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ABSTRACT Flagellated bacteria, like Escherichia coli, can swim toward beneficial environments by modulating the rotational
direction of their flagellar motors through a chemotaxis signal transduction network. The noise of this network, the random fluc-
tuation of the intracellular concentration of the signal protein CheY-P with time, has been identified in studies of single cell behav-
ioral variability, and found to be important in coordination of multiple motors in a bacterium and in enhancement of bacterial drift
velocity in chemical gradients. Here, by comparing the behavioral difference between motors of wild-type E. coli and mutants
without signal noise, we measured the magnitude of this noise in wild-type cells, and found that the noise increases the sensi-
tivity of the bacterial chemotaxis network downstream at the level of the flagellar motor. This provided a simple mechanism for
the noise-induced enhancement of chemotactic drift, which we confirmed by simulating the E. coli chemotactic motion in various
spatial profiles of chemo-attractant concentration.
INTRODUCTION
The chemotaxis signaling network allows bacteria to sense
and respond to changes in concentrations of chemical at-
tractants and repellents in the environment (1,2). Binding
of chemical ligands to the receptors modulates the activity
of the associated histidine kinase CheA, thereby changing
the level of phosphorylation of the response regulator
CheY. Phosphorylated CheY (CheY-P) binds to the motor
C-ring at the base of the flagellar motor (3), and modulates
the direction of motor rotation. The chemotaxis network ex-
hibits robust adaptation (4,5), mediated by receptor methyl-
ation and demethylation by CheR and CheB.

Escherichia coli cells are propelled by several flagellar
filaments, each driven at its base by the reversible flagellar
rotary motor (6). When all motors on a cell rotate counter-
clockwise (CCW), the filaments form a helical bundle that
pushes the cell smoothly forward (a run). When one or
more motors switch to clockwise (CW), their filaments
come out of the bundle and the cell moves erratically with
little net displacement (a tumble) (7). At the end of a tumble,
the cell randomly starts a new direction for the next run.
Thus, the cell can modulate its run length by modulating
the CCW interval lengths of the flagellar motors. Runs are
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extended (tumbles are suppressed) when cells move up
spatial gradients of chemical attractants (8).

The relatively small number of molecules involved in
biochemical reactions in cells makes signaling noise ubiq-
uitous in biological signaling transduction networks. In
the case of the bacterial chemotaxis signaling network, the
network output (the intracellular concentration of CheY-P)
fluctuateswith time (9). The dynamics of theCheY-P concen-
tration can be described using the Langevin equation (10,11):

dY=dt ¼ �ðY � Y0Þ=tY þ hðtÞ; (1)

where Y is the CheY-P concentration, Y0 is its time-averaged
value (or a preferred CheY-P concentration), tY is the relax-
ation timescale, and h(t) is a Gaussian white noise, with

hhðtÞi ¼ 0;
hhðtÞhðt0Þi ¼ s2

hYðtÞdðt � t0Þ: (2)

A multiplicative noise is used to ensure Y(t) never goes
negative (11). The fluctuation of CheY-P concentration
described by the above equation has a Gamma distribution
with variance

s2
Y ¼ Y0tYs

2
h

.
2: (3)

Therefore, the dynamics of CheY-P concentration can be
described by the Langevin equation with two parameters
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Noise-Induced Increase of Sensitivity
tY and sY. The relaxation of CheY concentration to its time-
averaged value Y0 is controlled by adaptation, thus tY
is equivalent to the adaptation timescale, which has been
measured to be ~20 s for wild-type E. coli cells (12).

The value sY/Y0 has been estimated to be ~20% for wild-
type cells to account for the experimentally observed power-
law tails in the distribution of CCW intervals (9,10), and
was estimated to be in the range of 5–20% to reproduce
the fluctuations measured for single motors in wild-type
cells, and the coordinated response of adjacent motors on
a wild-type cell (13). In a recent experimental measurement,
sY was measured as a function of CW bias (14), using wild-
type cells and cells overexpressing CheR. However, the data
was mixed with both type of cells, which would lead to an
underestimation of sY for wild-type cells because overex-
pressing CheR suppresses the fluctuation. The fluctuation
of CheY-P concentration in wild-type cells was found to
be important in coordination of multiple motors in a bacte-
rium (11,13) and in enhancement of bacterial drift velocity
in chemical gradients (13,15). Here, we found a surprising
difference in the CCW-interval-versus-CW bias relationship
for wild-type cells and mutant cells that lack the fluctuation
of CheY-P concentration. By comparing the difference in
this relationship, we provided a measurement of the values
of sY for wild-type cells, and discovered a large increase
in the chemotaxis sensitivity at the level of the motor
induced by the fluctuation of CheY-P concentration in
wild-type cells.
MATERIALS AND METHODS

