a scaffold-
ing protein known to regulate cell-surface re-
ceptor expression and trafficking (Lee et al.
2008). Through the TGF-b-independent inter-
action with endoglin, GIPC promotes cell-sur-
face retention of endoglin and enhances phos-

phorylation of Smad1, 5, and 8. Endoglin also
binds BMPs and promote their signaling via
Smad1, 5, and 8 (Barbara et al. 1999; David
et al. 2007; Scherner et al. 2007).

Inactivation of the endoglin gene leads to
defects of the heart and vascular system (Arthur
et al. 2000; Sorensen et al. 2003). Interesting-
ly, loss-of-function mutations in the endoglin
gene cause hereditary hemorrhagic telangiecta-
sia (HHT) type I (see further below) (McAllis-
ter et al. 1994).

BMP and Activin Membrane-Bound Inhibitor

The transmembrane receptor BMP and activin
membrane-bound inhibitor (BAMBI) has an
extracellular domain similar to other type I re-
ceptors, which can bind TGF-b and other
members of the TGF-b family, but has only a
short intracellular domain without enzymatic
activity (Onichtchouk et al. 1999; Grotewold
et al. 2001; Loveland et al. 2003). BAMBI is
believed to act as a negative regulator of BMP
signaling during embryonic development
(Onichtchouk et al. 1999; Tsang et al. 2000).
Because the expression of BAMBI is induced
by TGF-b, it may also act in a negative feedback
mechanism in TGF-b signaling (Sekiya et al.
2004; Xi et al. 2008). Mechanistically, BAMBI
synergizes with Smad7 and inhibits TGF-b sig-
naling by forming a ternary complex with TbRI
and Smad7, thereby inhibiting the interaction
between TbRI and R-Smads (Yan et al. 2009).

Cripto

Cripto, also known as Cripto-1/FRL-1/Cryptic
(EGF–CFC), is a GPI-anchored membrane
protein consisting of an EGF-like and a CFC
domain. It binds to nodal and specific members
of the GDF family and facilitates ligand inter-
action with the ALK-4 and ALK-7 receptors
(Yan et al. 2002). In addition, Cripto directly
regulates TGF-b signaling in the context of can-
cer as it binds to TGF-b1 and blocks its access
to TbRI (Gray et al. 2006). This mechanism can
explain the oncogenic action of Cripto, as it
inhibits cytostatic actions of TGF-b in epithelial
cell types. In addition to TGF-b, activing, and
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GDF signaling, Cripto coordinates the signaling
activities of many other pathways, including
members of the EGF receptor family and Wnt
family, suggesting a more global role of this co-
receptor in diverse biological processes ranging
from embryonic development and stem-cell
renewal to various pathogenetic processes
(Nagaoka et al. 2012).

RGMa, RGMb, and RGMc

The repulsive guidance molecule b isoform
(RGMb; also called DRAGON) is also a GPI-
anchored molecule; it binds BMP-2 and -4 and
facilitates signaling via BMP type II and type I
receptors (Samad et al. 2005). Studies in renal
epithelial cells have revealed the potential of
RGMb to down-regulate E-cadherin protein ex-
pression, a hallmark of the EMTresponse and to
induce apoptosis, both being well-established
responses to TGF-b (Liu et al. 2013). Attempts
to link RGMb function to the action of TGF-b
have so far not provided positive results (Liu
et al. 2013). The RGMb homolog RGMa also
acts as a BMP coreceptor and facilitates the se-
lective association of BMP ligands to specific
type II receptors, so that high RGMa expression
selects for ActRII as the signaling receptor of
BMP-2 and BMP-4, whereas low RGMa expres-
sion permits the same ligands to select for
BMPRII as their signaling receptor (Xia et al.
2007). A similar coreceptor function for BMPs
has been ascribed to RGMc (also known as he-
mojuvelin), which amplifies BMP signaling in
the liver, leading to hepcidin up-regulation and
a balancing mechanism for overall iron homeo-
stasis in the body (Babitt et al. 2006). Accord-
ingly, mutations in the RGMc coreceptor de-
crease BMP signaling in the liver, resulting in
low hepcidin levels and high iron accumulation
that causes hemochromatosis.

CD109

The GPI-anchored protein CD109 belongs to
the a2-macroglobulin family (Lin et al. 2002)
and binds TGF-b1 with high affinity and other
TGF-b isoforms with lower affinity (Tam et al.
1998). It also forms a complex with TGF-b sig-

naling receptors and negatively regulates TGF-b
signaling (Finnson et al. 2006). CD109 directs
the localization of TGF-b receptors to caveolae
and promotes their degradation (Bizet et al.
2011) in a process involving Smad7 and Smurf2
(Bizet et al. 2012).

Neuropilin-1

Neuropilin-1 (NRP1) is a transmembrane re-
ceptor that, in addition to semaphorins and
members of the vascular endothelial cell
growth factor family, binds TGF-b (Glinka
and Prud’homme 2008). In myofibroblasts
and tumor cells, NRP1 has been shown to sup-
press Smad1, 5, and 8 phosphorylation, while
enhancing Smad2 and 3 phosphorylation (Cao
et al. 2010; Glinka et al. 2011). However, in
endothelial cells, NRP1 decreases Smad2 and 3
phosphorylation, which suppresses the stalk
cell phenotype and enhances the tip cell pheno-
type during sprouting angiogenesis (Aspalter
et al. 2015).

SIGNALING VIA TGF-b RECEPTORS
IS MODULATED BY INTERACTIONS
WITH OTHER CELL-SURFACE PROTEINS

Signaling by TGF-b family member receptors is
also modulated by a number of cell-surface pro-
teins, which are not genuine coreceptors, be-
cause they do not affect so much the binding
of ligands to the TGF-b family receptor ectodo-
mains, rather they are involved in the assembly
of multiprotein complexes on the cell surface
leading to cross talk and positive or negative
regulation of the activities of the signaling re-
ceptors in the TGF-b family. Some examples are
discussed in the following section.

Vascular Endothelial Cadherin

Vascular endothelial cadherin (VE-cadherin)
is an endothelial-specific adherens junctional
protein that forms complexes with TbRII,
TbRI/ALK-5, ALK-1, and endoglin and pro-
motes the formation of active signaling receptor
assemblies, thus promoting all signaling aspects
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of TGF-b in endothelial cells (Rudini et al.
2008).

Occludin

The epithelial tight junctional protein occludin
interacts with TbRI and this promotes localiza-
tion of active TGF-b receptor complexes to tight
junctions, leading to the rapid disassembly of
these junctions in mammary epithelial cells re-
sponding to TGF-b and undergoing EMT (Bar-
rios-Rodiles et al. 2005).

Integrins

The integrin receptor family member avb3 is
transcriptionally induced by TGF-b signaling
in lung fibroblasts and forms a complex with
TbRII, which facilitates active receptor complex
formation and enhances overall signaling by
TGF-b, leading to positive regulation of cell
proliferation (Scaffidi et al. 2004). In a similar
scenario, blood flow shear stress activates integ-
rin avb3, which pairs with BMPRII via its cy-
toplasmic domain of the latter receptor, leading
to BMP receptor activation and downstream
Smad and Erk1/2 MAP kinase signaling that
promotes proliferation of endothelial cells
(Zhou et al. 2013).

CD44

Similar to the above examples, the hyaluronan
receptor CD44, a ubiquitously expressed cell-
surface protein, forms a complex with TbRI,
possibly guided by the short cytoplasmic do-
main of CD44 that binds to the TbRI juxta-
membrane domain (Bourguignon et al. 2002).
Stimulation of cells with hyaluronan activates
the CD44–TbRI complex, enhances R-Smad
phosphorylation and CD44 tail phosphoryla-
tion by the TbRI, which promotes anchoring
to the actin cytoskeleton and migratory re-
sponses in breast cancer cells (Bourguignon et
al. 2002). On the other hand, in dermal fibro-
blasts, CD44 was found to have a negative role
during TGF-b signaling by affecting TGF-b re-
ceptor endocytosis (Porsch et al. 2014). Wheth-
er BMP receptors form complexes with CD44

remains unclear; however, the cytoplasmic do-
main of CD44 is known to bind Smad1, and
thus facilitates BMP-7 signaling during chon-
drocyte differentiation (Peterson et al. 2004).

