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ABSTRACT

Proper regulation of mitophagy for mitochondrial homeostasis is important in various inflammatory
diseases. However, the precise mechanisms by which mitophagy is activated to regulate inflammatory
responses remain largely unknown. The NLRP3 (NLR family, pyrin domain containing 3) inflammasome
serves as a platform that triggers the activation of CASP1 (caspase 1) and secretion of proinflammatory
cytokines. Here, we demonstrate that SESN2 (sestrin 2), known as stress-inducible protein, suppresses
prolonged NLRP3 inflammasome activation by clearance of damaged mitochondria through inducing
mitophagy in macrophages. SESN2 plays a dual role in inducing mitophagy in response to inflammasome
activation. First, SESN2 induces “mitochondrial priming” by marking mitochondria for recognition by the
autophagic machinery. For mitochondrial preparing, SESN2 facilitates the perinuclear-clustering of
mitochondria by mediating aggregation of SQSTM1 (sequestosome 1) and its binding to lysine 63 (Lys63)-
linked ubiquitins on the mitochondrial surface. Second, SESN2 activates the specific autophagic machinery
for degradation of primed mitochondria via an increase of ULK1 (unc-51 like kinase 1) protein levels.
Moreover, increased SESN2 expression by extended LPS (lipopolysaccharide) stimulation is mediated by
NOS2 (nitric oxide synthase 2, inducible)-mediated NO (nitric oxide) in macrophages. Thus, Sesn2-deficient
mice displayed defective mitophagy, which resulted in hyperactivation of inflammasomes and increased
mortality in 2 different sepsis models. Our findings define a unique regulatory mechanism of mitophagy
activation for immunological homeostasis that protects the host from sepsis.
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Introduction

Mitophagy, a selective autophagic process that specifically
removes damaged or excess mitochondria, is critical for main-
taining the mitochondrial population and cellular homeosta-
sis.'* Failure of mitophagy regulation results in abnormal
cellular function caused by the accumulation of damaged mito-
chondria, leading to many pathophysiological states.”® Accu-
mulating data suggests that mitophagy has an essential role in
the regulation of the innate immune response.”'? When
mitophagy is impaired, the increase of damaged mitochondria
caused by immune stimulators results in the generation of
mitochondrial ROS (reactive oxygen species) and release of
mitochondrial DNA, which induces hyperactivation of the

NLRP3 inflammasome, and in turn leads to over-inflammation,
tissue injury and increased mortality in the host.”'*'*'?
Although a number of mitophagy-related factors have been
identified, detailed mechanisms by which they take action are
still largely unknown. Recent studies on mitophagy in mamma-
lian cell studies reveal that signal-dependent removal of dam-
aged mitochondria by mitophagy requires 2 steps. The first is
preparing damaged mitochondria and the second is activating
specific autophagy machinery for the degradation of primed
mitochondria.” Mitochondrial priming is initiated by PINK1
(PTEN induced putative kinase 1) stabilization and the E3
ubiquitin  ligase PARK2/PARKIN  (Parkinson disease
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[autosomal recessive, juvenile] 2, parkin) recruitment to dam-
aged mitochondria.”'*'*> Activated PARK2 promotes ubiquiti-
nation of outer membrane proteins on the mitochondria,
which in turn triggers translocation of the ubiquitin-binding
receptor SQSTM1 or NBR1 (neighbor of Brcal gene 1) to mito-
chondria, thus completing mitochondrial —priming.*'"
Among the components of the autophagy machinery required
for mitophagy, ULK1 and BNIP3L (BCL2/adenovirus E1B
19kDa interacting protein 3-like), are critical for clearance of
mitochondria during erythroid cell maturation.>***' However,
it remains unclear how these 2 steps are connected so that the
mitophagy process can be completed under inflammatory
conditions.

SESN's (sestrins) are highly conserved proteins that protect cells
exposed to a variety of environmental stresses, including oxidative
stress and DNA damage.”>* Apart from their antioxidant func-
tion, SESNs maintain metabolic homeostasis through regulation of
AMPK (AMP-activated protein kinase) and MTOR (mechanistic
target of rapamycin [serine/threonine kinase]) signaling.**>°
SESN2 is also able to induce autophagy through activation of
AMPK and inhibition of MTOR under conditions of genotoxic
stress and in cancer cell lines.***”** In addition, SESN2 can induce
autophagic degradation of KEAP1 (kelch-like ECH-associated pro-
tein 1) through association with SQSTMI triggered by the acute
lipogenic stimulus.” Furthermore, despite significant progress in
understanding the function of SESN2 in metabolic pathways and
diseases, the regulatory roles of SESN2 in immune responses and
the mechanisms involved therein have not yet been revealed. Here,
we demonstrate that bone marrow-derived macrophages
(BMDMs) from sesn2~'~ mice displayed defective mitophagy
upon immune stimulation, which resulted in hyperactivation of
the NLRP3 inflammasome and increased mortality from sepsis.
We showed that in order to induce mitophagy, SESN2 facilitates
mitochondrial priming by mediating the aggregation of SQSTM1
and its binding to ubiquitinated mitochondria, and also activates
specific autophagy machinery for degradation of primed mito-
chondria via increase of ULK1 protein levels. Our results highlight
previously unknown mechanisms of 2 different phases of mito-
phagy activation regulated by SESN2, leading to the suppression of
hyperactivation of the NLRP3 inflammasome.

Results

sesn2 '~ macrophages display increased CASP1 activation
in response to LPS and ATP, after extended (12 h) LPS
priming

To investigate the involvement of SESN2 in inflammasome
activation in macrophages, we isolated BMDMs from Sesn2™*/*
and sesn2”’'~ mice, primed the cells with LPS for 0, 6, and
12 hours (h), and then stimulated them with ATP for 30
minutes (min). ATP-driven activation of CASP1 in LPS-
primed macrophages is a well-established model for NLRP3
inflammasome-mediated activation of CASP1 in vitro, which
involves signaling pathways mediated by TLR4 (toll-like recep-
tor 4) and P2RX7 (purinergic receptor P2X, ligand-gated chan-
nel, 7).3%%! First, we examined the effect of SESN2 on the
activation of CASP1 in BMDMs. The level of the active form of
CASP1, indicated by the appearance of the cleaved form of
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CASP1 (p10), increased in Sesn2™"+ BMDMs, reaching its peak
when primed with LPS for 6 h, and then dramatically decreased
at 12 h (Fig. 1A). However, in sesn2~'~ BMDMs, significant
amounts of cleaved CASP1 remained at 12 h, similar to
amounts of cleaved CASP1 detected in Sesn2*'™ BMDMs at
6 h after LPS treatment (Fig. 1A). We also examined cleavage
of CASP1 in the supernatants of stimulated BMDMs by west-
ern blot. The expression patterns of cleaved CASP1 in the
supernatants were identical to those in the lysates of stimulated
BMDMs (Fig. S1). However, activation of the NFKB (nuclear
factor of kappa light polypeptide gene enhancer in B cells) sig-
naling pathway by LPS was not affected by the ablation of
Sesn2 (Fig. S2). Moreover, protein levels of pro-IL1B (interleu-
kin 1 8), NLRP3 and PYCARD (PYD and CARD domain con-
taining), components of the NLRP3 complex, and P2RX7 did
not change in sesn2”~'~ macrophages in response to LPS and
ATP (Fig. 1A).