Strains and plasmids

All strains used in this study are derivatives of E. coli K12 strain RP437

(16): JY26 [DfliC], HCB901 (DcheZ fliC, Ptrc420 cheY13DK106YW), and

JY33 (DcheB cheZ fliC, with the wild-type promoter of cheYon the chromo-

some replaced with a Ptrc promoter). The plasmid pKAF131 constitutively

expresses the sticky filament FliCst (17). The plasmid pBES38 constitu-

tively expresses both LacIq and FliCst (18). JY26 carrying pKAF131,

HCB901 carrying pBES38, and JY33 carrying pBES38 were used in this

study.
Experimental procedure

Cells were grown at 33�C in T-broth with the appropriate antibiotics (170

mg/mL chloramphenicol, 100 mg/mL ampicillin) and various amounts of

the inducer isopropyl-b-D-thiogalactoside (IPTG, 0–50 mM) to an OD600

between 0.45 and 0.50, and were harvested by washing twice with motility

medium (10 mM potassium phosphate, 0.1 mM EDTA, 10 mM lactate, and

70 mM NaCl, at pH 7.0).

For the bead assays, cells were sheared to truncate flagella by passing

1 mL of the washed-cell suspension 80 times between two syringes

equipped with 23-gauge needles and connected by a 7-cm-long section

of polyethylene tubing (0.58 mm i.d., no. 427411; Becton Dickinson,

Franklin Lakes, NJ). Then, 1.0-mm-diameter polystyrene latex beads

(no. 07310; Polysciences, Warrington, PA) were attached to the flagellar

stubs, as described previously in Chen and Berg (19). The polystyrene

beads were observed by phase-contrast microscopy using a Ti-E mi-

croscope (Nikon, Melville, NY). All experiments were performed at
room temperature of 23�C. The motion of the polystyrene beads was re-

corded with a CMOS camera (DCC3240M; Thorlabs, Newton, NJ) at a

frame rate of 500 Hz with a reduced region of interest that covered

selected trajectories of beads. For each frame, the position of a bead

was calculated as the averaged pixel position weighted by the intensity

of the pixels. The bead positions were converted into angular positions

by connecting them with the center of the bead motion trajectory, and

further into angular velocities. CW and CCW intervals were determined

using the threshold-crossing algorithm described previously in Yuan

et al. (20).
Simulation of the Ising-type model with [CheY-P]
fluctuation

The Ising-type model was described in the main text. The parameters

used in the simulation were: u ¼ 104 s�1, EA ¼ 1.0 kBT, EJ ¼
2.6 kBT, and kligand ¼ 10 s�1. An exact stochastic Gillespie algorithm

was used for the simulation, which involves the following steps: First,

one of the events among all possible events is picked randomly to be

processed, with weighting proportional to individual event rate. The

possible events include CheY-P binding/unbinding and CW/CCW

switching for each FliM unit in the motor switch. All rate formulae

were taken from Duke et al. (21). Second, the time is advanced

by �log(x)/G, where x is a random number picked from a uniform dis-

tribution of [0, 1], and G is the sum of the rates of all possible events.

Each motor was simulated for 600 s, with the motor rotational state re-

corded every 0.001 s. The fluctuation of CheY-P concentration was

simulated using the Langevin equation: the deviation dY of the CheY-P

concentration from its steady-state value was updated using the Orn-

stein-Uhlenbeck formula (22,23):

dYðt þ DtÞ ¼ dYðtÞ � e�Dt=tY þ sY �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2Dt=tY

p

� nð0; 1Þ; (4)

where n(0,1) is a random number following unit normal distribution. At

each value of Y0, a temporal sequence of motor rotational states was gener-

ated using the Ising-type model, and the CW and CCW intervals were

identified using the threshold-crossing algorithm described previously in

Yuan et al. (20). Then the average CCW interval and CW bias were calcu-

lated. By changing Y0 in steps of 0.002 mM, the average CCW interval as

a function of the CW bias was obtained. For each trial value of sY, this

function was generated and compared to the experimental data to calculate

the c2. Fitting of this function to the experimental data is carried out by

minimizing c2.