Platelet-Derived Growth Factor b

In dermal fibroblasts, TbRI forms cell-surface
complexes not only with CD44, but also with
the platelet-derived growth factor b receptor
(PDGFRb) (Porsch et al. 2014). Interestingly,
PDGF-BB stimulation promotes activation of
latent TGF-b and thus results in a low degree
of activation of Smad2 phosphorylation that
promotes fibroblast migration, a hallmark
TGF-b response (Porsch et al. 2014).

TrkC

Another receptor tyrosine kinase that pairs with
the TGF-b receptors is the neurotrophin recep-
tor TrkC and the related oncogenic, constitu-
tively active chimeric receptor Tel-TrkC or
ETV6-NTRK3 (Jin et al. 2005, 2007c). Both
ETV6-NTRK3 and TrkC associate with TbRII,
sequester the receptor, and disrupt active com-
plex formation with TbRI, thus mediating neg-
ative control of TGF-b signaling. The oncogenic
activities of these receptor tyrosine kinases can
therefore be promoted by antagonizing physio-
logical TGF-b signaling. The same mechanism
seems to apply to the BMP receptors, as TrkC
binds and phosphorylates the BMPRII cytoplas-
mic domain causing disruption of the complex
with the BMP type I receptor and suppression of
BMP signaling in colon cancer cells (Jin et al.
2007b). However, as TGF-b and BMP signaling
not only suppress but also promote cancer pro-
gression, mechanistic models of TrkC onco-
genesis that involve suppression of TGF-b
receptor signaling should be evaluated with cer-
tain caution.

Ror2

The receptor tyrosine kinase Ror2 forms com-
plexes with BMPRIB/ALK-6, and activation of
BMPRIB/ALK-6 by GDF-5 leads to transphos-
phorylation of Ror2, which then silences BMP
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Smad signaling and activates Erk1/2 MAP ki-
nase signaling leading to chondrogenic differ-
entiation (Sammar et al. 2004). The mechanism
by which Ror2 activation leads to suppression
of BMP-specific R-Smad phosphorylation re-
quires deeper analysis. The short digits devel-
oped in the inherited family of disorders called
brachydactylies are explained by inhibitory mu-
tations that accumulate in any of the three com-
ponents of this ligand–receptor complex (i.e.,
GDF-5, BMPRIB/ALK-6, or Ror2), providing
genetic evidence in humans that the heterotypic
receptor complex may be physiologically im-
portant by controlling chondrogenesis.

SIGNALING VIA TGF-b RECEPTORS
IS MODULATED BY INTERACTIONS
WITH CYTOPLASMIC PROTEINS

Cytoplasmic Adaptors: FKBP12, STRAP,
YAP65, Dapper2, Hsp90, TLP, BAT3,
and SPSB1

As has been mentioned above, the immunophi-
lin FKBP12 binds to the GS domain of TbRI,
and thereby pushes the aC helix of the N-lobe
of the kinase in an unfavorable position, which
inhibits the kinase (Huse et al. 1999). It appears
that the kinase in type I receptors of the TGF-b
family, in contrast to most other kinases, is con-
stitutively active, and is kept in an inhibited
form by its association with FKBP12. This
mechanism is conserved among many type I
receptors in the TGF-b family as FKBP12 can
also negatively regulate the kinase activities of
BMPRIA/ALK-3, ActRIA/ALK-2, and ActRLI/
ALK-1 (Spiekerkoetter et al. 2013). Mutations
in the vicinity of the GS domain of the BMP
receptor ActRIA/ALK-2 release the receptor
from FKBP12 control and cause its constitutive
activation, which plays detrimental roles during
the pathological transformation of endothelial
and mesenchymal progenitor cells to osteo-
cytes, a characteristic of the congenital syn-
drome, fibrodysplasia ossificans progressiva
(see further discussion below) (van Dinther
et al. 2010; Chaikuad et al. 2012).

Serine/threonine kinase receptor-associat-
ed protein (STRAP) was originally identified

as a TbRI-interacting protein, which suppresses
receptor signaling by stabilizing the binding of
Smad7 to the receptor (Datta et al. 1998; Datta
and Moses 2000). STRAP has also been report-
ed to link the kinase phosphoinositide-depen-
dent kinase 1 (PDK1), which activates Akt, to
TbRI and to promote its activation (Seong et al.
2005), and to bind and inhibit the nucleoside
diphosphate (NDP) kinase NM23-H1 (Seong
et al. 2007). STRAP thus affects TGF-b signal-
ing via several mechanisms. Similarly, Yes-asso-
ciated protein (YAP65) forms complexes with
TbRI and enhances recruitment of Smad7 via
direct interaction, leading to signaling down-
regulation (Ferrigno et al. 2002).

An additional negative regulator of TGF-
b signaling is the adaptor protein Dapper2
(Dpr2), which binds to TbRI and promotes ly-
sosomal degradation of the receptor (Su et al.
2007). This mechanism has developmentally
conserved significance in mouse and zebrafish
early embryos.

A number of cytoplasmic adaptors and
chaperones associate with TGF-b receptors to
promote signaling. The chaperone protein,
Hsp90, binds to TbRII and TbRI and protects
them from association with the ubiquitin ligase
Smurf2, thus stabilizing active receptor com-
plexes and promoting Smad signaling down-
stream of TGF-b (Wrighton et al. 2008). The
adaptor protein TLP (TRAP-1-like protein) as-
sociates with TbRII (and activin receptors) and
with Smad4 (Felici et al. 2003). The role of TLP
seems to specify selective activation of Smad2/
Smad4 signaling, while bypassing Smad3/
Smad4 signaling. In mesangial cells, the HLA-
B-associated transcript 3 (BAT3) adaptor binds
to TbRI–TbRII complexes and potentiates
Smad signaling and matrix-related responses
to TGF-b (Kwak et al. 2008).

Spry domain-containing SOCS box protein
1 (SPSB1) binds to TbRII, but not TbRI, via its
Spry domain (Liu et al. 2015) and negatively
modulates TGF-b signaling by recruiting E3-
ligase(s) via its SOCS box, leading to poly-
ubiquitylation and proteasomal degradation
of TbRII (Liu et al. 2015). Because SPSB1 is
induced by TGF-b stimulation, it has a negative
feedback role.
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Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a022053 13



Cytoplasmic Kinases: cGKI

The cyclic guanosine 30,50-monophosphate-de-
pendent kinase I (cGKI) associates with and
phosphorylates the BMPRII cytoplasmic do-
main (Schwappacher et al. 2009). On BMPRII
activation by ligand binding, cGKI dissociates
from the receptor and translocates to the nucle-
us bound to Smad1, assisting in transcriptional
regulation by the Smad complex.

Cytoskeletal and Motor Protein Regulators:
Rock2, km23-1, and Tctex2b

The Rho-associated serine/threonine kinase
Rock2, best known for its role in regulation of
cell migration, contraction, and associated cyto-
skeletal assembly with cell-adhesion receptors,
negatively regulates TGF-b signaling after as-
sociation with TbRI and priming of receptor
degradation in lysosomes (Zhang et al. 2009b).
This mechanism has been shown to be im-
portant during fish embryogenesis. The motor
protein dynein light chain km23-1 has been
shown to bind TbRII and to be phosphorylated
after TGF-b stimulation (Tang et al. 2002).
km23-1 promotes both Smad-dependent (Jin
et al. 2007a) and Smad-independent (Jin et al.
2012) signaling. In contrast, the motor protein
dynein light chain Tctex2b associates with the
short cytoplasmic tail of endoglin in endothelial
cells and with TbRII and betaglycan in endothe-
lial and other cell types, providing negative reg-
ulation of TGF-b signaling (Meng et al. 2006).

SIGNALING VIA TGF-b RECEPTORS
IS MODULATED BY INTERACTIONS
WITH NUCLEAR SHUTTLING PROTEINS

Although the TGF-b family receptors mainly
localize on the plasma membrane and intracel-
lular membranes (secretory or endocytic vesi-
cles), they have been reported to interact with
proteins whose best-characterized function is
exerted in the nucleus. This is topologically fea-
sible as the nuclear proteins shuttle to the cyto-
plasm. Regulation of TGF-b family receptor
function by nuclear proteins that shuttle to the
cytoplasm is not unique to the TGF-b receptors

and has been established for other signaling
pathways, including interferon receptors. The
alternative scenario, which involves cleavage of
the TbRI cytoplasmic domain and its translo-
cation to the nucleus, will be discussed later.

