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Recent developments in studies of tumor heterogeneity have provoked new thoughts on
cancer management. There is a desperate need to understand influence of the tumor micro-
environment on cancer development and evolution. Applying principles and quantitative
methods from ecology can suggest novel solutions to fulfil this need. We discuss spatial
heterogeneity as a fundamental biological feature of the microenvironment, which has
been largely ignored. Histological samples can provide spatial context of diverse cell types
coexisting within the microenvironment. Advanced computer-vision techniques have been
developed for spatial mapping of cells in histological samples. This has enabled the appli-
cations of experimental and analytical tools from ecology to cancer research, generating
system-level knowledge of microenvironmental spatial heterogeneity. We focus on studies of
immune infiltrate and tumor resource distribution, and highlight statistical approaches for

addressing the emerging challenges based on these new approaches.

ancer is an evolutionary and ecological pro-
Ccess (Merlo et al. 2006). Concerted efforts
to study cancer evolution have enabled us to
map the landscape of cancer genetic diversity,
to track cancer evolution over time and space,
and to decipher the genetic drivers behind it
(Gerlinger et al. 2012; de Bruin et al. 2014; Ho-
bor et al. 2014; Misale et al. 2014; Arena et al.
2015; Siravegna et al. 2015; Yates et al. 2015;
Williams et al. 2016). Besides genetic drivers,
evolutionary forces can shape diversity through
the interplay between genetic variants and
environmental factors. There is accumulating
evidence to support the influence from the mi-
croenvironment on cancer progression and evo-
lution (Weinberg 2008; Junttila and de Sauvage
2013; Marusyk et al. 2014; Williams et al. 2016).

Genetic variations among neoplastic subclones
place them in competition with each other, al-
lowing them to occupy specialized niches in a
manner analogous to diverse species in ecosys-
tems (Greaves 2015; Nawaz and Yuan 2015). To
gain fitness advantages, cancer cells can actively
engage in constructing ecological niches by
modifying their surrounding environments,
such as modulating immune checkpoint path-
ways for immune evasion, co-opting fibroblasts
to provide growth factors, and stimulating
angiogenesis to obtain nutrients (Merlo et al.
2006; Greaves and Maley 2012). In turn, the
environment shapes cancer cell phenotypes by
providing selective pressure through a myriad
of mechanisms, including nutrient supply via
adjacent blood vessels, immune regulation, and
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tissue remodeling (Weinberg 2008; Junttila and
de Sauvage 2013; Greaves 2015). These cancer—
microenvironment interactions can have signif-
icant implications for cancer development and
evolution.

As such, there is a desperate need to under-
stand the roles of microenvironmental factors
during cancer progression and evolution (Junt-
tila and de Sauvage 2013; Greaves 2015). De-
cades of research on a related topic in ecology
have revealed insights on mechanisms, analyti-
cal approaches, and experimental pitfalls that
may aid our studies of ecological processes in
tumors. In this article, we summarize key mes-
sages from ecological theories and methods that
are relevant for understanding microenviron-
mental heterogeneity in human solid tumors.
Specifically, we outline (1) spatial heterogeneity
as a fundamental feature of the tumor microen-
vironment and its clinical implications, (2) ad-
vanced computer-vision techniques applied to
histology that enable spatial analysis of complex
tumors, (3) experimental and analytical tools
required to achieve a systematic understanding
of microenvironmental spatial heterogeneity,
(4) clinical significance of microenvironmental
spatial heterogeneity with regards to immune
infiltrate and tumor resource distribution, and
(5) statistical methods for addressing challenges
emerged from these new approaches.

CLINICAL SIGNIFICANCE OF
MICROENVIRONMENTAL SPATIAL
HETEROGENEITY

Spatial Heterogeneity Is a Fundamental
Feature of the Tumor Microenvironment

It is important to recognize that the orchestrat-
ed influence of microenvironmental compo-
nents on cancer is often accompanied by strong
regional differences (Gillies et al. 2012; Junttila
and de Sauvage 2013). Evidence of spatial var-
iations has been well documented in patholog-
ical observations (Clemente et al. 1996; Galon
etal. 2006; Kruger et al. 2013). This is analogous
to the environmental impacts that have been
frequently observed in natural ecosystems. For
example, riparian and desert regions coexist