To extract sY as a function of the CW bias B, we first fit the wild-type

hTþi versus B data with a power-law function axb as it fits the data better

than the simple inverse function used in the main text, with a ¼ 0.194 5

0.006 and b ¼ �0.898 5 0.007. Then, starting from the Ising-type model

with parameters for the mutant data, and at a specific Y0, the fluctuation of

CheY-P concentration was added into the model with trial values of sY. The

sY that resulted in a data point (B0, hTþi) that agrees with the power-law

function mentioned above leads to the data point (B0, sY) in Fig. 5. To

extract sY as a function of the CW bias B with varying tY, we assumed a

linear relationship between tY and sY as suggested in the previous study:

tY ¼ C � sY
2, where C ¼ 257 s mM�2 (14).
Simulation of chemotactic motion

Each functional chemoreceptor complex was represented with a Monod-

Wyman-Changeux model in which the complex switches rapidly between

active and inactive states. These states are separated by an energy differ-

ence Nε(m, [L]), where N is the number of the receptor homo-dimers in

the complex. The value ε(m, [L]) can be written as a methylation level
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(m)-dependent term plus a ligand concentration ([L])-dependent term

(12,24,25):

εðm; ½L�Þ ¼ aðm0 � mÞ þ ln

�
1þ ½L�=KI

1þ ½L�=KA

�
; (5)

where KI and KA are the binding constants of the inactive and active recep-

tors, respectively. Then the receptor activity is a ¼ 1/(1 þ eNε). Parameter

values used in this model (for nonmetabolizable aspartate analog a-methyl-

aspartate) wereKI¼ 18.2 mM, KA¼ 3 mM,N¼ 6, a¼ 1.7, andm0¼ 1. The

methylation kinetics values were modeled by the dynamic equation (26):

dm

dt
¼ kRð1� aÞ � kBa; (6)

where kR and kB are the rates for the methylation and demethylation pro-

cesses. We take kR ¼ kB/2 to fix the steady-state activity a0 ¼ 1/3 (kR ¼
0.005 s�1 was used in this article (27)). The CheY-P concentration Y is

assumed to be proportional to the receptor activity: Y ¼ 7.86 � a(t), where

the proportional factor is set by the fact that the wild-type strain has a steady

state Yof 2.62 mM as mentioned in the main text at the steady-state receptor

activity a0 ¼ 1/3. A cell switches between run and tumble stochastically.

The average run duration is set to the average motor CCW interval TRun ¼
f(B) ¼ 0.11/B, where B ¼ Y10.3/(Y10.3 þ 3.110.3), and the rate of switching

from run to tumble is 1/TRun. The tumble duration is roughly independent of

Y as shown before with an average of 0.2 s (8), so the rate of switching from

tumble to run is 5 s�1. Simulated cells have a constant run speed of 20 mm/s,

and a rotational diffusion constant of 0.062 rad2/s (8,28). After each tumble,

the cells are oriented randomly. In the cases with signaling noise, the

CheY-P concentration fluctuation is modeled using the Langevin equation

with tY ¼ 20 s and sY ¼ 0.26 mM.
FIGURE 1 Average CCW interval as a function of CW bias for 227 mo-

tors of wild-type cells (JY26) and 478 motors of mutant cells (HCB901).

The data are sorted by CW bias into bins with bin size of 0.02. For each

bin, the mean and the SE of the mean for the CCW interval were calculated

and plotted. The dashed lines are linear fits using the five data points near

the CW bias of 0.15, showing different slopes in the CCW-interval-versus-

CW bias relationship.
RESULTS

To get information on the magnitude of the fluctuation, we
compared the behavior of wild-type E. coli cells and mutant
cells that lack this fluctuation. All cells were derivatives of
E. coli K12 strain RP437 (16). The wild-type cells, JY26,
carried a null mutation in the filament gene fliC. The
plasmid pKAF131 carrying the sticky fliC allele was intro-
duced into JY26 through transfection, so that we can use
the bead assay to monitor the behavior of the flagellar
motors (29). The mutant cells, HCB901, carried null muta-
tions in cheA and the CheY-P phosphatase gene cheZ,
and the cheY gene on the chromosome was replaced by a
mutant allele that expresses CheY13DK106YW (a CheY dou-
ble mutant that is active without phosphorylation) under
the control of the IPTG-inducible promoter Ptrc (18). The
plasmid pBES38, which constitutively expresses LacIq and
sticky FliC, was transformed into HCB901 to offer tighter
control of the expression of CheY (18).