Transcriptional Cofactors: MED12 and c-Ski

MED12 is a component of the transcriptional
MEDIATOR complex in the nucleus; however,
some MED12 molecules reside in the cytoplasm
and bind to immature forms of TbRII and
inhibit its glycosylation thereby preventing its
cell-surface expression (Huang et al. 2012).
MED12 thus suppresses TGF-b signaling.
Knockdown of MED12 was shown to confer
resistance to several kinase inhibitors used as
cancer drugs through enhanced TGF-b signal-
ing (Huang et al. 2012).

c-Ski is another predominantly nuclear pro-
tein that can also be present in the cytoplasm,
where it suppresses TGF-b signaling by binding
to TbRI (Ferrand et al. 2010). The interaction
between c-Ski and TbRI promotes a constitu-
tive association of R-Smad/Smad4 complexes
to the receptor, whereby their nuclear translo-
cation is perturbed. c-Ski has also been shown
to suppress TGF-b signaling by repressing the
Smad transcriptional activity (Luo 2004); thus,
c-Ski suppresses TGF-b signaling at two differ-
ent levels.

TGF-b SIGNALING IS MODULATED
BY FEEDBACK MECHANISMS

TGF-b signaling is carefully controlled byseveral
feedback mechanisms operating at the receptor
level, as well as upstream and downstream of the
receptors. The feedback mechanisms operating
at the receptor level include TGF-b-induced ex-
pression of inhibitory Smad7, which then forms
a complex with the ubiquitin ligase Smurf and
the PP2C phosphatase; Smad7 binds to TbRI
and thus brings Smurf and PP2C close to the
receptors, promoting their ubiquitylation and
degradation and dephosphorylation and deac-
tivation, respectively (Hayashi et al. 1997; Nakao
et al. 1997; Kamiya et al. 2010). The nega-
tive feedback effect of Smad7 is balanced by
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TGF-b-induced expression of TGF-b-stimu-
lated clone 22 (TSC22), which competes with
Smad7 for binding to TbRI (Yan et al. 2011).

Smad7 binds to and inhibits essentially all
type I receptors in the TGF-b family, whereas its
sister protein Smad6 shows preferential binding
and inhibitory activity toward the BMP type I
receptors ALK-3 and ALK-6 (Goto et al. 2007).
Both inhibitory Smads cooperate in suppress-
ing the physiological BMP signaling during dif-
ferentiation of mesenchymal progenitor cells to
osteoblasts (Maeda et al. 2004). This happens
via a rapid and direct induction of Smad6 ex-
pression by the primary BMP stimulus, fol-
lowed by activation of autocrine TGF-b signal-
ing, which then induces a second wave of Smad7
expression that, together with the preexisting
Smad6, shuts down BMP receptor activity in a
more sustained manner and limits the rate of
differentiation to osteoblasts (Maeda et al.
2004). BMP signaling induces Smad6 expres-
sion, which then down-regulates the type I re-
ceptors (Ishida et al. 2000). Such receptor
down-regulation by inhibitory Smads may con-
tribute to the bulk of type I receptors in the cell.
On the other hand, Smad6 has been shown to be
methylated by the methyltransferase PRMT1
(Xu et al. 2013). PRMT1 bound to the type II
receptor methylates Smad6, which is bound to
the type I receptor, only after ligand-induced
heteromeric receptor complex formation. This
modification of Smad6 releases the BMP type I
receptor from the negative control of Smad6
and allows type I receptors to phosphorylate
BMP-specific R-Smads (Xu et al. 2013). Thus,
the feedback induction of Smad6 (or Smad7)
levels by BMP (or TGF-b) signaling may indi-
cate the necessity to reestablish steady-state re-
ceptor pools of low or no activity at all.

TGF-b stimulation also induces the expres-
sion of the serine/threonine kinase salt-induc-
ible kinase (SIK) of the AMP-activated protein
kinase (AMPK) family, which promotes ubiqui-
tylation and degradation of TbRI, in a Smad7-
dependent manner (Kowanetz et al. 2008; Lönn
et al. 2012). Although SIK is also induced by
BMP signaling (Kowanetz et al. 2004), the im-
pact of this kinase in regulating BMP receptor
activity or stability has not yet been analyzed.

SIGNALING VIA SMAD AND NON-SMAD
PATHWAYS

After TbRII-induced phosphorylation and ac-
tivation of TbRI, TbRI phosphorylates Smad2
and 3 in their carboxy-terminal SSXS motifs
(Abdollah et al. 1997; Souchelnytskyi et al.
1997). Type I receptors for activin and nodal,
ALK-4 and ALK-7, respectively, also phosphor-
ylate Smad2 and 3, whereas the BMP type I re-
ceptors ALK-2, -3, and -6 preferentially phos-
phorylate Smad1, 5, and 8. ALK-1 is a type I
receptor for TGF-b, but also binds (e.g., BMP-
9 and 10) (David et al. 2007) and phosphory-
lates Smad1, 5, and 8 (Goumans et al. 2003).
However, the specificity in R-Smad phosphory-
lation is not absolute, and TGF-b has been
shown to phosphorylate also Smad1 and 5
(Liu et al. 1998), via TbRI (Liu et al. 2009b;
Wrighton et al. 2009b), or ALK-2 and ALK-3
(Daly et al. 2008).

The epitope in the type I receptors of the
family that is responsible for the selectivity is the
L45 loop of the kinase domain, which binds to
the L3 loop and the adjacent a-helix 1 in the
carboxy-terminal MH2 domains of Smads
(Feng and Derynck 1997; Lo et al. 1998). The
binding is stabilized by interactions between
the phosphorylated GS domain of TbRI and
Smads; however, in view of the high conserva-
tion of the GS domain between the seven type
I receptors, this interaction is likely to be less
selective.

After phosphorylation by TbRI, Smad2 and
3 dissociate from the receptor and form trimeric
complexes with Smad4. Such complexes can
consist of one molecule of Smad4 together
with two Smad2, two Smad3, or one each of
Smad2 and Smad3. The same scenario applies
to the BMP-specific Smads. Smad complexes
are translocated to the nucleus by specific
mechanisms, where they regulate the transcrip-
tion of target genes, in cooperation with other
coactivators, corepressors, or transcription fac-
tors (Massagué et al. 2005).

Whereas the Smad pathways are of crucial
importance for TGF-b signaling, there are
also non-Smad signaling pathways initiated by
the activated TGF-b receptors, including the

TGF-b Family Receptors

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a022053 15



Erk1/2, JNK and p38 MAP kinase pathways,
PI3-kinase, and Src and Rho GTPases (Mousta-
kas and Heldin 2005).

One mechanism whereby TGF-b stimula-
tion can activate the Erk1/2 MAP kinase is via
recruitment of the adaptor Shc to tyrosine phos-
phorylated residues in TbRI, as described above.
The adaptor Grb2 in complex with Sos1, a nu-
cleotide exchange protein for Ras, can then bind
to tyrosine-phosphorylated residues on Shc, and
the activated Ras mediates activation of the
Erk1/2 MAP kinase pathway (Lee et al. 2007).
Activation of Erk1/2 downstream of tyrosine
kinase receptors have been shown to mediate a
growth stimulation, and may thus account for
the mitogenic effect of TGF-b seen in certain cell
types. A possible explanation for the different
efficiency in TGF-b-induced Erk1/2 MAP ki-
nase activation came from the study of TGF-b
signaling in dermal versus epidermal cells. In
dermal cells, where TbRII levels are high, TGF-
b efficiently activated Erk1/2, whereas in epi-
dermal cells with low levels of TbRII, Erk1/2
activation was actually inhibited; artificial ex-
pression of TbRII in epidermal cells switched
these cells to Erk1/2 activation in response
to TGF-b stimulation (Bandyopadhyay et al.
2011). In this study, activation of Erk1/2 MAP
kinase was found to be TbRI-independent.