within a small spatial distance in the Arizona
desert. As aresult, diverse plant species and phe-
notypes emerged with strong regional varia-
tions. Similarly, high spatial heterogeneity has
been observed in tumors, such as coexisting
vascular and hypoxic regions (Fig. 1) (Alfarouk
et al. 2013). Evidence of cancer genotype varia-
tion under different microenvironments has
emerged. In glioblastoma, cancer cells with
epidermal growth factor receptor (EGFR) am-
plification have been observed in poorly vascu-
larized areas, whereas platelet-derived growth
factor receptor (PDGFRA)-amplified cancer
cells were enriched near endothelial cells (Little
et al. 2012). This spatial association between
genetically different cancer cells and blood ves-
sels may be attributed to environmental adap-
tation, or the ability of cancer cells to modify
their environments. In both cases, a sufficient
knowledge of the spatial variability in the mi-
croenvironment would be useful for identifying
the driving factors of tumor heterogeneity.
The importance of spatial structure in bio-
logical systems has long been recognized by
ecologists (Tilman and Kareiva 1997). For ex-
ample, a geographical survey revealed environ-

Figure 1. Spatial heterogeneity of the tumor micro-
environment illustrated with an ovarian cancer his-
tological hematoxylin and eosin (H&E) tumor sec-
tion, where regional differences with respect to vessel
distribution can be seen.
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mental traits that allow successful adaptation
and establishment of invasive plant species
(Matesanz et al. 2015). Analysis of spatial dis-
persal patterns of zebra mussels in northern
America identified the most efficient way for
them to spread, thereby providing useful means
for intervention (Johnson and Padilla 1996).
These examples of geographical expansion of
invasive species show how studying spatial
structure can shed light on the driving factors
of an ecological process and suggest potential
interventions with parallels to studies of cancer
prognosis as well as treatment.

A New Generation of Diagnostic, Prognostic,
and Predictive Biomarkers

There is strong clinical and experimental evi-
dence to support the importance of tumor
microenvironment in cancer progression and
mediation of drug resistance (Gatenby and
Gillies 2008; Gillies et al. 2012). For example,
molecular subtyping has repeatedly revealed
new prognostic subtypes related to the micro-
environment (Finak et al. 2008; Tothill et al.
2008; Gentles et al. 2015); the presence of tu-
mor-infiltrating immune cells, cancer-associat-
ed fibroblasts, and vascular invasion has been
shown to be highly predictive of prognosis and
treatment response across different types of can-
cers (Hwang et al. 2008; Anderberg et al. 2009;
Denkert et al. 2010; Nakasone et al. 2012). Nev-
ertheless, the spatial dimensions of the tumor
microenvironment have only begun to attract
attention recently (Galon et al. 2006; Heindl
et al. 2015; Nawaz and Yuan 2015). Spatial
locations of immune cells have been shown to
correlate with clinical outcome in different can-
cers. In colorectal cancer, a prognostic factor
that incorporates type, density, and location of
immune cells outperformed traditional his-
topathological methods to stage cancer (Galon
etal. 2006). In estrogen receptor (ER)-negative/
human epidermal growth factor receptor 2
(Her2)-negative (Loi et al. 2013) and Her2-neg-
ative (Issa-Nummer et al. 2013) breast cancer
patients, a high degree of immune infiltration
in tumor stroma was found to be associated
with increased survival and complete response

rates, respectively. Recent developments in
computer vision has enabled ecological statis-
tics to be directly applied to histological sam-
ples, providing quantitative spatial hetero-
geneity measures of immune infiltrate that are
predictive of prognosis in breast cancer (Maley
et al. 2015; Nawaz et al. 2015; Yuan 2015) and
follicular lymphoma (Nelson et al. 2015). These
novel tumor features were shown to be inde-
pendent of clinical variables and immune cell
counts. A new generation of biomarkers beyond
traditional clinical parameters and cell counting
is on the horizon.

New Opportunities in Cancer Therapy

Applying principles from spatial ecology and
complexity of resource networks can suggest
novel solutions to the problem of therapeutic
resistance in cancer management. It can further
lead to other clinical innovations including the
development of efficient treatment strategies.
The problem of therapeutic resistance can be
fundamentally attributed to tumor heteroge-
neity. The emergency of drug resistance may
be partly explained by complex structures of
the tumor microenvironment. For instance,
spatial heterogeneity of nutrient resources rep-
licated in an ecologically designed microfluidic
device to mimic the bone marrow environment
can facilitate rapid emergence of chemotherapy
resistance in multiple myeloma cells (Wu et al.
2015). A substantial part of adaptive strategies
of resistant cells is to regulate ancient genes, sug-
gesting that phenotypic diversity may be more
rapidly achieved in this way to adapt to extreme
selective pressures.