We observed 227 motors of JY26 cells. Most of the CW
bias fell in the range of values smaller than 0.5, with an
average of ~0.15. Each motor was observed for 2.5 min,
and the averaged CCW interval was computed for each mo-
tor. We varied the IPTG concentration from 0 to 50 mM for
the mutant strain HCB901, to get a population of motors
with CW bias covering the range of 0–0.5. We measured
478 motors of HCB901, and compared the CCW intervals
as a function of CW bias for both strains, as shown in
432 Biophysical Journal 111, 430–437, July 26, 2016
Fig. 1 with a CW bin size of 0.02. Each data point is the
averaged CCW interval for the population of motors whose
CW biases fall within each bin. There is a clear difference in
the CCW-interval-versus-CW bias relationships, which is
attributed to the fluctuation of CheY-P concentration in
JY26. This can be understood qualitatively. In the mutant
strain with no fluctuation of CheY concentration (thus no
fluctuation of CW bias B), the CCW interval (denoted as
Tþ) is a specific function of B with a convex shape, say
Tþ ¼ f(B), with d2f/dB2 > 0. In the wild-type strain with
temporal fluctuation of B, the ordinate in Fig. 1 is actually
the time-averaged value of Tþ. For each motor, B fluctuates
around an average value B0, and Tþ can be written as a Tay-
lor expansion about B0:

Tþzf ðB0Þ þ f 0ðB0Þ � ðB� B0Þ þ f 00ðB0Þ
2

� ðB� B0Þ2:
(7)

Thus

hTþizf ðB0Þ þ f 00ðB0Þ
2

� �ðB� B0Þ2
�
; (8)

where hi denotes time average. Thus hTþi is always larger
than f(B0), the corresponding value for the mutant strain.
Therefore, the data points for the wild-type are always
above that for the mutant strain in Fig. 1. We can get quan-
titative information about the magnitude of the fluctuation
of B (and thus the CheY-P concentration) from this differ-
ence between the wild-type and mutant data (and the differ-
ence does not depend much on the relaxation time tY), as
what we will do below using a model of the motor switch.
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The mutant strain HCB901 expresses CheY13DK106YW, a
CheY double mutant that is active without phosphorylation,
so there is no temporal fluctuation of activated CheY (30).
To be certain of the mutant behavior, we used another
mutant strain JY33 to compare. JY33 carries null mutations
of cheB, cheZ, and fliC, and the wild-type promoter of cheY
on the chromosome is replaced with a Ptrc promoter (30).
The plasmid pBES38, which constitutively expresses LacIq

and sticky FliC, was transformed into JY33 to offer tighter
control of the expression of CheY. In this strain, all cyto-
plasmic CheY is thought to be phosphorylated, so there
should be no temporal fluctuation of CheY-P concentration.
538 motors of JY33 were observed. Fig. 2 shows the CCW-
interval-versus-CW bias relationship for both HCB901 and
JY33, and it exhibits a clear agreement.

To explain the CCW-interval-versus-CW relationship we
observed, we used the one-dimensional (1D) Ising-type
allosteric model proposed by Duke et al. (21). In this model,
the motor switch is modeled as a ring of subunits; each ex-
ists in either an inactive (CCW) or an active (CW) confor-
mational state with a fundamental flipping rate of u. Each
subunit may bind a single molecule of CheY-P with a char-
acteristic binding rate of kligand. The free energy of CheY-P
binding to a subunit is EL¼�ln(Y/Y0.5), where Y is the intra-
cellular CheY-P concentration, and Y0.5 is the CheY-P con-
centration at which the motor CW bias is 0.5. The affinity of
CheY-P to a subunit is different, depending on its conforma-
tional state. The free energy of the active state relative
to the inactive state for each subunit changes from þEA

to �EAwhen CheY-P binds to the subunit, so CheY-P bind-
ing favors the active state. The coupling energy between
adjacent subunits is �EJ if they are in the same states but
zero otherwise, so this favors same conformations for adja-
cent subunits. A motor switching event is mediated by
conformational changes that spread from subunit to subunit
via nearest-neighbor interactions. Taking the switching from
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FIGURE 2 CCW interval as a function of CW bias for motors of two

different mutant strains, HCB901 and JY33 (number of motors: 538).

(Black dots) Results of simulation using a 1D Ising-type allosteric model

of the motor switch.
the fully inactive (CCW) state to the fully active (CW) state
as an example, it occurs in two steps. First, one or more
active domains are nucleated when one or more subunits
undergo a conformational change; then, the domains grow
until they spread throughout the entire ring.