We next examined the secretion level of the CASP1-depen-
dent cytokines, IL1B and IL18 (interleukin 18), in the superna-
tant of the treated BMDMs. Although the cytokine levels were
comparable at 6 h of priming with LPS, much higher secretion
levels of IL1B and IL18 were detected in sesn2~’~ BMDMs
compared to those in Sesn2*'* BMDMs at 12 h (Fig. 1B), which
is in accord with the effect of Sesn2 deficiency on cleaved
CASP1 detection. Unlike IL1B and IL18 secretion, the secretion
of TNF (tumor necrosis factor) was unchanged by the absence
of Sesn2 (Fig. 1B), supporting our data that activation of NFKB
signaling was not affected in sesn2~'~ cells. In addition, CASP1
activation and secretion of IL1B and IL18 at 12 h treatment
with LPS or ATP alone did not change in sesn2~/~ BMDMs
(Fig. 1C, D, Fig. S3). Since stimulation with nigericin induces
NLRP3 activation in LPS-primed macrophages,'”>* we
examined whether nigericin had the same effect as ATP on
inflammasome activation at 12 h in sesn2™'~ BMDMs. Similar
to ATP, treatment with LPS and nigericin increased CASP1
activation and secretion of IL1B and IL18 in sesn2~'~ BMDMs
(Fig. 1E, F, Fig. S4). Stimulation with flagellin receptor NLRC4
(NLR family, CARD domain containing 4) activator or double-
stranded (dA:dT) DNA (an AIM2 inflammasome activator) in
LPS-primed BMDMs, did not influence secretion of IL1B or
IL18 in sesn2~/~ BMDMs (Fig. S5A, B). In contrast, CASP1
activation and secretion of ILIB and IL18 at 12 h after
treatment with LPS and ATP were significantly decreased
in nlrp3~’~ BMDMs, compared to NIrp3™* BMDMs
(Fig. 1G, H, Fig. S6).

To investigate the possible role for SESN2 in CASPI1
activation in our experimental condition, we examined the
expression levels of cleaved CASP11 p26 and CASP11-
mediated cytokines IL1A (interleukin 1 «) and HMGBI
(high mobility group box 1) in the supernatants of Sesn2*'* or
sesn2”'~ BMDMs treated with LPS and ATP. Increases in
cleaved CASP11 and secretion of IL1IA and HMGB1 upon
stimulation were not affected in sesn2~'~ BMDMs (Fig. S7A,
B), suggesting that SESN2 is not involved in CASP11 activa-
tion in BMDMs stimulated with LPS and ATP. Taken
together, SESN2 suppresses NLRP3-dependent CASP1 activa-
tion and the secretion of IL1B and IL18 in macrophages
primed with LPS for 12 h, rather than 6 h, followed by stimu-
lation with ATP.
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SESN2 expression increased by extended LPS priming is stimulation (data not shown), suggesting that the LPS-depen-

mediated by NOS2-generated NO

As shown in Figure 1A, SESN2 protein expression increased at
12 h, but not 6 h, of priming with LPS when followed by stimu-
lation with ATP, while the transcription level of Sesn2 was not
increased at any time points within 12 h by the same

dent SESN2 increase is a result of post-transcriptional regula-
tion of SESN2 expression. The increase of NOS2-derived NO
in macrophages primed with LPS for 12 h results in the sup-
pression of the ATP-induced NLRP3 inflammasome activa-
tion.”**> To investigate the effect of NO on SESN2 levels, we
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Figure 1. SESN2 suppresses NLRP3-dependent CASP1 activation in response to extended (12 h) LPS priming followed by ATP treatment. (A and B) sesn2~/~ mice and the
corresponding wild-type littermate mice (Sesn2*'*) bone marrow-derived macrophages were primed with LPS (0, 6, and 12 h) followed by 30 min of ATP treatment. (A)
Immunoblot analysis of the indicated proteins and (B) production of IL1B, IL18 and TNF as measured by ELISA. (C and D) Sesn2™* and sesn2~/~ BMDMs were treated
with LPS and/or ATP. (C) Immunoblot analysis of the indicated proteins and (D) production of IL1B, IL18 and TNF as measured by ELISA. (E and F) Sesn2™'* and sesn2~/~
BMDMs were primed with LPS followed by nigericin treatment. (E) Immunoblot analysis of the indicated proteins and (F) production of IL1B, IL18 and TNF as measured
by ELISA. (G and H) Nlrp3+/+ and nlrp3*’* BMDMs were primed with LPS followed by ATP treatment. (G) Immunoblot analysis of the indicated proteins and (H) produc-
tion of IL1B, IL18 and TNF as measured by ELISA. Data shown are representative of 3 independent experiments and are the mean + s .e.m. ***, p < 0.005 from an ANOVA

followed by Tukey's post hoc test.



primed wild-type BMDMs with LPS for 6 or 12 h in the pres-
ence or absence of a NOS inhibitor, L-NAME (NG-nitro-L-
arginine methyl ester), followed by treatment with or without
ATP. Interestingly, the increases in SESN2 caused by stimula-
tion with LPS alone, or LPS plus ATP at 12 h were decreased
by L-NAME treatment, whereas increases in NOS2 expression
by the same stimulation were not affected by L-NAME,
although increased NO was decreased by L-NAME (Fig. 2A,
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B). Consistent with the effect of Sesn2 deficiency, L-NAME also
significantly increased both ATP-induced CASP1 activation
(Fig. 2B, Fig. S8) and secretion of IL1B and IL18 after 12 h, but
not 6 h, of priming with LPS (Fig. 2C).

To examine whether SESN2 expression and inflamma-
some suppression induced by NO production upon stimula-
tion at 12 h is dependent on expression of NOS2, we used
BMDMs isolated from Nos2*'* and nos2™/~ mice. Similar
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Figure 2. Inhibition of NOS2-mediated NO production decreases SESN2 expression, and increased CASP1 activation. (A-C) BMDMs were primed with LPS (0, 6, 12 h) in the
presence or absence of L-NAME followed by the presence or absence of ATP treatment. (A) NO production, (B) immunoblot analysis of the indicated proteins and (C) pro-
duction of IL1B, IL18 and TNF as measured by ELISA. (D-F) Nos2*'* and nos2~'~ BMDMs were primed with LPS (12 h) followed by ATP treatment. (D) NO production, (E)
immunoblot analysis of the indicated proteins and (F) production of IL1B and IL18 as measured by ELISA. Data shown are representative of 3 independent experiments
and are the mean =+ s .e.m. ***, p < 0.005 from an ANOVA followed by Tukey's post hoc test.
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to the effect of L-NAME, Nos2 deficiency decreased SESN2
expression and NO production, and reversed the decrease
in CASP1 activation (Fig. 2D, E, Fig. S9) and secretion of
IL1B and IL18 (Fig. 2F). However, Sesn2 deficiency did not
affect the NOS2 increase observed upon stimulation
(Fig. 1A). To investigate whether autophagic or proteasomal
activity is responsible for SESN2 degradation upon treat-
ment with L-NAME, we examined changes in SESN2
expression levels in BMDMs in the presence of L-NAME
when pretreated with bafilomycin A; (an inhibitor of auto-
phagosome fusion with the lysosome) or MG132 (a protea-
some inhibitor). Treatment with bafilomycin A,;, rather
than MGI132, rescued SESN2 expression decreased by L-
NAME treatment (Fig. S10), indicating that SESN2 degrada-
tion in the presence of L-NAME was due to autophagic
degradation. Collectively, these results indicate that SESN2
expression increased by extended LPS priming is mediated
by NOS2-mediated NO, and NOS2-generated NO produc-
tion contributes to SESN2-mediated suppression of NLRP3
inflammasome activation.

SESN2 is required for maintenance of mitochondrial
homeostasis in response to LPS and ATP stimulation

Treatment with LPS and ATP produces damaged mitochon-
dria, followed by mitochondrial ROS generation, leading to
NLRP3 inflammasome activation in macrophages.” We thus
investigated whether SESN2 can suppress NLRP3 activation
through regulation of mitochondrial homeostasis. We first
examined mitochondrial superoxide production using Mito-
SOX (a mitochondrial superoxide indicator) at 12 h after
priming with LPS. Stimulation with LPS and ATP increased
the production of mitochondrial superoxide in sesn2™/~
BMDMs to a greater extent than in Sesn2*/™ BMDMs,
although there were no differences in the basal levels of
mitochondrial superoxide production between the 2 groups
(Fig. 3A).