Therefore, an understanding of microenvi-
ronmental heterogeneity can provide the basis
of effective therapeutic strategies. In ecology, it
is known that the most efficient way to kill a
species is by destroying its niche environment,
and this idea has been proposed for cancer ther-
apeutics (Walther et al. 2015). Effective uses of
therapies to disrupt cancer cell niches in their
own environment, such as antiangiogenic drugs
and immunotherapy, have the potential to
transform cancer management (Formenti and
Demaria 2013; Wood et al. 2014; Brahmer et
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al. 2015). To successfully apply this strategy in
personalized medicine, it is critical to recognize
that diverse environments can coexist within
the same tumor, as discussed before. Therefore,
an assessment of the spatial heterogeneity of
microenvironment in the first place can be a
step toward predicting treatment resistance and
avoiding selection of resistant populations.

COMPUTER VISION TO ENABLE RAPID
MAPPING OF MICROENVIRONMENTAL
SPATIAL STRUCTURE

Histology and imaging are excellent resources
for obtaining tumor spatial structure in large
quantities. Such spatial data, once quantitative-
ly analyzed, will aid the identification of clini-
cally relevant features, potentially yielding pre-
dictions more powerful than measurements of
cell abundance that ignore the spatial context.
With appropriate methodologies, studies of
pathohistological tumor sections can reveal the
spatial context of cancer—microenvironment
interactions at single-cell resolution, whereas
powerful imaging techniques allow us to track
the spatiotemporal changes in the microen-
vironment over the course of treatment. The
remaining part of this article will focus on re-
cent developments in analysis of histological
samples. Much more spatial- and texture-ori-
ented analyses have been proposed for imaging
data and are discussed extensively elsewhere
(Gatenby et al. 2013; Hu et al. 2015).

With advancing computing techniques, re-
markable progress in image analysis has been
made on objective assessment of cellular con-
text in digitized cancer histological sections.
The use of machine learning methods enables
automated identification of various cell types,
tumor components, and regions based on hu-
man expert input, namely, supervised learning
(Holmes et al. 2009; Basavanhally et al. 2010;
Tuominen et al. 2010; Balsat et al. 2011, 2014;
Beck et al. 2011; Doyle et al. 2012; Yuan et al.
2012; Lu et al. 2014). The computer compares a
new cell with what human experts call a cancer,
stromal, or other cell types and determines its
type based on morphological similarity (Fig. 2).
As a result, rapid mapping of the identities and

spatial locations of millions of cells is now pos-
sible. Just as large areas of land can be mapped
for population density variation, a tumor sam-
ple can be processed to map changes in density
of its constituent cells (Fig. 2). Such methods
thus offer a new opportunity for studying the
spatial structure of tumors. Nevertheless, there
are many accompanying challenges. It is well
known that image-analysis methods can be sen-
sitive to sample quality and variability; there-
fore, it is imperative that methods are developed
to accommodate the significant amount of var-
iation in histological samples (McCann et al.
2015). Comprehensive reviews in this special-
ized field are available (Gurcan et al. 2009; Ko-
thari et al. 2013). In this review, we will focus on
the next step following image analysis—spatial
analysis of the tumor microenvironment.

QUANTITATIVE ANALYSIS OF SPATIAL
HETEROGENEITY IN THE TUMOR
MICROENVIRONMENT

The first step in understanding heterogeneity is
to identify patterns. In ecology, spatial statistics
(Ripley 1984) has been widely applied to cap-
ture patterns of species and/or habitats. It is
recognized that, in many situations, direct mea-
surements of ecological processes can be impos-
sible (McIntire and Fajardo 2009). Thus, a rap-
idly emerging concept, “space as a surrogate,”
has been proposed for maximizing inference
about ecological processes through the analysis
of spatial patterns, rather than relying on time-
series data (McIntire and Fajardo 2009). Many
recent studies have successfully examined spa-
tial patterns to understand a diverse array of
ecological processes where experimental ma-
nipulation or direct measurements are difficult
to obtain or are not feasible (de Knegt et al.
2009; Sanders et al. 2013; Smith et al. 2013).
This bears high similarity with the situation in
cancer research, where the majority of data have
been gathered using biopsy and surgical resec-
tion samples. Experimental manipulation di-
rectly on human tissues without subjecting
them to further modification and selection is
almost impossible. Tissue-engineered models,
such as tumor spheroids and organoids, al-
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Figure 2. Spatial mapping of cancer and normal cells in histological images using automated image analysis
techniques. Shown are a breast cancer hematoxylin and eosin (H&E)-stained image and a spatial distribution
map of cell types identified by automated image analysis, including cancer cells (green), stromal cells (red), and

lymphocytes (blue).