For several non-Smad pathways, the ubiq-
uitin ligase tumor necrosis factor receptor-asso-
ciated factor 6 (TRAF6) has a crucial role. There
is a consensus-binding motif for TRAF6 in the
juxtamembrane part of TbRI, as well as in ALK-
6 (Sorrentino et al. 2008). TGF-b stimulation
enhances the binding of TRAF6 to TbRI and
promotes its activation, in a receptor kinase-
independent manner. The activated TRAF6
then ubiquitylates the MAP-kinase kinase ki-
nase TGF-b activated kinase 1 (TAK1), leading
to its activation (Sorrentino et al. 2008; Yama-
shita et al. 2008; Kim et al. 2009). TAK1 then
phosphorylates and activates the MAP kinase
kinase (MKK) 3 or 6, which activate the p38
MAP kinase; all three kinases of this pathway
bind to Smad7, which acts as a scaffolding pro-
tein bringing the kinases close to each other and
close to TbRI, thereby facilitating TGF-b-in-
duced p38 activation. p38 is an important me-

diator of TGF-b-induced apoptosis and EMT.
Another member of the TRAF family (i.e.,
TRAF4), has also been implicated in the activa-
tion of TAK1 (Zhang et al. 2013a). As TAK1
signaling is primed, TRAF4 ubiquitylates
Smurf2 and promotes recruitment of the
USP15 deubiquitylase, causing TbRI stabiliza-
tion and enhanced TGF-b signaling (Zhang
et al. 2013a). An additional ubiquitin ligase, X-
linked inhibitor of apoptosis (XIAP) associates
with the TbRI in breast cancer cells and pro-
motes ubiquitylation of TAK1, which then acti-
vates nuclear factor kB (NF-kB) transcriptional
activity (Neil et al. 2009). XIAP enhances both
Smad2/3 and TAK1/NF-kB signaling and con-
tributes to prometastatic responses to TGF-b.

In addition, TRAF6 has been shown to be
involved in TGF-b-induced intramembrane
cleavage of TbRI, resulting in the release of its
intracellular domain, which then is translocated
to the nucleus where it drives an invasiveness
program (Mu et al. 2011). First, TGF-b pro-
motes the activation of the metalloproteinase
ADAM17 (also called TACE), in a TRAF6- and
protein kinase C (PKC)–z-dependent manner,
which results in cleavage of TbRI just outside
the plasma membrane releasing the extracellu-
lar domain (Liu et al. 2009a; Mu et al. 2011); the
remaining plasma membrane–attached part of
the receptor then becomes susceptible to an ad-
ditional cleavage by g-secretase in the trans-
membrane segment, which releases the intracel-
lular domain (Gudey et al. 2014).

TAK1 is not only activated by TGF-b, but
BMP-2 and BMP-4 also induce receptor-medi-
ated activation of TAK1, followed by MKK3/6
activation and p38 MAP kinase signaling, a
pathway that mediates critical events during
early embryogenesis (Shibuya et al. 1998). The
in vivo role of TAK1 as a mediator of BMP sig-
naling is also supported by silencing the expres-
sion of this kinase in chondrocytes, where dif-
ferentiation is impaired (Shim et al. 2009), and
in the germline causing vascular defects similar
to the knockout of Smad5 (Jadrich et al. 2006).
Interestingly, neural crest–specific inactivation
of TAK1 expression caused overall craniofacial
hypoplasia, including cleft palate, and in addi-
tion to the defective p38 MAP kinase signaling
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downstream of TGF-b and BMP, these animals
also showed defective R-Smad phosphoryla-
tion, especially at their linker region, suggesting
a central role of TAK1 as a coordinator of both
MAP kinase and Smad functions in vivo (Yu-
moto et al. 2013).

TGF-b stimulation has also been shown to
activate PI3-kinase (Yi et al. 2005) and the ty-
rosine kinase Src (Galliher and Schiemann
2006), but the mechanisms involved remain to
be elucidated. The carboxy-terminal tail of
BMPRII also binds Src and BMP signaling neg-
atively regulates Src activity; on the other hand,
BMPRII mutations associated with PAH release
the associated Src from the receptor and thus
permit more active signaling by the Src kinase
that contributes to overproliferation associated
with this disease (Wong et al. 2005).

In addition to phosphorylating TbRI,
TbRII contributes to signaling by phosphory-
lating other substrates. Thus, the polarity com-
plex protein Par6 interacts with TbRI, which
presents it to TbRII, whereafter TbRII phos-
phorylates Par6 (Ozdamar et al. 2005). This
leads to the recruitment of the ubiquitin ligase
Smurf1, which polyubiquitylates the small
GTPase RhoA and thereby promotes its protea-
somal degradation. Because RhoA regulates the
dynamics of tight junctions and the actin fila-
ments that support the assembly and function of
such junctions, its loss causes tight junction dis-
solution. On the BMP side, the long carboxy-
terminal tail of BMPRII recruits LIM kinase 1
(LIMK1), which remains inactive and thus is
prohibited from phosphorylating cofilin, the
inhibitor of actin polymerization (Foletta et al.
2003). Because LIMK1 inactivates cofilin, the
action of BMPRII promotes cofilin activity and
limits actin polymerization. However, an alter-
native mechanism has also been observed dur-
ing neuronal differentiation, whereby binding of
LIMK1 to BMPRII activates the kinase together
with the Cdc42 small GTPase, promoting actin
polymerization and dendrite formation (Lee-
Hoeflich et al. 2004).

TbRII also phosphorylates the parathyroid
hormone (PTH) type 1 receptor (PTH1R).
PTH1R is a G protein–coupled receptor that
promotes bone formation; its signaling is sup-

pressed by phosphorylation by TbRII, which
facilitates the endocytosis of PTH1R (Qiu
et al. 2010).

TGF-b RECEPTOR REGULATION BY
ENDOCYTOSIS

TGF-b stimulated receptor complexes are inter-
nalized via clathrin-coated pits into early endo-
somes (Hayes et al. 2002; Di Guglielmo et al.
2003), which is necessary for Smad activation
(Penheiter et al. 2002). The internalization is
dependent on interaction with the b2-adaptin
subunit of the clathrin-associated adaptor com-
plex AP2 (Yao et al. 2002). In the endosomes,
the receptors encounter Smad anchor for recep-
tor activation (SARA), which facilitates the pre-
sentation of Smad2, and to some extent Smad3,
to TbRI and promotes their phosphorylation
(Fig. 3) (Tsukazaki et al. 1998). SARA cooper-
ates with the cytoplasmic promyelocytic leuke-
mia (cPML) tumor suppressor protein (Lin
et al. 2004) and with the adaptor protein dis-
abled-2 (DAB2) (Hocevar et al. 2001), which
stabilize the complex. In an analogous manner,
endofin acts as an anchor for Smad1 in signal-
ing via BMP receptors (Shi et al. 2007). In the
rest of this section, we will focus on TGF-b re-
ceptor endocytosis, which is best understood.
BMP receptor endocytosis follows relatively
similar mechanisms and has recently been re-
viewed (Ehrlich et al. 2012).

If clathrin-dependent trafficking of TGF-b
receptors is perturbed, TGF-b-induced R-Smad
phosphorylation and signaling is suppressed,
showing the importance of internalization for
TGF-b signaling via Smad molecules (Hayes
et al. 2002; Di Guglielmo et al. 2003). After
internalization, most of the TGF-b receptors
are recycled back to the cell surface and can
serve again (Di Guglielmo et al. 2003). Both
internalization and recycling of TGF-b recep-
tors occur in the absence and presence of ligand
binding (Mitchell et al. 2004). Recycling of
TbRI is promoted by interaction with the adap-
tor CIN85 and is dependent on Rab11-contain-
ing recycling vesicles (Yakymovych et al. 2015),
and recycling of TbRII is promoted by the adap-
tor protein DAB2 (Penheiter et al. 2010). More-
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over, there appears to exist an intracellular pool
of TGF-b receptors (Wu and Derynck 2009),
which can be mobilized to presentation at the
cell surface by Akt-induced phosphorylation
of the endosomal membrane-associated Rab-