We further analyzed the functional mitochondrial pool in
sesn2”'~ BMDMs using MitoTracker Deep Red, a probe sensi-
tive to the mitochondrial inner transmembrane potential, and
MitoTracker Green, a probe for mitochondrial membrane lip-
ids which is independent of membrane potential. The percen-
tages of damaged mitochondria (positive for MitoTracker
Green and negative for MitoTracker Deep Red) following stim-
ulation were 11.7% and 7.1% in sesn2”’~ and Sesn2t'*
BMDMs, respectively (Fig. 3B). These results revealed an
approximately 1.6-fold greater mitochondrial damage index in
sesn2”'~ than in Sesn2™'" cells. Although increases in mito-
chondrial damage were noted in sesn2”/~ BMDMs, the cells
did not show increased apoptotic cell death upon stimulation
with LPS and ATP (Fig. 3C), suggesting that stimulation-
dependent mitochondria damage in sesn2”'~ BMDMs was not
enough to induce apoptotic cell death. We next investigated the
effect of mitochondrial ROS on CASP1 activation in sesn2~'~
BMDMs. We observed that treatment with Mito-TEMPO ([2-
{2, 2, 6, 6-tetramethylpeperidin-1-oxyl-4-ylamino}-2-oxoethyl]
triphenylphosphonium chloride), a mitochondria-targeted
ROS scavenger, abrogated the increase in CASP1 activation
(Fig. 3D, Fig. S11) and secretion of IL1B, but not of TNF

(Fig. 3E), in sesn2”'~ cells. These data indicate that SESN2 sup-
presses prolonged activation of inflammasomes in response to
LPS and ATP through maintenance of mitochondrial integrity.

SESN2 induces mitochondrial priming by facilitating
perinuclear clustering of damaged mitochondria

We sought to uncover the regulatory mechanism whereby
SESN2 prevents the over-production of mitochondrial ROS
and the aggravation of mitochondrial permeability transition
caused by damaged mitochondria. We found that SESN2 pro-
tein increased and associated with mitochondria after 12 h of
priming with LPS and subsequent ATP treatment (Fig. 4A).
Similar to SESN2, SQSTM1 protein increased and was translo-
cated to mitochondria at 12 h following stimulation (Fig. 4A).
To examine whether recruited SESN2 and SQSTM1 at mito-
chondria can interact with each other upon stimulation, we
performed mitochondrial fractionation, followed by a co-
immunoprecipitation (co-IP) with SESN2 antibody and west-
ern blot analysis. SESN2 interacted with SQSTM1 in both the
cytoplasm and mitochondria after stimulation, whereas this
interaction did not occur in the absence of stimulation
(Fig. 4B). To confirm the specific interactions between SESN2
and SQSTM1, we performed immunoprecipitation experiments
using the lysates of sesn2~'~ BMDMs. Endogenous SQSTM1
immunoprecipitation by SESN2 antibody was detected in only
Sesn2t/* BMDMs stimulated with LPS and ATP, not in
sesn2”'~ BMDMs (Fig. S12).

We also investigated the spatial proximity of SESN2 to
SQSTM1 on the mitochondrial surface following stimulation
using an in situ proximity-ligation assay, which is a method
that permits visualization of the spatial proximity of 2 proteins.
Interestingly, we observed that the perinuclear aggregates of
mitochondria were detected by stimulation with LPS and ATP,
and that SESN2 and SQSTMI colocalized on the perinuclear-
aggregated mitochondria (Fig. 4C). In accordance with the co-
IP result, some of the SESN2 and SQSTM1 also were colocal-
ized in the cytoplasm (Fig. 4C). In this context, we asked
whether SESN2 was responsible for both perinuclear clustering
of the mitochondria and SQSTM1 recruitment onto the clus-
tered mitochondria upon stimulation. As shown in Fig. 4D,
SQSTM1 aggregation and perinuclear aggregates of mitochon-
dria were induced in Sesn2*'* BMDMs upon stimulation.
Meanwhile, however, the intensity of SQSTM1 aggregation
decreased in sesn2~'~ BMDMs upon stimulation, compared to
those in Sesn2™’* BMDMs, although the number of cells con-
taining SQSTM1 was not different between Sesn2t’* BMDMs
and sesn2~'~ BMDMs (Fig. 4D, E). Furthermore, stimulation-
induced perinuclear aggregates of mitochondria in Sesn2™*/*
BMDMs were not observed in sesn2~'~ BMDMs (Fig. 4D).
Thus, SQSTM1 proteins colocalized to perinuclear-clustered
mitochondria were rarely detected in Sesn2™’~ BMDMs
(Fig. 4D, F).

Given these findings, we wondered how SESN2 induces
SQSTM1 aggregation toward the perinuclear-clustered mito-
chondria. Several studies in neuronal cells have shown that
perinuclear clustering of mitochondria is initiated when mito-
chondria are damaged by various cellular stimuli, and is a pre-
requisite for the specific removal of impaired mitochondria
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Figure 3. SESN2 is required for maintenance of mitochondrial homeostasis in response to LPS and ATP stimulation. (A-C) Sesn2™* or sesn2~/~ BMDMs were primed with
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Immunoblot analysis of the indicated proteins and (E) production of IL1B and TNF as measured by ELISA. Data shown are representative of 3 or more independent experi-

ook

ments and are the mean £ s .e.m.

through mitophagy."® In neuronal cells, SQSTM1 is required
for ubiquitination-dependent clustering of damaged mitochon-
dria caused by treatment with a mitochondrial uncoupler, car-
bonyl cyanide m-chlorophenylhydrazone.>'®”” Thus, we
hypothesized that SESN2 may induce perinuclear clustering of
mitochondria by mediating the aggregation of SQSTM1 via
SESN2-SQSTM1 interaction and by linking SQSTM1 to ubig-
uitins on the surface of damaged mitochondria. As shown in

, p < 0.005 from an ANOVA followed by Tukey’s post hoc test.

Fig. 4G, both ubiquitins and SQSTM1 were increased in mito-
chondrial fractions upon stimulation in Sesn2™+ BMDM:s in
the presence of bafilomycin A;. Interestingly, the increased
level of ubiquitins and SQSTM1 observed in mitochondria
upon stimulation were greatly decreased in sesn2”'~ BMDMs
(Fig. 4G), indicating that SESN2 was required for the recruit-
ment of both ubiquitins and SQSTM1 to damaged mitochon-
dria destined for autolysomal degradation. We also examined
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the spatial proximity of SQSTM1 to Lys63- or Lys48-linked
ubiquitins on mitochondria following stimulation using the in
situ proximity-ligation assay. Both the number of cells showing
SQSTM1 colocalized with Lys63-linked ubiquitin-chains and
the number of cells with SQSTM1-Lys63-linked ubiquitin-
chains colocalized with perinuclear-clustered mitochondria
were increased to a greater extent in Sesn2™* BMDMs, com-
pared to those in sesn2™'~ BMDMs upon stimulation (Fig. 4H-
J). The cells showing SQSTM1 colocalized with Lys48-linked
ubiquitin-chains were rarely detected in Sesn2™" BMDMs
(Fig. S13).

SESN2 has already been shown to be associated with
SQSTM1 through in vitro binding assays.””*® Several studies
have revealed that signal-dependent phosphorylation of
SQSTM1 at specific sites (Ser349, Ser351, Ser403) is critical
to degradation of ubiquitinated proteins targeted by
SQSTM1 by reinforcing interactions between them.****
Therefore, we first examined the extent of phosphorylation
of SQSTM1 at Ser349, Ser351, and Ser403 in Sesn2™'*
BMDMs in the absence or presence of stimulation. Therein,
phosphorylation of SQSTM1 at Ser349 and Ser351, but not
Ser403, increased upon stimulation (Fig. S14). Nevertheless,
the amounts of increased phosphorylation of SQSTM1 in
Sesn2'* BMDMs were almost the same as those in sesn2™/~
BMDMs (Fig. S14), suggesting that SESN2 is not involved in
phosphorylation of SQSTM1 in BMDMs treated with LPS
and ATP. Collectively, SESN2 induces mitochondrial prim-
ing through facilitating perinuclear clustering of damaged
mitochondria by mediating SQSTM1 aggregation and its
recruitment to Lys63-linked ubiquitins on the mitochondrial
surface.