though highly successful for expanding our
knowledge on drug resistance, can lack critical
interactions between cancer and the microenvi-
ronment, such as limited release of cytokines
(Villasante and Vunjak-Novakovic 2015). A
key benefit of using “space as a surrogate” in
studies of cancer is the amount of spatial data
a single tumor can provide alone. With thou-
sands or millions of cells as spatial points, a
statistically significant spatial pattern is more
likely to be generated by biological processes
than noise or biases. Here, we discuss current
progress in establishing the spatial heterogene-
ity of tumor microenvironments and how sys-
tematic studies have contributed to our under-
standing of tumor ecology.

Spatial Heterogeneity of Inmune Infiltrate

Interactions between cancer cells and immune
cells are an important component of the eco-

logical conditions in which cancer cells exist and
evolve (Greaves and Maley 2012). As discussed
above, an array of studies has established the
clinical significance of immune cell infiltrate
in a number of cancer types (Galon et al.
2006; Issa-Nummer et al. 2013; Loi et al. 2014;
Denkert et al. 2015). The spatial interactions
among immune and cancer cells generate com-
plex ecological dynamics that can ultimately in-
fluence tumor progression and response to
treatment (Demaria et al. 2005; Fridman et al.
2012; DenKkert et al. 2015; Gentles et al. 2015).
Ecology can provide a framework for under-
standing these complex dynamics beyond cell
abundance and predicting clinical outcomes.
Several ecological methods have been applied
to studying spatial patterns of immune infil-
trate, where strong predictors of clinical out-
come have been identified for different breast
cancer subtypes.
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Colocalization of Cancer and Immune Cells

Identical amounts and types of immune cells in
two tumors do not necessarily equate to the
same effect of immune infiltrate. Immune cell
distribution can vary dramatically in different
tumors. How immune cells distribute relative
to cancer cells may have profound clinical im-
plications. The Morisita—Horn index is a mea-
sure of similarity among community structure
in ecology (Morisita 1959; McIntosh et al.
2004; Scalon et al. 2011). It can be used to quan-
tify the extent of colocalization between two
or more species given their spatial structures.
For example, it was used to study predator—
prey interactions by establishing a positive as-
sociation between predator body size and prey
diversity (Radloff and Du Toit 2004). In breast
tumors, this index has been used for quantify-
ing colocalization of immune and cancer
cells (Fig. 3A) (Maley et al. 2015). Mathemati-
cally, the Morisita—Horn index uses the propor-
tional distribution of two or more variables
as input. To study the bivariate relationship be-
tween cancer and immune cells, the index is

defined as
2> pip
M = 12 2
>)+>.0)

where p! and p¢ are the proportion of all im-
mune cells and cancer cells within a tumor, re-
spectively, at a region 7, and 1 < i < R, where R
is the total number of regions into which a sam-
ple has been divided (Fig. 4). We will discuss
how tumor regions were defined in the next
section. The value of the Morisita—Horn index
ranges from 0 indicating no similarity or colo-
calization to 1 for the two structures being iden-
tical or perfectly colocalized.

Because the Morisita index measures colo-
calization, the opportunity to directly relate this
quantitative index with clinical outcome may
provide a clue as to the extent to which cancer
cells have evaded antitumor immune response
or recruited immune cells with protumor effect.
If a low Morisita score (low levels of colocaliza-
tion of immune and cancer cells) is associated
with a poor clinical outcome, this might suggest
that cancer cells have evolved immune evasion

strategies in these patients. A high Morisita
score (high levels of colocalization) associated
with a good prognosis might indicate effective
immune predation. On the other hand, a high
Morisita score associated with a poor prognosis
might indicate mutualistic interactions or co-
option of immune cells. When the Morisita—
Horn index was applied to 1026 breast cancer
samples following image analysis of the histo-
logical specimens, it was observed that a high
degree of colocalization between cancer and im-
mune cells was associated with significantly in-
creased probability of 10-year, disease-specific
survival in Her2-positive breast cancers (Maley
etal. 2015). This association likely suggests that
the presence of immune cells is indicative of
effective predation by the immune system in
Her2-positive cancer. But this effect is not evi-
dent in other subtypes of breast cancer, possibly
because of a less clearly defined antitumor effect
(e.g., effective predation) of the immune cells or
other unknown reasons.