GTPase AS160 (Budi et al. 2015). Akt is activat-
ed by PI3-kinase (e.g., downstream of tyrosine
kinase receptors), such as the insulin receptor;
thus, activation of such receptors makes cells
more susceptible to TGF-b stimulation.
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Figure 3. Internalization and intracellular sorting of transforming growth factor b (TGF-b) receptors. Ligand-
induced TGF-b receptor complexes in an active, signaling form are shown. Single receptor subunits or oligomeric
receptor complexes without ligand are not shown for simplicity. Complex N-glycans attached to the extracellular
domain are shown by red chains. TGF-b signaling via Smads or non-Smad mediators can be initiated at the cell
surface in clathrin-coated pits or in earlyendosomes. The transmembrane metalloproteinase ADAM12 promotes
TGF-b receptor endocytosis. The membrane-bound adaptor protein SARA, and the adaptors DAB2, cPML,
AS160, and CIN85 participate in the early steps of endocytosis and recycling, positively regulate receptor
signaling. Receptors can recycle via the recycling endosome back to the cell surface (possibly in the absence of
ligand; not shown), a process that is promoted by CIN85. The retromer associates with TbRII via its subunit
Vps26 and promotes recycling. Moreover, AS160 promotes translocation of intracellularly located receptors to
the cell surface. Receptors can enter the late endosome and either recycle or continue to the lysosomes where final
receptor degradation takes place. Receptors internalized by lipid rafts enter caveolin-positive vesicles and even-
tually reach to lysosomes. TbRI binds Smad7, which carries several ubiquitin ligases (E2, E3) and deubiquitylases
(DUBs) that regulate the rate and degree of ubiquitylation of the receptor (green molecules). Smad7 can also
associate with ubiquitin ligases and DUBs that control its own ubiquitylation, and thus indirectly affect receptor
internalization and degradation (red molecules). Proteasomal degradation of receptors and regulatory proteins
occur during the internalization and sorting processes (not shown). Some of the molecules depicted in the figure
have not been discussed in the text, such as UbcH7, WWP1, ARK, UCH37, AMSH, and CYLD. For authoritative
discussion of the mechanisms of ubiquitylation and deubiquitylation during TGF-b family signaling, the reader
is addressed to recent review articles (De Boeck and ten Dijke 2012; Herhaus and Sapkota 2014).
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TbRII phosphorylates the carboxyl tail of
betaglycan, which promotes clathrin-depen-
dent endocytosis of the TGF-b receptor com-
plex (Chen et al. 2003). TbRII also binds the
retromer vacuolar protein-sorting protein 26
(Vps26) in a TGF-b-independent manner;
this interaction was found to be of crucial im-
portance for proper receptor recycling and for
insertion of the receptor on the basolateral side
of polarized MDCK epithelial cells (Yin et al.
2013).

In addition to internalization via clathrin-
coated pits, which promotes Smad signaling,
TGF-b receptors can be internalized via lipid
rafts into caveolin-coated vesicles, which pro-
motes receptor degradation (Fig. 3) (Razani
et al. 2001). Through this pathway, TGF-b re-
ceptors interact with the Smad7/Smurf2 ubiq-
uitylation complex and are degraded in pro-
teasomes and lysosomes (Di Guglielmo et al.
2003). Not only TbRII and TbRI, but also be-
taglycan can be internalized by either clathrin-
dependent or clathrin-independent mecha-
nisms (Finger et al. 2008). Clathrin-indepen-
dent internalization of betaglycan seems to be
required for efficient activation of both Smad2
and p38 MAP kinase phosphorylation. Phos-
phorylation of betaglycan on Thr841 by TbRII
promotes the association of the scaffolding pro-
tein b-arrestin, which mediates interaction with
flottilin of lipid rafts and promotes endocytosis
of betaglycan (Chen et al. 2003). TbRII was
found to bind the transmembrane metallopro-
teinase ADAM12, which, in a protease-inde-
pendent manner, promotes sorting of TbRII
to early endosomes, competes with its binding
to Smad7, and thereby prevents its degradation
(Atfi et al. 2007). Constitutive TGF-b receptor
internalization can also be regulated by the de-
gree of N-linked glycosylation of the receptors
(Partridge et al. 2004). The b1,6-N-acetyl-glu-
cosaminyl-transferase V (Mgat5) is transcrip-
tionally up-regulated in human cancers and gly-
cosylates the TGF-b receptors leading to
prolonged residence of the receptors on the
cell surface.

Both TbRI and TbRII are localized to the
basolateral part of polarized epithelial cells
(Murphy et al. 2004). The delivery to the baso-

lateral side of TbRII is dependent on an
LTAxxVAxxF motif between amino acid residues
529 and 538 in the receptor (Murphyet al. 2007).
Betaglycan also localizes to the basolateral part
of polarized mammary epithelial cells, and mu-
tation of Pro826 in the short cytoplasmic do-
main of this receptor caused loss of cell polarity
and induction of EMT (Meyer et al. 2014).

MUTATIONS OF SERINE/THREONINE
KINASE RECEPTOR GENES IN DISEASES

Mutations in genes encoding members of the
serine/threonine kinase receptor family have
been observed in a number of different diseases.

Malignancies

Inactivating mutations in the TGFBR2 gene are
common in carcinomas of colon, rectum, blad-
der, head, and neck, implying that TGF-b sig-
naling serves an important tumor-suppressive
role in these tissues (Kandoth et al. 2013). In-
terestingly, mutations in TGF-b receptor genes
are much less common in, for example, breast
cancer and leukemias. Cancer development in
the intestinal epithelium presents one of the
best-characterized examples of tumor suppres-
sor functions of TGF-b and BMP signaling. The
gene-encoding TbRII is frequently mutated
(30% of all cases) in colorectal cancer patients
(Biswas et al. 2008). A characteristic subclass of
colorectal malignancy is known as microsatellite
instable (MSI) tumors, and, in such cases, the
gene encoding TbRII is mutated with a frequen-
cy of higher than 90%. MSI tumors have defec-
tive mismatch repair machineries that frequent-
ly lead to replication errors, especially when the
DNA sequence contains long stretches of ade-
nine- or thymidine-based deoxynucleotides.
Exon 3 of the TGFBR2 gene contains a polyade-
nine tract that is mutated and which has been
classified as the BAT-RII mutant receptor gene,
resulting in frameshift mutations that encode
prematurely terminated, in other words, trun-
cated mutant receptors (Biswas et al. 2008). In-
terestingly, the development of such mutant
TGF-b receptors has been proposed to result
from the combination of a hypermutable geno-
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mic location and a potent selection process that
promotes the evolution of intestinal epithelial
cells that show resistance to the potent antipro-
liferative signals of TGF-b (Biswas et al. 2008).
Not only TbRII but also TbRI can suffer from a
similar hypermutable polyadenine tract caused
by mismatch repair defects, and the mutant al-
lele known as TbRI6A has been proposed to
predispose to colon cancer with a frequency of
100%; however, careful examination of cohorts
of colon cancer patients carrying a mutation in
this genetic locus has generated certain doubts
as to whether such mutations are causative
elements in the development of intestinal tu-
mors (Bian et al. 2005). Another type of intes-
tinal malignancy, the hereditary nonpolyposis
colorectal cancer that does not depend on mis-
match repair defects, shows mutations in the
BMPR1A/ALK3 gene; genetic screening for
this predisposing gene is warranted for signifi-
cant cohorts of families with genealogical his-
tories on this type of cancer (Nieminen et al.
2011).

Not only colorectal cancer depends on ge-
netic predisposition that maps to the TGF-b
receptor genes. B lymphocyte malignancies,
and especially chronic lymphocytic leukemias,
frequently develop resistance to the antiprolifer-
ative actions of TGF-b; this can be attributable
to mutations in the signal sequence of TbRI,
causing a threshold effect as fewer receptors
reach the plasma membrane, rendering the sus-
ceptible B cells prone to disobey physiological
TGF-b signaling (Schiemann et al. 2004).

Juvenile Polyposis Syndrome

Juvenile polyposis syndrome (JPS) patients de-
velop hamartomatous polyps in the intestine,
which is associated with an increased risk for
adenocarcinoma. Germline loss-of-function
mutations in the ALK3 gene has been observed
in 20%–25% of JPS patients (Howe et al. 2001,
2004). BMP signaling is known to antagonize
Wnt pathway function in the intestinal stem-cell
compartment, causing a balanced generation of
intestinal stem cells during the life span of the
intestinal epithelium (He et al. 2004). In addi-
tion, physiological Wnt-b-catenin signaling de-

pends on the balanced activity of the PI3-ki-
nase/Akt kinases, which is under the control
of the phosphatase PTEN. It is, therefore, in-
triguing that JPS patient intestinal epithelial
cells show mutations in the genes encoding
BMPRIA/ALK-3, Smad4, and PTEN, develop-
ing defective BMP pathways and hyperactive
Wnt-b-catenin signaling, thus promoting an
imbalanced stem-cell production that promotes
hyperplastic growth (He et al. 2004). From a
structural point of view, it is very interesting
that specific mutations that accumulate in the
BMPR1A/ALK 3 gene map in the region encod-
ing the extracellular domain but not the ligand-
binding interface of the receptor (Kotzsch et al.
2008). Thus, structural modeling suggests that
the ALK-3 gene mutations affect the global fold-
ing of the ectodomain of this receptor, thus
making the mutants resistant to the physiolog-
ical action of BMPs in the intestinal microenvi-
ronment, causing JPS as explained above.