SESN2 induces autophagosome formation and increases
mitophagic activity

In addition to the critical role of SESN2 in mitochondrial
priming, we hypothesized that SESN2 may also activate spe-
cific autophagy machinery for the degradation of damaged
mitochondria upon stimulation. We first examined the level
of autophagosome formation by counting the green fluores-
cent protein-microtubule-associated protein 1 light chain 3
(GFP-MAPILC3) puncta in transgenic mice with either
Sesn2™T (Sesn2™™ GFP-MAPILC3) or sesn2”'~ (sesn2™'~
GFP-MAPILC3) genetic backgrounds. When primed with
LPS for 6 h, a higher number of GFP-MAPILC3 puncta
(Fig. 5A), and cells with greater than 3 strong GFP-
MAPILC3 puncta among the total cells (Fig. 5B) were
observed in both Sesn2™'* GFP-MAPILC3 and sesn2™ '~
GFP-MAPILC3 BMDMs, compared to those in the absence
of stimulation. However, there were no differences between
Sesn2*’*  GFP-MAPILC3 and sesn2”'~ GFP-MAPILC3
BMDMs (Fig. 5A, B). Conversely, after 12 h of priming
with LPS, the number of GFP-MAPILC3 puncta in Sesn2t’'™
cells was almost similar to the number observed at 6 h,
whereas they were significantly decreased in sesn2~'~ cells
(Fig. 5A, B).

To verify whether suppression of autophagosome forma-
tion in sesn2™'~ GFP-MAPILC3 cells upon stimulation cor-
related with autophagic activity, we employed in vitro
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autophagic flux assays in the absence or presence of bafilo-
mycin A;. In the presence of bafilomycin A;, endogenous
MAPILC3-II was detected in the absence of stimulation, and
increased 3.1-fold upon stimulation in Sesn2™* BMDMs
(Fig. 5D, E). However, in the absence of bafilomycin A,
MAPILC3-II was not detected in Sesn2™* BMDMs even
when stimulated with LPS and ATP (Fig. 5D, E). In the pres-
ence of bafilomycin A, and stimulation, levels of endogenous
MAPILC3-1I in sesn2”'~ BMDMs was much lower than in
Sesn2™* BMDMs (about 32.3 %), (Fig. 5D, E). These data
indicate that SESN2 was critical not only for autophagosome
formation, but also for autophagic activity after long-term
(12 h) priming with LPS and subsequent ATP treatment.

We next investigated whether SESN2 is involved in selec-
tive autophagy of damaged mitochondria by analyzing the
number of cells with GFP-MAPILC3 puncta colocalized
with perinuclear-clustered mitochondria from among cells
with GFP-MAPILC3 puncta. Colocalization was apparent
in Sesn2*’" GFP-MAPILC3 BMDMs at 12 h, but not 6 h
(Fig. 5A, C). However, in sesn2”'~  GFP-MAPILC3
BMDMs, GFP-MAPILC3 puncta colocalized with perinu-
clear-clustered mitochondria were barely detected 12 h after
stimulation (Fig. 5A, C). For quantification of mitophagic
activity in BMDMs, we employed the mitochondria-targeted
monomeric Keima (mt-mKeima) probe to identify func-
tional mitophagy*' because mt-mKeima undergoes a revers-
ible change in color in response to acidic pH (<pH 6.0)
which occurs during autolysosome maturation. Thus,
increases in the 550:438 nm excitation ratio of mt-mKeima-
transfected BMDMs, represented by a pseudo-red color,
indicate the presence of damaged mitochondria in maturing
autolysosomes. Using this assay, we found that the fre-
quency of red mt-mKeima puncta (Fig. 5F), and high
(550.5:438,,) signal area (Fig. 5G) increased approximately
3.2-fold in Sesn2™’* BMDMs 12 h after stimulation, relative
to those observed in the untreated BMDMs. The number of
red puncta and high (550..:438.;) signals in sesn2”'~
BMDMs were much lower than those in Sesn2™* BMDMs
(about 42.2 %) (Fig. 5F, G) Furthermore, transmission elec-
tron microscopy analysis showed that damaged mitochon-
dria surrounded by autolysosomes were detected in the
perinuclear region of Sesn2™* BMDMs following stimula-
tion, whereas a greater abundance of swollen mitochondria
with severely disrupted cristae were observed throughout
the cytoplasm of sesn2~'~ BMDM:s (Fig. 5H).

We also examined the basal rate of autophagy and
mitophagy in Sesn2™* BMDMs and sesn2”'~ BMDMs
without stimulation. The number of cells with GFP-
MAPILC3 puncta slightly increased in Sesn2*’* BMDMs
upon treatment with bafilomycin A, while the number of
cells with GFP-MAPILC3 puncta colocalized with mito-
chondria did not increase upon bafilomycin A, treatment
(Fig. S15A-C). Both the number of cells with GFP-
MAPILC3 puncta and the number of cells with GFP-
MAPILC3 puncta colocalized with mitochondria in
sesn2”'~ BMDMs were no different from those in Sesn2*'*
BMDMs (Fig. SI5A-C). When we transfected mt-mKeima
into Sesn2™* BMDMs and sesn2”'~ BMDMs, we failed to
observe red mt-mKeima puncta and high (550..:438.)
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signal areas in either of them (Fig. S15D, E). Taken
together, these findings suggest that SESN2 is required for
mitophagic activity via the induction of autophagosome for-
mation and autophagic activity in a stimulation-dependent
manner.

SESN2 induces autophagic activity for mitophagy by
increase of ULK1 protein level

We wondered how SESN2 can initiate autophagosome forma-
tion in response to LPS and ATP. We first examined whether
SESN2 regulates the activity of AMPK and MTOR signaling in
BMDMs upon stimulation, since SESN2 regulates the activity
of AMPK and MTOR in response to genotoxic stress,”* and
AMPK and MTOR are closely involved in the initiation of
autophagy in response to nutrient depletion.*”** The extent of
phosphorylation of AMPK, RPS6 (ribosomal protein S6), and
ACACA (acetyl-Coenzyme A carboxylase «r) were not affected
by the deletion of Sesn2 (Fig. S16), indicating that SESN?2 is not
involved in the activation of the AMPK or MTOR signaling
pathways in response to LPS and ATP in macrophages. We
next investigated whether SESN2 regulates the expression of
various autophagy-related (ATG) proteins that initiate or acti-
vate autophagy. Surprisingly, increases in ULK1 after 12 h of
LPS priming and subsequent ATP treatment were significantly
lower in sesn2~'~ BMDMs, whereas the expression levels of
other ATG proteins including ULK2, BECN1 (Beclin 1,
autophagy related), ATG5, ATG7, and ATG13, in sesn2™'~
BMDMs were similar to levels in wild-type cells (Fig. 6A). Simi-
lar to ULK1 itself, the increased expression levels of 2 phos-
phorylated versions of ULK1 (S555 and S757) observed in the
wild-type cells at 12 h could hardly be detected in sesn2™'~
BMDMs (Fig. 6A). As was observed for SESN2, ULK1 protein
increased after 12 h, but not 6 h, of priming with LPS and sub-
sequent ATP stimulation (Fig. 6A), whereas the transcription
level of ULK1 was not increased by the same stimulation at any
time point within 12 h (data not shown). ULK1 also associated
with mitochondria after 12 h of LPS priming and subsequent
ATP treatment (Fig. 6B). To verify that defective autophago-
some formation in sesn2”’~ BMDMs was attributable to a
decrease in ULKI, we examined the possible rescue effect by
injecting human ULK1-expressing virus particles into sesn2~/~
BMDMs, after which ULK1 expression was confirmed
(Fig. 6C). Rescue with ULK1 increased the number of cells with
GFP-MAPILC3 puncta but did not rescue the perinuclear clus-
tering of mitochondria (Fig. 6D, E). Both mitochondrial ROS
and damaged mitochondria were decreased by rescue with
ULK1 (Fig. 6F, G). In accordance with the effects on mitochon-
drial homeostasis, cleaved CASP1 and secretion of IL1B and
IL18 were also decreased by rescue with ULK1 (Fig. 6H, I,
Fig. S17). These results indicate that SESN2 induces autophagic
activity for mitophagy by increase of ULKI1 protein
levels.