The Morisita—Horn index has many advan-
tages over other community similarity indices.
Community similarity indices have been evalu-
ated in terms of their dependencies on sample
size, species diversity, and other confounding
factors (Wolda 1981). The Morisita index was
found to be among the most robust to sample
size and species diversity when compared with
other similarity measures. It was recommended
because of the small effect of sample size and
diversity, and, if logarithmic transformation of
data is required, the Morisita—Horn transfor-
mation can be used. Thus, the Morisita—Horn
index as an ecological measure presents a robust
option for quantifying spatial patterns in tu-
mors.

Immune-Cancer Hotspots

Another type of spatial pattern is spatial clus-
tering. Many methods have been proposed to
identify such a pattern. For example, statistical
tests such as the Ripley’s K function (Ripley
1976) can be used to confirm the presence of
spatial clustering. Alternatively, there are meth-
ods to identify specific regions where spatial
clustering exists, such as the hotspot analysis
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Figure 3. Schematic representation of cell spatial patterns captured by three statistical methods with histology
image examples: (A) Morisita index, (B) Getis—Ord hotspot analysis, and (C) intratumor lymphocyte ratio

(ITLR).

(Getis and Ord 1992). An advantage of the sec-
ond type of method is that specific regions of
interest can be identified, and this type of meth-
od has already been applied to the analysis of
tumor microenvironment. Getis—Ord hotspot
analysis (Getis and Ord 1992) was used to detect
significant levels of immune cell clustering, or

“Immune hotspots,” in histology sections (Fig.
3B) (Nawaz et al. 2015). Mathematically, z
scores are evaluated for each region for a specific
cell type in a sample, given by

_WjiCi —C Wi
B E :J ij% E :J ij
- b

“ SU
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Tessellation Colocalization

Figure 4. Quantifying cancer-immune cell colocalization using histological images. From left to right: hema-
toxylin and eosin (H&E) image of a breast cancer; classified cells in this image (cancer in green, lymphocyte in
blue, and stromal cells in red); Voronoi tessellation over this image using random cancer cells as seeds; measuring
cell colocalization based on the proportional data in the Voronoi grids (high colocalization in dark purple, and

low colocalization in light blue).

where S and U are two normalizing factors:

B ()

Y ;
R-1

where R is the total number of regions, ¢; is
the cell count for region j, ¢ is the mean value
of ¢ for all regions in the image, and w;; indi-
cates a neighborhood relationship between re-
gion 7 and j:

~_ J 1if j is a neighbor of i,
" 7] 0if jis not a neighbor of 1.

The z scores indicate whether statistically
significant clusters of specific cell types are
found for each spatial region. The same analysis
was separately applied to cancer and immune
cells. In ER-negative breast cancer, abundance
of cancer or immune hotspots was not associ-
ated with clinical outcome. However, when
combined, a so-called immune-cancer hotspot
score was defined as the fractional area within a
tumor, with an overlap of cancer and immune
hotspots. This was found to be significantly as-
sociated with favorable prognosis in ER-nega-
tive breast cancer (Nawaz et al. 2015).

Intratumor Lymphocyte Ratio (ITLR)

A quantitative ratio to represent the degree
of infiltration of immune cells into the tumor
has been proposed (Yuan 2015). Unsupervised
Gaussian mixture clustering (Fraley and Raftery
2003) was used to detect different types of lym-
phocytes based on their spatial proximity to
cancer cells (Fig. 5). The cluster with the short-
est distance to cancer cells was classified as in-
tratumor lymphocytes (Fig. 3C). This was used
to define a quantitative measure for a tumor,
the ITLR as

ITLR = 1L

e
where nyp, is the number of intratumor lym-
phocytes and n, is the total number of cancer
cells in a histological sample. In ER-negative/
Her2-negative breast cancer, high ITLR was
found to be associated with good disease-spe-
cific survival (Yuan 2015).