Hereditary Hemorrhagic Telangiectasia

Hereditary hemorrhagic telangiectasia (HHT)
is an autosomal dominant vascular disorder,
which is characterized by mucocutanous telan-
giectases and arteriovenous malformations. It
has been shown that heterozygous mutations
in the genes for endoglin and ALK-1 cause
HHT1 and HHT2, respectively (McAllister
et al. 1994; Johnson et al. 1996; Abdalla et al.
2005). These observations suggest that endoglin
and ALK-1 operate in the same signaling path-
way in endothelial cells, and that perturbation
of either of them can cause HHT. Because ALK-
1 signaling in endothelial cells was found to be
independent of TbRII, the ligand involved is
unlikely to be a TGF-b isoform; possibly
BMP-9 or BMP-10 are the most important ac-
tivators of ALK-1 in vivo (Park et al. 2008).

Loeys–Dietz Syndrome, Marfan Syndrome,
and Familial Thoracic Aortic Aneurysms and
Dissections

Loeys–Dietz syndrome (LDS), Marfan syn-
drome (MFS), and familial thoracic aortic an-
eurysms and dissections (TAAD) are diseases
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that are characterized by skeletal abnormalities,
aortic dilations, aneurysms, and ectopia lentis;
these diseases involve alterations in TGF-b sig-
naling (Neptune et al. 2003; Habashi et al.
2006), including mutations in the genes encod-
ing TbRI and TbRII (Mizuguchi et al. 2004;
Loeys et al. 2005, 2006; Pannu et al. 2005; Singh
et al. 2006; LeMaire et al. 2007). A quantitative
analysis of different TbRII mutants revealed a
correlation between phenotypic severity and
loss of Smad signaling activity (Horbelt et al.
2010).

Idiopathic Pulmonary Arterial Hypertension

Idiopathic pulmonary arterial hypertension
(IPAH) is characterized by an increased pulmo-
nary artery pressure leading to failure of the
right ventricle of the heart (Eddahibi et al.
2002), and involves loss-of-function mutations
in the gene encoding the BMPRII (Machado
et al. 2001; Thomson et al. 2001). Mutations
have been observed in the part of the gene en-
coding the extracellular domain, the kinase do-
main, as well as the carboxy-terminal extension
that is characteristic for this receptor. The mu-
tations in the carboxy-terminal tail may perturb
interaction with Trb3; because Trb3 promotes
proteasomal degradation of the ubiquitin ligase
Smurf1 and thus stabilizes the receptor and pro-
motes signaling, loss of this interaction sup-
presses signaling via this receptor (Chan et al.
2007). Trb3 can be down-regulated by the ac-
tion of miR-24, whose expression is induced by
PDGF signaling in vascular smooth muscle cells
(Chan et al. 2010). This mechanism explains
how PDGF can antagonize BMP signaling and
thus promote smooth muscle–cell proliferation
bypassing the quiescence induced by BMPs.

Fibrodysplasia Ossificans Progressiva

Fibrodysplasia ossificans progressive (FOP) is a
congenital heterotopic ossification disorder,
which is characterized by endochondral bone
lesions in soft tissues, specifically following in-
jury or inflammation (Kaplan et al. 2008). FOP
is caused by activating mutation in the sequence
of the ACVR1/ALK2 gene that encodes the

GS domain of ActRI/ALK-2 (Shore et al.
2006; Kaplan et al. 2009). The mutated receptor
requires the presence of a type II receptor, either
the BMP type II receptor or ActRII, for full
activity; the kinase activity of the type II recep-
tor is not needed suggesting that it acts as a
scaffolding molecule (Bagarova et al. 2013). In-
terestingly, the most common ACVR1 muta-
tion, resulting in an R206H substitution, was
shown to induce FOP by gaining responsiveness
to activin stimulation, which normally antago-
nizes BMP signaling and prevents bone forma-
tion (Hatsell et al. 2015). Thus, treatment with
activin antibodies offers a possible therapy for
patients with FOP.

Diffuse Intrinsic Pontine Glioma

Activating mutations of ACVR1/ALK2 have
also been found in about 20% of diffuse intrin-
sic pontine gliomas (DIPGs) (Buczkowicz et al.
2014; Taylor et al. 2014). Such mutations were
linked to increased phosphorylation of Smad1,
5, and 8, suggesting that, in this type of tumor,
activation of BMP Smads has a protumorigenic
effect.

INHIBITION OF SIGNALING VIA
PHARMACOLOGICAL TARGETING
OF TGF-b RECEPTORS

The fact that increased activity of TGF-b signal-
ing is associated with tumor progression, fibro-
sis, immunosuppression, and other diseases,
has prompted the development of TGF-b sig-
naling inhibitors (Akhurst and Hata 2012).
Such inhibitors include inhibitory antibodies
against TGF-b or TGF-b receptors (Zhong et
al. 2010) or ligand traps consisting of soluble
extracellular domains of TGF-b receptors. A
soluble TbRII extracellular domain has been
shown to inhibit tumor progression in animal
tumor models (Saunier and Akhurst 2006), and
a soluble ALK-1 extracellular domain has been
shown to have antiangiogenic properties and to
inhibit tumor growth in mouse models (Cunha
et al. 2010). Moreover, an antibody against
ALK-1 was found to inhibit endothelial cell
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sprouting and angiogenesis (van Meeteren et al.
2012).

Low molecular weight inhibitors of the
TGF-b receptor kinases represent another type
of TGF-b inhibitor. These compounds often
compete with binding of ATP to the ATP-bind-
ing site of the kinase, and several of them inhibit
the TbRI kinase selectively, but often also inhib-
it the activin type I receptor ALK-4 and the no-
dal type I receptor ALK-7 (Yingling et al. 2004).
TbRI kinase inhibitors have been shown, in an-
imal models, to inhibit invasion and metastasis
of, for example, breast cancer cells (Bandyopad-
hyay et al. 2006; Ge et al. 2006; Ehata et al. 2007;
Liu et al. 2012), melanoma cells (Mohammad
et al. 2011), glioma cells (Uhl et al. 2004; Zhang
et al. 2011), and mesothelioma cells (Suzuki
et al. 2007). The effect of the inhibitors include
inhibition of mesenchymal transition of the tu-
mor cells, activation of the immune system, in-
hibition of angiogenesis, inhibition of osteolysis
preventing bone metastasis, and normalization
of tumor stroma. In a recent clinical dose-
escalation analysis, the TbRI kinase inhibitor
LY2157299 monohydrate (also named galuni-
sertib) proved to be efficacious against malig-
nant glioma (Rodon et al. 2015a,b). Previous
animal experiments reported severe cardiac
side effects of TbRI kinase inhibitors; however,
no cardiotoxicity was recorded in patients treat-
ed with galunisertib, providing support for the
possibility that anti-TGF-b drugs can be clini-
cally useful (Kovacs et al. 2015).

CONCLUDING REMARKS

The structural and functional properties of the
receptors for TGF-b family members have been
characterized during the last 20 years. We now
have insight into the three-dimensional struc-
tures of certain of these receptors, with or with-
out ligand bound, as well as their specificities
for ligand binding and functions during embry-
onic development and in the adult.

With regard to TbRI and TbRII, we know
that these receptors are carefully controlled by
posttranslational modifications, and that their
endocytosis and intracellular sorting are crucial
for their signaling. Explaining further why

TbRII functions via a constitutively active ki-
nase mode instead of activating its kinase activ-
ity after ligand binding may provide deeper
understanding of the early signaling events by
TGF-b family receptors. Signaling via Smad
molecules has been explored in some detail,
but we still do not understand the full repertoire
of non-Smad signaling pathways, or their
mechanisms of activation or function.

With the aim of treating diseases in which
TGF-b signaling is overactive, including ad-
vanced cancers, TGF-b signaling receptors
have been targeted with some encouraging re-
sults. Future studies will be aimed at exploring
the efficacy of such inhibitors for treatment of
various tumors and tumor subtypes.
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Chen YG, Liu F, Massagué J. 1997. Mechanism of TGFb
receptor inhibition by FKBP12. EMBO J 16: 3866–3876.

Chen TP, Carter D, Garrigue-Antar L, Reiss M. 1998. Trans-
forming growth factor-b type I receptor kinase mutant

TGF-b Family Receptors

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a022053 23



associated with metastatic breast cancer. Cancer Res 58:
4805–4810.

Chen T, Yan W, Wells RG, Rimm DL, McNiff J, Leffell D,
Reiss M. 2001. Novel inactivating mutations of trans-
forming growth factor-b type I receptor gene in head-
and-neck cancer metastases. Int J Cancer 93: 653–661.