SESN2 plays a protective role in 2 different sepsis mouse
models

To examine the physiological role of SESN2 in the inflamma-
tory response to septic shock, we employed the CLP (cecal
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ligation and puncture) technique, a clinically relevant murine
model of polymicrobial sepsis. The serum levels of ILIB and
IL18 were markedly elevated in Sesn2*'* mice after CLP com-
pared with those in sham-operated control mice (Fig. 7A).
However, even higher levels of IL1B and IL18 were observed in
sesn2~'~ mice after CLP, (Fig. 7A). Similar to their serum lev-
els, the levels of IL1B and IL18 in lung tissues after CLP were
significantly increased in sesn2”'~ mice compared with those
in Sesn2*'* mice (Fig. 7B). We also examined organ dysfunc-
tion by measuring biochemical indicators of organ function in
the serum. Much higher levels of creatinine, GOT1/AST (gluta-
mic-oxaloacetic transaminase 1, soluble), and GPT/ALT (gluta-
mic pyruvic transaminase, soluble) were observed in sesn2™'~
mice after CLP, compared with those in Sesn2’* mice
(Fig. 7C). Strikingly, sesn2™'~ mice had a significantly higher
mortality rate (Fig. 7D). To confirm that these findings in CLP
sesn2”’~ mice were attributable to the deficiency of Sesn2 itself,
we examined the rescue effect of SESN2 through the intrave-
nous injection of an adenoviral vector expressing human
SESN2 (Ad-SESN2) into sesn2™'~ mice. We verified that
SESN2 expression in the liver was detectable following the
injection with Ad-SESN2, but not with Ad-control (Ad-Cont)
(Fig. 7E). This rescue with SESN2 significantly decreased the
serum concentrations of IL1B and IL18 (Fig. 7F). The survival
rate was improved by the rescue with Ad-SESN2 (Fig. 7G).
Similar to the results obtained with the CLP model, sesn2~/~
mice had higher serum concentrations of ILIB and IL18
(Fig. 7H), and higher mortality in endotoxemia-induced sepsis
(Fig. 71). As with the CLP model, rescue with SESN2 decreased
the serum concentrations of ILIB and IL18 (Fig. 7J), and
improved the survival rate in endotoxemia-induced sesn2~/~
mice (Fig. 7K). These data indicate that SESN2 is an essential
factor in protection against septic shock, as shown in 2 different
mouse models.

Protein levels of SESN2 are increased in monocytes from
the sepsis mouse model

Since signal-dependent SESN2 protein, which was increased at
specific time points suppressed inflammasome activation in
macrophages, and the presence of SESN2 played a protective
role in 2 septic shock mouse models, we wondered if the
SESN2 protein levels were regulated in blood monocytes under
septic conditions. SESN2 protein levels in monocytes isolated
from mouse blood increased and peaked 48 h after intraperito-
neal injection with LPS into the mice, and significantly
decreased at 96 h (Fig. 8A). In accordance with the fluctuation
of SESN2 protein levels in monocytes according to LPS injec-
tion time points, serum concentrations of IL1B and IL18 were
most increased at 24 h and decreased at 48 h after LPS injec-
tion, which was when the SESN2 expression level was the high-
est (Fig. 8B). Interestingly, serum concentrations of IL1B and
IL18 were radically decreased at 96 h at which time SESN2
expression was also decreased (Fig. 8B). These results indicate
that SESN2 is increased when sepsis is exacerbated, and
decreased when sepsis is recovered, suggesting that SESN2
plays a protective role in sepsis through the regulation of its
expression level.
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Figure 6. SESN2 induces autophagic activity for mitophagy by increase of ULK1 protein levels. (A) Immunoblot analysis of the indicated proteins from Sesn2*/* and
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Human SESN2 is highly expressed in monocytes of septic

shock patients

To investigate whether our observations from the sepsis mice
models were relevant to human patients with septic shock

syndrome, we first measured the secretion levels of IL1B and
IL18 in the sera of 8 septic patients in the medical intensive
care unit. Similar to the mouse sepsis model, higher levels of
IL1B and IL18 were observed in the sera of septic shock
patients compared to healthy volunteers (Fig. 9A). More



1284 M.-J.KIM ET AL.

A Endotoxemia
B Negative Control
LPSOh
1201 LPS24h
LPS 48 h
W LPS96h
90
2
£
2
8
60
0 \ T T T T
0 1 2 3 4 5
10 10 10 10 10 10
SESN2-Alexa Fluor 488
0.4 %”“ 0.4+ [
i *kk
- ]
0:31 i 0.3 _|—
£ £
2 T 2
@ 027 = 027 T
pa o
0.1 01
0 T T T T [0} — - T T
LPS 0 24 48 96 (h) LPS 0 24 48 96 (h)

Figure 8. SESN2 is increased at the time when sepsis is exacerbated, and decreased at the time when sepsis is recovered. (A and B) Mice were injected with LPS (0, 24, 48,
and 96 h, n = 9 per group). (A) Flow cytometry of SESN2 in mouse monocytes from blood stained with anti-SESN2-Alexa Flour 488 antibody and (B) serum IL1B and IL18
as measured by ELISA. Data shown are representative of 3 independent experiments and are the mean =+ s .e.m. ***, p < 0.005 from an ANOVA followed by Tukey's post

hoc test.

damaged mitochondria were also detected in monocytes iso-
lated from the blood of septic patients (Fig. 9B, C). In this con-
text, we investigated the protein level of human SESN2 to
determine if it was altered in monocytes of septic shock
patients, as in the sepsis mouse model. Interestingly, the SESN2
protein level was significantly increased in monocytes of nearly
all the septic shock patients, compared to the healthy volunteers
in our study (Fig. 9D). Although we were not able to follow up
on the serum SESN2 when the same sepsis patients recovered
from their septic shock condition, we think that SESN2 plays a
protective role against systemic inflammatory conditions such
as sepsis via increasing its expression in monocytes.

Discussion

In this study, SESN2 protein was increased by NO generated by
increased NOS2 12 h after stimulation with LPS and ATP in
macrophages. This increased SESN2 induced mitophagy activa-
tion through regulation of 2 synchronized procedures in a coop-
erative manner. First, SESN2 induced mitochondrial priming by
mediating the aggregation of SQSTM1 and its binding to Lys63-
ubiquitinated mitochondria. Second, SESN2 activated specific
autophagic machinery for the degradation of primed mitochon-
dria via maintenance of ULKI protein levels. Altogether, we
found that mitophagy was accomplished by SESN2- and ULK1-
mediated selective autophagy of perinuclear-clustered mitochon-
dria primed by SESN2-SQSTMI, leading to the suppression of
prolonged NLRP3 inflammasome activation (Fig. 10).

Despite apparent lack of intrinsic catalytic antioxidant activ-
ity of SESN2, it protects cells from oxidative stress by lowering
intracellular ROS levels.*” Two distinct pathways are known for
the antioxidant function of SESN2. One is by upregulating
NFE2L2 (nuclear factor, erythroid derived 2, like 2) signaling
and thereby promoting the expression of genes for antioxidant
enzymes.”” The other is by blocking MTOR activation, which
results in ROS accumulation.”>***® The SESN2-promoted
mitophagy in our study provides the third pathway for SESN2
to suppress ROS accumulation. Under oxidative stress, SESN2
serves as an adapter protein that mediates the interaction
between SQSTM1 and KEAP1, which results in the autophagic
degradation of KEAP1.”” In a recent study, SESN2 was shown
to also induce autophagic degradation of SQSTMI1 by pro-
moting ULK1-mediated SQSTM1 phosphorylation via its
interaction with ULK1 and SQSTM1.3® Based on these data
and our result that SESN2 induces mitophagy by mediating
SQSTM1 binding to ubiquitinated mitochondria via its
interaction with SQSTM1, we speculate that SESN2 may be
involved in SQSTMI1-mediated autophagic degradation
through its binding to SQSTM1 and/or SQSTM1 target pro-
teins in response to various cellular stresses. Although we
did not identify any Lys63 ubiquitinated proteins on the
mitochondrial surface which interacted with SESN2 or
SQSTM1, we suggest that SESN2 functions as a scaffold
protein that strengthens the otherwise weak association of
SQSTM1 with ubiquitinated proteins on mitochondria,
resulting in mitophagy.
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Figure 9. Human SESN2 is highly expressed in monocytes of septic shock patients. (A-D) Human blood samples were collected from normal subjects (n = 8) and septic
shock patients (n = 8). (A) Plasma IL1B and IL18 as measured by ELISA, (B) flow cytometry of isolated human monocytes from blood stained with anti-CD14-FITC antibody
to evaluate purity, (C) transmission electron microscopy of morphological changes in mitochondria in isolated human peripheral blood monocytes (arrowhead, damaged
mitochondria; red ‘N, nucleus). Scale bar, 1«m, and (D) immunoblot analysis for SESN2 and Coomassie Blue staining as a control for equal loading of isolated human
monocytes. Each symbol represents an individual subject. Data shown are representative of 2 independent experiments and p values from an unpaired Student t test.