Comparison of Different Inmune Measures

All of the above-mentioned immune spatial
measures were found to be independent of
existing clinical parameters in breast cancer
(Maley et al. 2015; Nawaz et al. 2015; Yuan
2015). They were further compared with pa-
thologist’s scoring of immune abundance and
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Figure 5. Quantifying intratumor immune infiltration with intratumor lymphocyte ratio (ITLR). (A) Building a
cancer density map using a kernel estimator, and (B) cancer density map with lymphocytes as spatial points. The
density of cancer cells at the location of a lymphocyte can be used as a direct measurement of spatial proximity of
this lymphocyte to cancer. (C) A higher resolution map of a tumor region. (D) Clustering lymphocytes based on
their spatial relationships to cancer using Gaussian mixture clustering revealed three subclasses of lymphocytes.

a quantitative score of lymphocyte ratio that was
also obtained from automated image analysis
(Maley et al. 2015; Nawaz et al. 2015; Yuan
2015). Lymphocyte ratio, as a measure of the
presence of immune cells in a sample without
accounting for its spatial distribution, is defined
as the fraction of cells in a sample that are im-
mune cells, that is,

nj
n + ne. + ng’

where 1;is the number of immune cells, #, is the
number of cancer cells, and #, is the number of
stromal cells in a sample. All spatial measures
were found to be stronger prognostic factors
than pathological score and lymphocyte ratio,
and, in the respective breast cancer subtypes,
they were found to be prognostic (Maley et al.
2015; Nawaz et al. 2015; Yuan 2015). This high-
lights the importance of examining not just cell

abundance but also spatial patterns that can be
indicative of active immune response.

Despite high correlations between some of
these spatial measures, they appear to hold spe-
cific prognostic value in different breast cancer
subtypes. For example, the Morisita index and
ITLR were highly correlated in 180 ER-nega-
tive/Her2-negative breast cancers from the
METABRIC study (Curtis et al. 2012) (new
data for this review; Pearson’s correlation coef-
ficient r = 0.50, p < 0.001). However, whereas
ITLR was associated with survival in the ER-
negative/Her2-negative but not the Her2-posi-
tive subtype, the Morisita index was found to be
prognostic in the Her2-positive subtype but not
other subtypes (Fig. 6). Generally speaking, the
Morisita index measures the degree of immune-
cancer cell colocalization within a tumor, while
ITLR measures the amount of immune cells
infiltrated into tumor nests. Therefore, a tumor
with a low amount of intratumor lymphocytes
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that are highly colocalized with cancer cells
will have a high Morisita index but low ITLR.
Hence, unlike the Morisita index, which is a
global measure of trend in lymphocyte distri-
bution, ITLR concerns regional abundance of
lymphocytes that colocalized with cancer cells.
This is also true for the hotspot score, where
only spatial coclustering of cancer and immune
cells is quantified. More evenly spread cancer
and immune cell distributions in a sample, de-
spite greater intermixing with potentially high
Morisita and ITLR score, could, in fact, lead to
a low hotspot score. Therefore, different spatial
measures, although interrelated, can be used to
identify unique spatial arrangement patterns
and should be considered separately in studies
of different cancer types and subtypes.

Spatial Heterogeneity of Tumor Resource

During disease progression, perfusion variabil-
ity of resources such as nutrient and oxygen in
the microenvironments can generate significant
selective pressure, leading to accelerated cancer
evolution and disease progression (Gatenby et al.
2013). As discussed above, tumor resource het-
erogeneity often occurs as a result of irregular
vasculature that creates hypoxic or arid zones
(Alfarouk et al. 2013). The clinical and thera-
peutic consequences of tumor resource het-
erogeneity have received substantial research
investigations. Texture analysis of magnetic res-
onance images (MRIs) has been used to identify
spatial heterogeneity and regional variations
that are associated with microenvironmental
features, including cell density, tissue stiffness,
blood flow, and nutrient dispersion (Gatenby et
al. 2013; Chaudhury et al. 2015). Using digital
pathology, the spatial distribution of ER-posi-
tive and ER-negative cells were investigated in
relation to vascular density and tissue necrosis
in breast cancer histology specimens (Lloyd et al.
2014). A strong association between ER expres-
sion and vascular area was identified, suggesting
that environmental variables were likely to be
responsible for spatial heterogeneity in estrogen
distribution and thus directly relevant for anti-
estrogen treatment. More recently, combined
theoretical modeling and histology analysis of