Chen W, Kirkbride KC, How T, Nelson CD, Mo J, Frederick
JP, Wang XF, Lefkowitz RJ, Blobe GC. 2003. b-arrestin 2
mediates endocytosis of type III TGF-b receptor and
down-regulation of its signaling. Science 301: 1394–
1397.

Chen XW, Wang HT, Liao HJ, Hu W, Gewin L, Mernaugh G,
Zhang S, Zhang ZY, Vega-Montoto L, Vanacore RM, et al.
2014. Integrin-mediated type II TGF-b receptor tyrosine
dephosphorylation controls SWIAD-dependent profi-
brotic signaling. J Clin Invest 124: 3295–3310.

Cunha SI, Pardali E, Thorikay M, Anderberg C, Hawinkles
L, Goumans MJ, Seehra J, Heldin CH, ten Dijke P, Pietras
K. 2010. Genetic and pharmacological targeting of acti-
vin receptor-like kinase 1 impairs tumor growth and an-
giogenesis. J Exp Med 207: 85–100.

Daly AC, Randall RA, Hill CS. 2008. Transforming growth
factor b-induced Smad1/5 phosphorylation in epithelial
cells is mediated by novel receptor complexes and is es-
sential for anchorage-independent growth. Mol Cell Biol
28: 6889–6902.

Datta PK, Moses HL. 2000. STRAP and Smad7 synergize in
the inhibition of transforming growth factor b signaling.
Mol Cell Biol 20: 3157–3167.

Datta PK, Chytil A, Gorska AE, Moses HL. 1998. Identifi-
cation of STRAP, a novel WD domain protein in trans-
forming growth factor-b signaling. J Biol Chem 273:
34671–34674.

David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S. 2007.
Identification of BMP9 and BMP10 as functional activa-
tors of the orphan activin receptor-like kinase 1 (ALK1)
in endothelial cells. Blood 109: 1953–1961.

De Boeck M, ten Dijke P. 2012. Key role for ubiquitin protein
modification in TGFb signal transduction. Ups J Med Sci
117: 153–165.

Derynck R, Miyazono K, ed. 2008. The TGF-b family.
Cold Spring Harbor Laboratory Press, Cold Spring
Harbor, NY.

Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL.
2003. Distinct endocytic pathways regulate TGF-b recep-
tor signalling and turnover. Nat Cell Biol 5: 410–421.

Dong M, How T, Kirkbride KC, Gordon KJ, Lee JD, Hempel
N, Kelly P, Moeller BJ, Marks JR, Blobe GC. 2007. The
type III TGF-b receptor suppresses breast cancer progres-
sion. J Clin Invest 117: 206–217.

Durrington HJ, Upton PD, Hoer S, Boname J, Dunmore BJ,
Yang J, Crilley TK, Butler LM, Blackbourn DJ, Nash GB,
et al. 2010. Identification of a lysosomal pathway regulat-
ing degradation of the bone morphogenetic protein re-
ceptor type II. J Biol Chem 285: 37641–37649.

Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K,
Imamura T, Miyazono K. 2001. Smurf1 interacts with
transforming growth factor-b type I receptor through
Smad7 and induces receptor degradation. J Biol Chem
276: 12477–12480.

Eddahibi S, Morrell N, d’Ortho MP, Naeije R, Adnot S. 2002.
Pathobiology of pulmonary arterial hypertension. Eur
Respir J 20: 1559–1572.

Ehata S, Hanyu A, Fujime M, Katsuno Y, Fukunaga E, Goto
K, Ishikawa Y, Nomura K, Yokoo H, Shimizu T, et al. 2007.
Ki26894, a novel transforming growth factor-b type I
receptor kinase inhibitor, inhibits in vitro invasion and
in vivo bone metastasis of a human breast cancer cell line.
Cancer Sci 98: 127–133.

Ehrlich M, Gutman O, Knaus P, Henis YI. 2012. Oligomeric
interactions of TGF-b and BMP receptors. FEBS Lett 586:
1885–1896.

Eichhorn PJ, Rodon L, Gonzalez-Junca A, Dirac A, Gili M,
Martinez-Saez E, Aura C, Barba I, Peg V, Prat A, et al.
2012. USP15 stabilizes TGF-b receptor I and promotes
oncogenesis through the activation of TGF-b signaling in
glioblastoma. Nat Med 18: 429–435.

Eickelberg O, Centrella M, Reiss M, Kashgarian M, Wells
RG. 2002. Betaglycan inhibits TGF-b signaling by pre-
venting type I-type II receptor complex formation. Gly-
cosaminoglycan modifications alter betaglycan function.
J Biol Chem 277: 823–829.

Elderbroom JL, Huang JJ, Gatza CE, Chen J, How T, Starr M,
Nixon AB, Blobe GC. 2014. Ectodomain shedding of
TbRIII is required for TbRIII-mediated suppression of
TGF-b signaling and breast cancer migration and inva-
sion. Mol Biol Cell 25: 2320–2332.

Faherty N, Curran SP, O’Donovan H, Martin F, Godson C,
Brazil DP, Crean JK. 2012. CCN2/CTGF increases expres-
sion of miR-302 microRNAs, which target the TGFb type
II receptor with implications for nephropathic cell phe-
notypes. J Cell Sci 125: 5621–5629.

Felici A, Wurthner JU, Parks WT, Giam LR, Reiss M, Kar-
pova TS, McNally JG, Roberts AB. 2003. TLP, a novel
modulator of TGF-b signaling, has opposite effects on
Smad2- and Smad3-dependent signaling. EMBO J 22:
4465–4477.

Feng XH, Derynck R. 1997. A kinase subdomain of trans-
forming growth factor-b (TGF-b) type I receptor deter-
mines the TGF-b intracellular signaling specificity.
EMBO J 16: 3912–3923.

Feng XH, Derynck R. 2005. Specificity and versatility in
TGF-b signaling through Smads. Annu Rev Cell Dev
Biol 21: 659–693.

Feng NH, Xu B, Tao J, Li PC, Cheng G, Min ZC, Mi YY, Wang
ML, Tong N, Tang JL, et al. 2012. A miR-125b binding site
polymorphism in bone morphogenetic protein mem-
brane receptor type IB gene and prostate cancer risk in
China. Mol Biol Rep 39: 369–373.

Ferrand N, Atfi A, Prunier C. 2010. The oncoprotein c-ski
functions as a direct antagonist of the transforming
growth factor-b type I receptor. Cancer Res 70: 8457–
8466.

Ferrigno O, Lallemand F, Verrecchia F, L’Hoste S, Camonis J,
Atfi A, Mauviel A. 2002. Yes-associated protein (YAP65)
interacts with Smad7 and potentiates its inhibitory activ-
ity against TGF-b/Smad signaling. Oncogene 21: 4879–
4884.

Finger EC, Lee NY, You HJ, Blobe GC. 2008. Endocytosis of
the type III transforming growth factor-b (TGF-b) re-
ceptor through the clathrin-independent/lipid raft path-

C.-H. Heldin and A. Moustakas

24 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a022053



way regulates TGF-b signaling and receptor down-regu-
lation. J Biol Chem 283: 34808–34818.

Finnson KW, Tam BY, Liu K, Marcoux A, Lepage P, Roy S,
Bizet AA, Philip A. 2006. Identification of CD109 as part
of the TGF-b receptor system in human keratinocytes.
FASEB J 20: 1525–1527.

Foletta VC, Lim MA, Soosairajah J, Kelly AP, Stanley EG,
Shannon M, He W, Das S, Massagué J, Bernard O. 2003.
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López-Casillas F, Payne HM, Andres JL, Massagué J. 1994.
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Mechanism of activation of the TGF-b receptor. Nature
370: 341–347.

Wrighton KH, Lin X, Feng X-H. 2008. Critical regulation of
TGFb signaling by Hsp90. Proc Natl Acad Sci 105: 9244–
9249.

TGF-b Family Receptors

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a022053 31



Wrighton KH, Lin X, Feng XH. 2009a. Phospho-control of
TGF-b superfamily signaling. Cell Res 19: 8–20.

Wrighton KH, Lin X, Yu PB, Feng XH. 2009b. Transforming
growth factor b can stimulate Smad1 phosphorylation
independently of bone morphogenic protein receptors.
J Biol Chem 284: 9755–9763.

Wu LY, Derynck R. 2009. Essential role of TGF-b signaling in
glucose-induced cell hypertrophy. Dev Cell 17: 35–48.

Wu S, Lin Y, Xu D, Chen J, Shu M, Zhou Y, Zhu W, Su X,
Zhou Y, Qiu P, et al. 2012. MiR-135a functions as a se-
lective killer of malignant glioma. Oncogene 31: 3866–
3874.