To date, it has been shown that SESN2 is responsible for
autophagy activation through the regulation of AMPK activa-
tion and MTOR suppression under conditions of genotoxic
stress and in cancer cell lines.***” Although phosphorylations
of RPS6 and ACACA were increased in wild-type BMDMs
upon stimulation with LPS and ATP, they were not affected in
sesn2~'~ BMDMs, suggesting that molecules other than SESN2
may be involved in the activation of AMPK and/or the MTOR
signaling pathway in macrophages.

ULK1 was first identified as an autophagy initiator,"” and has
recently been proposed to be involved in mitophagy during
hematopoietic development or viral infection through its phos-
phorylation.'®*® In this study, SESN2 induced autophagosome
formation and mitophagy activation through the conservation
of ULKI1 protein levels, rather than ULK1 phosphorylation
upon stimulation, supporting a novel mechanism whereby
ULK1-dependent mitophagy activation can be regulated by

ULK1 protein stability. Upon stimulation, endogenous interac-
tion with SESN2 and ULK1 was not observed when evaluated by
co-IP with SESN2 antibody and western blot analysis (data not
shown), suggesting that stimulation-dependent ULKI transloca-
tion to mitochondria and maintenance of its protein levels may
not be attributable to its association with SESN2. Further
research will be needed to identify the exact mechanism whereby
SESN2 regulates ULK1 protein levels in a signal-dependent
manner. Given that reduced autophagosome formation in
sesn2”'~ BMDM:s upon stimulation with LPS and ATP was res-
cued by addition of human ULKI, while perinuclear clustering
of mitochondria was not, it can be deduced that ULK1 is
involved in autophagosome formation, but not in perinuclear
clustering of mitochondria in response to the same stimuli.
Interestingly, in spite of the inability of ULKI to rescue perinu-
clear clustering of mitochondria in sesn2~'~ BMDMs, mito-
chondrial integrity was enhanced by rescue with ULKI,
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Figure 10. SESN2 suppresses prolonged NLRP3 activation by preserving mitochondrial homeostasis through mitophagy induction. In macrophages, SESN2 (S2) protein is
increased by NO generated by increased NOS2 12 h after stimulation with LPS and ATP. Increased SESN2 induces mitophagy activation through regulation of 2 synchro-
nized events. First, SESN2 induces mitochondrial priming by mediating the aggregation of SQSTM1 (SQ) and its binding to Lys63-ubiquitinated (U) mitochondria. Second,
SESN2 activates specific autophagic machinery for the degradation of primed mitochondria via maintenance of the ULK1 protein level. Altogether, mitophagy is accom-
plished by SESN2- and ULK1-mediated selective autophagy of perinuclearly-clustered mitochondria primed by SESN2-SQSTM1, leading to the suppression of prolonged

inflammasome activation.

suggesting that perinuclear clustering of damaged mitochondria
may not always be required for mitophagy induction in BMDMs
in response to LPS and ATP.

It has been reported that NOS2-generated NO can suppress the
activation of the NLRP3 inflammasome by maintaining mitochon-
drial homeostasis in macrophages,”” though the mechanism by
which NO regulates mitochondrial homeostasis has not been
reported. Decreases in the SESN2 protein levels and

hyperactivation of CASP1 in nos2~’~ BMDMs or L-NAME-
treated BMDM s upon stimulation indicate that Sesn2 is increased
by NOS2-generated NO, and suggest that NOS2-mediated regula-
tion of mitochondrial homeostasis may be accomplished through
the regulation of SESN2 protein levels. Until now, the accumulating
data has only shown that SESN2 expression can be upregulated in
response to oxidative stress at the transcriptional level***¢*>>°
However, for the first time, we were able to demonstrate that



SESN2 protein levels were translationally upregulated by NOS2-
generated NO.

In addition to the importance of the signal-dependent
SESN2 increase at the cellular level, SESN2 expression in
blood monocytes may be associated with protection from
sepsis, since much higher levels of SESN2 protein are
observed in sepsis mouse models and in septic shock
patients, compared to normal subjects. It has long been
thought that sepsis is closely related to mitochondrial dys-
function, and a recent proteomic and metabolomic analysis
in septic patients showed that proteins derived from mito-
chondrial deregulation may represent candidate biomarkers
of severe sepsis.*> Thus, the promotion of mitophagy by
increasing SESN2 expression may protect the host from
sepsis. Furthermore, our novel findings regarding SESN2-
regulated mitophagy in sepsis may possibly explain the
cause of other diseases associated with deregulation of
mitophagy, including neurodegenerative disorders, meta-
bolic diseases, cardiovascular diseases, and cancer.

Materials and methods
Mice

sesn2”'~ and sesn2”'~ GFP-MAP1LC3 mice in the CL57BL/6
background were kindly provided by Dr. Seo Goo Rhee (Yonsei
University, Seoul, Korea), n0os2~'~ and nlrp3~'~ mice in the
CL57BL/6 background were kindly gifted by Dr. Su-Cheong
Yeom (Seoul National University, Seoul, Korea) and Dr. Je-
Wook Yu (Yonsei University, Seoul, Korea) respectively. All
mice were 12-16 wk of age at use. Mice were maintained in spe-
cific pathogen-free conditions and male mice were used for
experiments.

Cell culture and treatment

Bone marrow-derived macrophages were cultured in DMEM
(Lonza, 12-604F) supplemented with 10% fetal bovine serum
(FBS; Gibco/Life Technologies, 16000-044), 1% penicillin/
streptomycin (Gibco/Life Technologies, 15140-122) and 25%
1929 mouse fibroblast supernatant (DMEM cultured with 1929
mouse fibroblasts) or MEM-« (Gibco/Life Technologies,
12571) supplemented with 10% FBS, 1% penicillin/streptomy-
cin and 20 ng/ml CSF1/M-CSF (R&D Systems, 416-ML). Cells
were primed with LPS (200ng/ml; Sigma-Aldrich, L8274) for
6 h or 12 h and treated with ATP (Sigma-Aldrich, A2383)
(2 mM) for 30 min. To inhibit NO synthesis, cells were incu-
bated with 100 uM L-NAME (Sigma-Aldrich, N5751) with
LPS. 100 nM bafilomycin A, (Sigma-Aldrich, B1793) was used
to inhibit autophagic flux and 10 uM MG132 (Sigma-Aldrich,
C2211) was used to inhibit the proteasome. To inhibit mito-
chondrial ROS, Mito-TEMPO (Enzo Life Sciences, ALX-430-
150) was administered and cells were pre-incubated for 1 h
prior to LPS treatment. Cells were treated for 45 min with 5
uM nigericin (Sigma-Aldrich, N7143) or for 2 h with 0.2 ug/
ml flagellin (Enzo Life Sciences, ALX-522-058) 12 h after LPS
priming. One pg/ml (dA:dT) (Sigma-Aldrich, P0883) was
transfected with LPS for 12 h.
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Flow cytometry