breast cancer showed considerable regional var-
iations in cancer proliferation phenotype ac-
companied by environmental conditions such
as vascularity and immune response (Lloyd
et al. 2016). Besides spatial variations, temporal
heterogeneity in the microenvironment can also
impose greater selective pressure than constant
conditions. Hypoxia is commonly recognized
as a harsh environmental condition; however,
breast cancer cell lines exposed to intermittent
hypoxia evolved an even higher degree of re-
sistance to etoposide compared with cells un-
der chronic hypoxia or normoxia (Verduzco
et al. 2015). Here, in the interest of quantitative
statistical studies, we discuss a spatial analysis
method that has been applied to histological
analysis and can be used to dissect the resource
heterogeneity of tumor microenvironment.

Fractal Dimensions

To measure a complexity pattern such as the
vasculature, the use of fractal dimensions (Man-
delbrot 1983) has been proposed (Losa 1995;
Cross 1997; Lennon et al. 2015). For example,
fractal dimensions may be used to identify fea-
tures of oncogenic vascular systems that may
contribute to the origins of cancer (Baum
2015). Recently, fractal dimensions have been
applied to analyzing oral cancer histology sam-
ples (Bose et al. 2015). Fractals, as mathematical
geometry that concern self-similarity, are often
measured over a range of dimensions. For ex-
ample, the box-counting method estimates
fractal dimensions by counting the number of
boxes with a range of sizes needed to cover the
spatial geometry under study (Cross 1994). Let
N be the number of b-by-b boxes required to
cover a spatial point pattern S, then the fractal
dimension of S, dim(S), is defined as

dim(S) = lim log(N) .
5 1/0)

The more complex the geometric pattern,
the more boxes are needed at each scale and,
hence, the higher the fractal dimension score.
Using oral cancer histology samples, fractal di-
mensions were measured using the box-count-
ing method, and a high score of fractal dimen-

10 Cite this article as Cold Spring Harb Perspect Med 2016;6:a026583
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sions in the cell pattern was reported to be asso-
ciated with improved disease-specific survival,
lymphocytic infiltration, and tumor prolifera-
tion (Bose et al. 2015). Besides histological anal-
ysis, fractals analysis has also demonstrated its
uses in biomarker discovery based on dynamic
contrast-enhanced MRI (Rose et al. 2009). As
measures of global heterogeneity, fractals have
shown superior prognostic power compared to
region-based measures that do not sufficiently
explore the relationships between tumor re-
gions (Rose et al. 2009). We anticipate the ap-
plication of fractal dimensions in histology by
using specific markers, such as hypoxia mark-
ers, to contribute to our understanding of re-
source heterogeneity in the microenvironment.

Challenges in Spatial Analysis of Histology
Samples

Spatial Tessellation

Histological sections can often contain up to
millions of cells. It is thus a nontrivial task to
discern spatial patterns from data at this scale.
This challenge can also be found in ecology,
where spatial data are sometimes acquired at a
large scale. Tessellation effectively reduces com-
plex problems to individual local structures,
thus has been used widely in ecology. A tessel-

A Voronoi tessellation

lation is a mosaic set of spatially separated poly-
gons. Commonly used tessellation models
include Voronoi (Getis 1986) and rigid squares
(Fig. 7). Voronoi tessellation is generated by
seeds/spatial points to create polygons that con-
tain all their closest neighbors. It has been sug-
gested that because Voronoi tessellation mimics
naturally emerged patterns, it is therefore par-
ticularly useful for studies of biological process-
es in nature (Getis 1994). For example, Voronoi
tessellation has been used to predict plant har-
vest based on the Voronoi parameters of spatial
patterns of plants. In the pioneering work of
Mead (1966), measures of the Voronoi polygon
were found to best predict carrot monoculture
yield. These measures include area and two
shape features of the polygons, and plants that
grow close to the centroids of large isodiametric
polygons tend to have a better yield.