Xi Q, He W, Zhang XH, Le HV, Massague J. 2008. Genome-
wide impact of the BRG1 SWI/SNF chromatin remod-
eler on the transforming growth factor b transcriptional
program. J Biol Chem 283: 1146–1155.

Xia Y, Yu PB, Sidis Y, Beppu H, Bloch KD, Schneyer AL, Lin
HY. 2007. Repulsive guidance molecule RGMa alters uti-
lization of bone morphogenetic protein (BMP) type II
receptors by BMP2 and BMP4. J Biol Chem 282: 18129–
18140.

Xu J, Wang AHJ, Oses-Prieto J, Makhijani K, Katsuno Y, Pei
M, Yan LL, Zheng YG, Burlingame A, Brückner K, et al.
2013. Arginine methylation initiates BMP-induced Smad
signaling. Mol Cell 51: 5–19.

Yakymovych I, Yakymovych M, Zang G, Mu Y, Bergh A,
Landström M, Heldin CH. 2015. CIN85 modulates
TGFb signaling by promoting the presentation of
TGFb receptors on the cell surface. J Cell Biol 210:
319–332.

Yamashita H, ten Dijke P, Franzén P, Miyazono K, Heldin
CH. 1994. Formation of hetero-oligomeric complexes of
type I and type II receptors for transforming growth fac-
tor-b. J Biol Chem 269: 20172–20178.

Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE.
2008. TRAF6 mediates Smad-independent activation of
JNK and p38 by TGF-b. Mol Cell 31: 918–924.

Yan YT, Liu JJ, Luo Y, E C, Haltiwanger RS, Abate-Shen C,
Shen MM. 2002. Dual roles of Cripto as a ligand and
coreceptor in the nodal signaling pathway. Mol Cell Biol
22: 4439–4449.

Yan X, Lin Z, Chen F, Zhao X, Chen H, Ning Y, Chen YG.
2009. Human BAMBI cooperates with Smad7 to inhibit
transforming growth factor-b signaling. J Biol Chem 284:
30097–30104.

Yan X, Zhang J, Pan L, Wang P, Xue H, Zhang L, Gao X, Zhao
X, Ning Y, Chen YG. 2011. TSC-22 promotes transform-
ing growth factor b-mediated cardiac myofibroblast dif-
ferentiation by antagonizing Smad7 activity. Mol Cell Biol
31: 3700–3709.

Yan GJ, Zhang LX, Fang T, Zhang Q, Wu SG, Jiang Y, Sun
HX, Hu YL. 2012. MicroRNA-145 suppresses mouse
granulosa cell proliferation by targeting activin receptor
IB. FEBS Lett 586: 3263–3270.

Yang H, Fang F, Chang RM, Yang LY. 2013. MicroRNA-140–
5p suppresses tumor growth and metastasis by targeting
transforming growth factor b receptor 1 and fibroblast
growth factor 9 in hepatocellular carcinoma. Hepatology
58: 205–217.

Yao DY, Ehrlich M, Henis YI, Leof EB. 2002. Transforming
growth factor-b receptors interact with AP2 by direct
binding to b2 subunit. Mol Biol Cell 13: 4001–4012.

Ye G, Fu GD, Cui SY, Zhao SF, Bernaudo S, Bai Y, Ding YF,
Zhang YO, Yang BB, Peng C. 2011. MicroRNA 376c en-
hances ovarian cancer cell survival by targeting activin
receptor-like kinase 7: Implications for chemoresistance.
J Cell Sci 124: 359–368.

Yi JY, Shin I, Arteaga CL. 2005. Type I transforming growth
factor b receptor binds to and activates phosphatidylino-
sitol 3-kinase. J Biol Chem 280: 10870–10876.

Yin XQ, Murphy SJ, Wilkes MC, Ji Y, Leof EB. 2013. Retro-
mer maintains basolateral distribution of the type II
TGF-b receptor via the recycling endosome. Mol Biol
Cell 24: 2285–2298.

Yingling JM, Blanchard KL, Sawyer JS. 2004. Development
of TGF-b signalling inhibitors for cancer therapy. Nat
Rev Drug Discov 3: 1011–1022.

You HJ, Bruinsma MW, How T, Ostrander JH, Blobe GC.
2007. The type III TGF-b receptor signals through both
Smad3 and the p38 MAP kinase pathways to contribute
to inhibition of cell proliferation. Carcinogenesis 28:
2491–2500.

Yumoto K, Thomas PS, Lane J, Matsuzaki K, Inagaki M,
Ninomiya-Tsuji J, Scott GJ, Ray MK, Ishii M, Maxson
R, et al. 2013. TGF-b-activated kinase 1 (Tak1) mediates
agonist-induced Smad activation and linker region phos-
phorylation in embryonic craniofacial neural crest-de-
rived cells. J Biol Chem 288: 13467–13480.

Zeng Y, Qu XB, Li HL, Huang S, Wang SH, Xu QL, Lin RZ,
Han Q, Li J, Zhao RC. 2012. MicroRNA-100 regulates
osteogenic differentiation of human adipose-derived
mesenchymal stem cells by targeting BMPR2. FEBS Lett
586: 2375–2381.

Zhang W, Jiang Y, Wang Q, Ma X, Xiao Z, Zuo W, Fang X,
Chen YG. 2009a. Single-molecule imaging reveals trans-
forming growth factor-b-induced type II receptor dime-
rization. Proc Natl Acad Sci 106: 15679–15683.

Zhang Y, Li X, Qi J, Wang J, Liu X, Zhang H, Lin SC, Meng A.
2009b. Rock2 controls TGFb signaling and inhibits me-
soderm induction in zebrafish embryos. J Cell Sci 122:
2197–2207.

Zhang M, Kleber S, Rohrich M, Timke C, Han N, Tuetten-
berg J, Martin-Villalba A, Debus J, Peschke P, Wirkner U,
et al. 2011. Blockade of TGF-b signaling by the TGFb R-I
kinase inhibitor LY2109761 enhances radiation response
and prolongs survival in glioblastoma. Cancer Res 71:
7155–7167.

Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE,
Mickanin C, Huang H, Sheppard KA, Porter JA, Lu
CX, et al. 2012. USP4 is regulated by AKT phosphoryla-
tion and directly deubiquitylates TGF-b type I receptor.
Nat Cell Biol 14: 717–726.

Zhang L, Zhou FF, de Vinuesa AG, de Kruijf EM, Mesker
WE, Hui L, Drabsch Y, Li YH, Bauer A, Rousseau A, et al.
2013a. TRAF4 promotes TGF-b receptor signaling and
drives breast cancer metastasis. Mol Cell 51: 559–572.

Zhang Q, Sun HX, Jiang Y, Ding LJ, Wu SG, Fang T, Yan GJ,
Hu YL. 2013b. MicroRNA-181a suppresses mouse gran-
ulosa cell proliferation by targeting activin receptor IIA.
PLoS ONE 8: 59667.

C.-H. Heldin and A. Moustakas

32 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a022053



Zhong ZJ, Carroll KD, Policarpio D, Osborn C, Gregory M,
Bassi R, Jimenez X, Prewett M, Liebisch G, Persaud K,
et al. 2010. Anti-transforming growth factor b receptor II
antibody has therapeutic efficacy against primary tumor
growth and metastasis through multieffects on cancer,
stroma, and immune cells. Clin Cancer Res 16: 1191–
1205.

Zhou J, Lee PL, Lee CI, Wei SY, Lim SH, Lin TE, Chien S, Chiu
JJ. 2013. BMP receptor-integrin interaction mediates re-
sponses of vascular endothelial Smad1/5 and prolifera-
tion to disturbed flow. J Thromb Haemost 11: 741–755.

Zumbrennen-Bullough KB, Wu QF, Core AB, Canali S,
Chen WJ, Theurl I, Meynard D, Babitt JL. 2014. Micro-
RNA-130a is up-regulated in mouse liver by iron defi-
ciency and targets the bone morphogenetic protein
(BMP) receptor ALK2 to attenuate BMP signaling
and hepcidin transcription. J Biol Chem 289: 23796–
23808.

Zuo W, Huang F, Chiang YJ, Li M, Du J, Ding Y, Zhang T, Lee
HW, Jeong LS, Chen YL, et al. 2013. c-Cbl-Mediated
neddylation antagonizes ubiquitination and degradation
of the TGF-b type II receptor. Mol Cell 49: 499–510.

TGF-b Family Receptors

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a022053 33



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