Mitochondrial ROS were measured by staining cells with Mito-
SOX (Invitrogen, M36008) at 5 uM for 15 min at 37°C. To
measure mitochondrial mass, cells were stained with 25 nM
MitoTracker Green FM (Invitrogen, M7514) and MitoTracker
Deep Red FM (Invitrogen, M22426) for 15 min at 37°C. Cells
were then washed with phosphate-buffered saline (PBS; Lonza,
17-516F), trypsinized by trypsin-EDTA (Gibco/Life Technolo-
gies, 25200), and resuspended in cold PBS containing 1% FBS.
Apoptosis was determined by flow cytometric analysis follow-
ing staining with ANXA5 (annexin AS5)-FITC (Biovision,
K101) for 5 min at room temperature. To measure SESN2
expression in mouse monocytes from blood, buffy coats con-
taining PBMCs (peripheral blood mononuclear cells) were
stained with anti-SESN2 antibody (abclon by custom antibody
service), anti-ITGAM (integrin o M) eFluor®450 (eBioscience,
48-0112) and Ly6g (lymphocyte antigen 6 complex, locus G)
PerCP-Cy5.5 (eBioscience, 45-5931) antibodies for 20 min at
4°C, washed, and stained with Alexa Flour 488-conjugated sec-
ondary antibody for anti-SESN2 antibody. ITGAM™ Ly6g~
cells were counted as monocytes and SESN2 expression was
measured. To check the purity of isolated monocytes from
human blood, CD14-FITC (Miltenyi Biotec, 130-050-201) was
used. Data were acquired and analyzed with a BD LSR II flow
cytometer (BD Biosciences, San Jose, CA, USA).

Transmission electron microscopy

BMDMs were fixed with glutaraldehyde and analyzed by elec-
tron microscopy as described previously.’!

ELISA

Cell culture supernatants, serum and homogenized mouse lung
tissues in PBS after centrifugation at 16,000 x g for 10 min were
assayed by ELISA for human IL1B (R&D Systems, DY201),
mouse IL1B (R&D Systems, DY401), human IL18 (MBL,
7620), mouse IL18 (MBL, 7625), mouse TNF (R&D Systems,
DY410), mouse IL1IA (R&D Systems, DY400) and HMGBI1
(IBL international, ST51011).

Immunoblotting and immunoprecipitation

The following primary antibodies were used: SESN2 (1:2000;
ProteinTech, 10795-1-AP), SQSTM1 (1:2000; Abnova,
H00008878-M01), phospho-SQSTM1 (Ser349, 1:2000; Cell Sig-
naling Technology, 95697), phospho-SQSTM1 (Ser403, 1:2000;
Millipore, MABC186), NOS2 (1:2000; Millipore, 06-573),
CASP1 (1:1000; Santa Cruz Biotechnology, sc-514), CASP11
(1:2000; Novus Biologicals, NB120-10454), NLRP3 (1:2000;
Adipogen, AG-20B-0014-C100), P2X7P2RX7 (1:2000; Alo-
mone Labs, APR-004-A0), ASC (1:2000; Santa Cruz Biotech-
nology, sc-22514-R), GFP (1:2000; Santa Cruz Biotechnology,
sc-8334), AMPK (1:2000; Cell Signaling Technology, 2532),
phospho-AMPK (1:2000; Cell Signaling Technology, 2535),
RPS6/S6 (1:2000; Cell Signaling Technology, 2317), phopho-
RPS6/S6  (1:2000; Cell Signaling Technology, 2211),
MAPILC3B (1:2000; Sigma-Aldrich, L7543), CASP3 (1:2000;
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Cell Technology, 9662), VDAC1 (1:2000; Abcam, ab14734),
BECN1 (1:2000; Cell Signaling Technology, 3495), ATG5
(1:2000; Cell Signaling Technology, 12994), ATG7 (1:2000; Cell
Signaling Technology, 8558), ATG13 (1:2000; Sigma-Aldrich,
SAB4200100), mouse ULK1 (1:2000; Sigma-Aldrich, A7481),
human ULK1 (1:5000; Santa Cruz Biotechnology, sc-33182),
phospho-ULK1 S555 (1:2000; Cell Signaling Technology,
5869), phospho-ULK1 S757 (1:2000; Cell Signaling Technol-
ogy, 6888), ULK2 (1:2000; AbD Serotec, AAMS0), total
NFKBIA (1:2000; Cell Signaling Technology, 9242), UBIQUI-
TIN (1:2000; Santa Cruz Biotechnology, sc-8017) and phos-
pho-NFKBIA (1:2000; Cell Signaling Technology, 9246).
ACTB/B-actin (1:2000; Santa Cruz Biotechnology, sc-47778)
was used as a loading control. Phospho-SQSTM1 (S351) was
kindly provided by Dr. Seo Goo Rhee (Yonsei University, Seoul,
Korea). Cells were lysed with lysis buffer (Invitrogen,
FNNO0011) and cell culture supernatants were concentrated by
a methanol/chloroform precipitation method described previously.™
Lysates were quantified and equal amounts were loaded onto and
separated by SDS-PAGE, transferred to nitrocellulose membranes
(Merck Millipore, HATF09025), and incubated with primary anti-
bodies followed by HRP-conjugated anti-rabbit secondary antibody
(Santa Cruz Biotechnology, sc-2004) and HRP-conjugated anti-
mouse secondary antibody (Santa Cruz Biotechnology, sc-2005).
The blots were visualized using the ECL system (Animal Genetics,
LR 01-01). For immunoprecipitation, 200 ug of whole cell lysates,
cytosolic and mitochondrial fractions were incubated with the appro-
priate 2 pug of primary antibodies overnight and then incubated with
protein A-agarose (Sigma-Aldrich, P9424) for 2 h with gentle rota-
tion at 4°C. Normal rabbit immunoglobulin G (IgG) (Santa Cruz
Biotechnology, sc-2027) was used as a negative control. The immu-
noprecipitates were washed 3 times with lysis buffer and boiled in 2x
SDS-loading buffer (4% SDS, 10% 2-mercaptoethanol, 20% glycerol,
0.004% bromophenol blue, 0.125 M Tris-HCI, pH 6.8), then sepa-
rated by SDS-PAGE and analyzed by immunoblotting.

Mitochondria-cytosol fractionation

Mitochondrial fractions were obtained from BMDM following the
manufacturer’s instructions using a Qproteome Mitochondria Isola-
tion Kit (QIAGEN, 37612) with minor modifications. Briefly, 5 x
10° cells were suspended in lysis buffer, and incubated on an end-
over-end shaker for 10 min at 4°C, and centrifuged at 1,000 x g for
10 min at 4°C. The pellet fraction was resuspended in Disruption
Buffer, passed through a 26 gauge needle (Korea Vaccine, ND.
SY1030-001) 10 times to ensure complete cell disruption, and centri-
fuged at 1,000 x g for 10 min at 4°C. The supernatant fraction was
centrifuged at 6,000 x g for 10 min at 4°C to pellet mitochondria.
The mitochondria were washed with Mitochondria Storage Buffer
and centrifuged at 6,000 x g for 20 min at 4°C. The pellet fraction
was resuspended in an appropriate amount of Mitochondria Storage
Buffer or lysis buffer and the concentration was determined with a
BCA protein assay kit (Pierce, 23227). Five to 10 g of cytosolic or
mitochondrial protein extracts were used for immunoblotting.

Measurement of NO production

Production of NO was measured in cell supernatants of
BMDMs using a kit following the instruction of the kit (R&D

Systems, KGE0O01). Briefly, cell supernatants were filtered using
3,000 molecular weight cut-off filters (Merck Millipore,
UFC800324); 50 w1 of the filtered cell supernatants were diluted
with 50 ul of reaction diluent and mixed with 25 ul each of
nitrate reductase and NADH and then incubated at 37°C for
30 min to convert nitrate to nitrite. After incubation, total
nitrite was measured at 540 nm with Griess reagents (R&D sys-
tems, 892878 and 892879).