Because of its desirable property, Voronoi
tessellation has widespread applications, in-
cluding those in histological image analysis.
For example, it was used to extract architectural
features of cells in histological image analysis
of breast cancer, prostate cancer, B-cell lympho-
ma, and Barrett’s esophagus (Doyle et al. 2007;
Basavanhally et al. 2010; Muldoon et al. 2010;
Guidolin et al. 2015). For spatial analysis in
histology, the benefits of two tessellation con-

B Square tessellation

Figure 7. Different spatial tessellation methods to provide spatial resolution for histological sample analysis: (A)
Voronoi tessellation for a hematoxylin and eosin (H&E) slide and corresponding immune cell density heatmap
as polygons, and (B) square tessellation for an H&E slide and corresponding immune cell density heatmap as

polygons.
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figurations on colocalization measures have
been investigated: a Voronoi lattice versus a rigid
square lattice (Maley et al. 2015). To generate
Voronoi polygons, cancer cells were randomly
sampled and used as “seeds” for tessellation,
and the number of cancer cells and immune cells
were computed for each polygon (Fig. 7A).
Meanwhile, square tessellations were generated
to have a similar amount of polygons as the
Voronoi tessellation (Fig. 7B). Voronoi tessella-
tion resulted in a more normally distributed set
of cells in the polygons compared with the dis-
tributions of cells resulting from square tessel-
lation (Maley et al. 2015). Combinations of tes-
sellation and spatial analysis methods were
further analyzed (Maley et al. 2015). Both the
Morisita—Horn index and Pearson correlation
have been widely used in ecology to study the
similarity of structures between two communi-
ties, for example, to compare Salmonella colo-
nization routes (Lim et al. 2014). When applied
to quantification of spatial colocalization of
cancer and immune cells, the Morisita—Horn
index displayed high statistical significance for
both types of tessellation in terms of association
with survival in breast cancer, whereas Pearson
correlation was associated with survival only
when used in conjunction with Voronoi tessel-
lation. This is not surprising because the Pear-
son correlation is known to be sensitive to data
with skewed distribution. Therefore, the choice
of spatial analysis methods should be carefully
evaluated based on the use of spatial tessellation
schemes.

Spatial Scale

Spatial heterogeneity is scale dependent. This
phenomenon has been well documented in a
number of studies in ecology, emphasizing
that a scale needs to be chosen that is appropri-
ate for the ecological process under study
(Gardner et al. 1987; Turner et al. 1989). In
histology analysis, the influence on spatial anal-
ysis by the use of different spatial scales along
with spatial methods has been investigated.
Cancer-immune cell colocalization was mea-
sured using the Morisita—Horn and Pearson
correlation methods using square and Voronoi

tessellation of eight different spatial scales,
where larger scale indicates larger regions
(Maley et al. 2015). Changes in their prognostic
value according to the spatial scales were evalu-
ated. The Morisita—Horn index was more ro-
bust to a spatial scale compared with a Pearson
correlation. Hence, there is a need to evaluate
robustness of the spatial index over different
spatial configurations and to choose an appro-
priate scale in histological studies.

CONCLUDING REMARKS

In this review, we discussed how a desire to
understand the interactions between cancer
cells and the microenvironment has fueled a
developing interest in studying tumors from a
novel perspective: ecology. Within a Darwinian
framework, analysis of tumor spatial heteroge-
neity can reveal distinct features in cancer hab-
itats that indicate a number of different eco-
logical processes. Studies of these ecological
processes occurring in tumors can benefit
from application of spatial statistics tools rou-
tinely used in ecological studies. Histology sam-
ples provide an abundance of data as input
for these methods because of preserved spatial
context. Thus, spatial analysis empowered by
large-scale analysis of archival histology sam-
ples could facilitate studies of ecological in-
teractions in human tumors with far-reaching
implications. It can aid in the identification
of patients at higher risk of progression or
treatment resistance who may benefit from
new treatments. We listed examples where spa-
tial analysis of tumor histological specimen re-
vealed associations between cancer prognosis
and immune infiltration or resource distribu-
tion. Development of robust analytical tools
capable of handling challenges presented in his-
tological samples could play a key role in pro-
pelling this niche area into mainstream research
and clinical uses. Nevertheless, histology on its
own can be limited by the two-dimensional
representation of a three-dimensional tumor.
Radio-imaging modalities can step in to address
this problem (Chaudhury et al. 2015). Fabricat-
ed devices as those developed in Wu et al. (2015)
could be used to test hypotheses in controlled
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environments. Further, integrating a variety of
assays including histology, imaging, genomics,
and in vitro systems will provide multiple layers
of information for the spatial and molecular
structure of the tumor, revealing new cancer—
microenvironment interactions that exist at dif-
ferent spatial scales.
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