Animal experiments

CLP was performed as described™ with minor modifications.
Briefly, the mouse cecum was exposed through a 1.5-cm inci-
sion and the cecum was ligated with 4-0 silk without causing
bowel obstruction and then perforated with a 22-gauge needle
(Korea Vaccine, ND.SY1030-010) (1 hole injury). A small
amount of stool was extruded to ensure wound patency. Sham-
operated mice underwent the same procedure without ligation
and puncture of the cecum (n = 5 per group for harvesting
serum and tissue and Sesn2™'": n = 11; sesn2™/": n = 12 for
survival rates). For the LPS endotoxemia model, mice were
intraperitoneally injected with 12 mg/kg LPS or its solvent
(PBS) before serum cytokines and biochemical indicators of
organ function were measured (n = 5 per group for harvesting
serum and Sesn2™*: n = 13; sesn2”7: n = 13 for survival
rates). Blood samples were collected from mice via cardiac
puncture. Aliquots of serum were stored at —80°C. Bufty coats
containing PBMCs were separated by Ficoll (GE Healthcare
Life Sciences, 17-1440-02) density gradient centrifugation.”
Serum creatinine (BioAssaySystems, DICT-500), GOT1/AST
(glutamic-oxaloacetic transaminase 1, soluble) (BioAssaySys-
tems, EASTR-100) and GPT/ALT (glutamic pyruvic transami-
nase, soluble) (BioAssaySystems, EALT-100) were measured
using a kit. The concentrations were determined spectrophoto-
metrically according to the manufacturer’s instructions. For
endotoxic shock experiments, 25 mg/kg LPS was injected intra-
peritoneally and survival rates were monitored for 1 wk. For
‘add-back’ rescue, adenoviruses (Ad) encoding human SESN2
(Ad-SESN2) and Ad Control (Ad-Cont) were obtained from
Genenmed. Adenoviruses (5 x 10 viral particles) were injected
intravenously 48 h before LPS challenge or CLP surgery (n = 5
per group for harvesting serum and n = 13 per group for sur-
vival rates).

Human study

Buffy coats containing PBMCs were separated from blood by
Ficoll density gradient centrifugation. Aliquots of plasma were
stored at —80°C and monocytes were isolated from bufty coats
and enriched by depletion using a Monocyte Isolation Kit II
(Miltenyi Biotec, 130-091-153).

Immunofiuorescence staining and confocal microscopy

Cells seeded on glass coverslips were primed with LPS followed
by ATP treatment and then fixed and permeabilized with meth-
anol for 10 min at room temperature. After 3 PBS washes, cells
were blocked with 1% BSA (Sigma-Aldrich, A7030) in antibody
diluent (Dako, S0809) for 1 h at room temperature. They were



then incubated overnight with primary antibodies in antibody
diluent at 4°C. After 3 PBS washes, cells were incubated with
secondary antibodies for 30 min at room temperature. Finally,
cells were washed with PBS 3 times and stained with 4’, 6’-dia-
midino-2-phenylindole (DAPI; Sigma-Aldrich, D9542) for
2 min at room temperature. Cells were then washed with PBS,
mounted onto slides with mounting medium and observed on
an LSM700 confocal microscope (Carl Zeiss, Jena, Germany) at
800x magnification. The following primary antibodies were
used: SESN2 (1:500; abclon by custom antibody service),
SQSTM1 (1:500; Abnova, H00008878-M01), TOMM?20 (1:500;
Santa Cruz Biotechnology, sc-11415), Lys63-ubiquitin (1:500;
Merck Millipore, 05-1308), and Lys48-ubiquitin (1:500; Merck
Millipore, 05-1307). Secondary antibodies used are from Invi-
trogen: Alexa Fluor 488 donkey anti-mouse IgG (A21202),
Alexa Fluor 488 donkey anti-rabbit IgG (A21206), Alexa Fluor
568 donkey anti-mouse IgG (A10037) and Alexa Fluor 568
donkey anti-rabbit IgG (A10042). To perform the proximity
ligation assay (PLA), Duolink IT PLA probes (Olink Bioscience,
DUO092001 and DUO92005) and Detection Reagents (Olink
Bioscience, DU092014) were used following the manufac-
turer’s instructions. The nuclei were counterstained with DAPI
and PLA signals were visualized on a confocal microscope at
800x magnification. Cells with punctate GFP-MAP1LC3 were
counted manually following the method described previously.>
mt-mKeima was used as a sensitive and quantitative assessment
of mitophagy as described.”® BMDMs were infected with mt-
mKeima retroviral particles for 2 d just before use, primed with
LPS for 12 h followed by ATP treatment, fixed with 4% parafor-
maldehyde for 15 min at room temperature, and analyzed by
confocal microscopy using 2 excitation filters (438 nm and
550 nm) and a 610LP emission filter at 800 x magnification.
Ratio (550.x:438.,) images of mt-mKeima were created and
analyzed using MetaMorph software. High (550,,:438.,) signal
areas and mitochondrial areas were calculated, and the ratio
(high [550.:438.] signal area:mitochondrial area) was used as
an index of mitophagic activity.

Retroviral overexpression of GFP-MAP1LC3, human ULK1
and mKeima

GFP-MAPILC3 (Addgene, 21073) and HA-tagged human
ULK1 (Addgene, 31963) were originally deposited by
Tamotsu Yoshimori (The National Institute of Genetics,
Japan), and Dr. Do-Hyung Kim (University of Minnesota,
USA), respectively. mt-mKeima plasmids were kindly pro-
vided by H. Katayama and A. Miyawaki (RIKEN, Tokyo,
Japan). The GFP-MAPI1LC3, ULK1 and mt-mKeima insert
were cloned into the LZR retroviral vector and retroviral
particles were produced in HEK293 GPG packaging cells.
The LZR retroviral vector and HEK293 GPG packaging cells
were kindly gifted by Dr. Jaesang Kim (Ewha Womans Uni-
versity, Korea). Target cells were infected with retroviral
particles 2 d before use.

Study approval

All animal experiments and protocols were approved by the
Yonsei University College of Medicine Institutional Animal
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Care and Use Committee. Human blood samples from
healthy volunteers and septic shock patients were obtained
in Severance Hospital (Seoul, Korea). This study was
approved by the Institutional Review Board of Severance
Hospital, Yonsei University College of Medicine (4-2013-
0585). Informed consent was obtained directly from each
subject and documented in writing before the start of
study-related procedures.

Statistical analysis

All results are presented as mean =+ s.e.m. An unpaired Stu-
dent ¢ test was performed for the comparison of 2 samples,
and ANOVA followed by Tukey’s post hoc test was per-
formed for the comparison of multiple samples. The
Kaplan-Meier log-rank test was used for the statistical anal-
ysis of survival experiments. p values < 0.05 were consid-
ered statistically significant. In each figure legend, s.e.m.
means between-subjects standard error of the mean. IBM,
SPSS software was used for all.

Abbreviations

Ad-SESN2 adenoviral vector containing the human
SESN2 gene

AMPK AMP-activated protein kinase

ATG autophagy related

BMDMs bone marrow-derived macrophages

CASP caspase

CLP cecal ligation puncture

co-IP co-immunoprecipitation

GFP-MAPILC3 green fluorescent protein-microtubule-asso-

ciated protein 1 light chain 3

IL1B interleukin 1 8

IL18 interleukin 18

KEAP1 kelch-like ECH-associated protein 1
L-NAME NG-nitro-L-arginine methyl ester

LPS lipopolysaccharide

Lys63 lysine 63

Mito-TEMPO  (2-[2, 2, 6, 6-tetramethylpeperidin-1-oxyl-4-

ylamino]-2-oxoethyl)triphenylphosphonium
chloride

mt-mKeima mitochondria-targeted monomeric Keima

MTOR mechanistic target of rapamycin (serine/
threonine kinase)

NLRP3 NLR family, pyrin domain containing 3

NO nitric oxide

NOS2 nitric oxide synthase 2, inducible

PLA proximity-ligation assay

ROS reactive oxygen species

SESN2 sestrin 2

SQSTM1 sequestosome 1

TNF tumor necrosis factor

ULK1 unc-51 like kinase 1
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