Besides a slight adjustment of the parameter EJ (we used
2.6 compared to 3.0 kBT in Duke et al. (21)), all other param-
eters are the same as in Duke et al. (21). The model can
reproduce the mutant data, as shown in Fig. 2. To fit the
data for JY26 (wild-type), we added an ingredient to the
model: the fluctuation of intracellular CheY-P concentra-
tion. We modeled it using the Langevin equation with the
parameter tY fixed to be 20 s, so there is only one free
parameter: the standard deviation of CheY-P fluctuation
sY. We fit the model to the wild-type data using this single
free parameter, and the result of fitting is shown in Fig. 3,
with the fitted parameter sY ¼ 0.26 5 0.05 mM. The corre-
lation time tY was shown previously to be different for cells
with different CW bias (14,31). However, changing the
value of tY in our model does not affect the simulated
CCW-interval-versus-CW bias relationship, as long as tY
is much larger than the average CCW interval, as demon-
strated in Fig. S1 in the Supporting Material, where we
used sY ¼ 0.26 mM and tried three values of tY: 5, 10, and
20 s. The CCW-interval-versus-CW bias curves collapse
onto each other for the three cases. The insensitivity of
the wild-type CCW-interval-versus-CW bias relationship
to tY is also suggested by Eq. 8. Therefore, for simplicity
we fix tY to be 20 s in our fitting. The average CW bias
for our wild-type strain JY26 is 0.15, corresponding to
Y0 ¼ 2.62 mM using the Hill response curve of CW-bias-
versus-CheY-P concentration with a Hill coefficient of
10.3 and Y0.5 of 3.1 mM (32). Thus the relative fluctuation
(sY/Y0) of CheY-P concentration in a wild-type E. coli cell
is ~10%. Due to motor adaptation (33), the actual motor
response curve (preadaptation) is much steeper with a Hill
coefficient of ~20 (34). However, our experiments were
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FIGURE 3 Comparison of experiment (circles with error bars) and

simulation (dots) results for the CCW-interval-versus-CW bias relation-

ships for motors of wild-type cells (JY26).
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carried out for motors in a steady and full adapted state, so
we used the value of 10.3 for the Hill coefficient in our
calculations.

We tried also to estimate the magnitude of the CheY-P
fluctuation in a model-independent way. We noticed that
both the CCW-interval-versus-CW bias and the CW-inter-
val-versus-CW bias relationships for the mutant can be
reasonably well fitted using two simple equations, Tþ ¼
tD/B and T� ¼ tD/(1-B), respectively, where T� is the CW
interval, and tD is the characteristic dwell time (11). We
fit both data sets using a single parameter tD ¼ 0.11 s, as
shown in Fig. 4, A and B. We then sought to calculate the
Tþ versus B curve for the wild-type with a given sY using
this simple relation of Tþ versus B. For each value of B,
the CheY-P concentration Y is calculated using the measured
motor B-Y Hill function: B ¼ Y10.3/(Y10.3 þ 3.110.3), then
a sequence of normally distributed random numbers with
a mean of Yand a SD of sY is generated, mimicking the fluc-
tuation, which is transformed into a sequence of B values us-
ing the B-Y Hill function and then into a sequence of Tþ
values using the relation Tþ ¼ tD/B, and the mean value
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FIGURE 4 Estimates of the magnitude of CheY-P fluctuation in a model-

independent way. (A and B) Fits of the CCW-interval-versus-CW bias and

CW-interval-versus-CW bias data for the mutant using the equations Tþ ¼
tD/B and T� ¼ tD/(1-B), respectively, with the fitted parameter tD ¼ 0.11 s.

(C) A fit of the mean CCW-interval-versus-CW bias data for the wild-type

with the fitted parameter sY ¼ 0.21 5 0.05 mM. (Circles) Data points;

(lines) fits.

434 Biophysical Journal 111, 430–437, July 26, 2016
hTþi of the last sequence is calculated. Varying B from
0.03 to 0.35, we calculated the hTþi-versus-B curve for
the wild-type. Therefore, with a single parameter of sY, we
can fit the Tþ-versus-B data for the wild-type, and the result
of fitting is shown in Fig. 4 C with fitted parameter sY ¼
0.21 5 0.05 mM. This estimate agrees reasonably well
with our extraction using the Ising-type model. The differ-
ence may be due to the imperfect fit of Tþ-versus-B data
for the mutant using the simple equation Tþ ¼ tD/B
(Fig. 4 A).

A recent measurement of sY in wild-type cells and cells
overexpressing CheR found a correlation between sY and
the CW bias B (14). Our analysis above assumed a single
sY for the wild-type data for B < 0.5. Hence, sY obtained
above is an averaged magnitude of CheY concentration fluc-
tuation for these wild-type cells. To extract sY as a function
of B, we relaxed the restriction of a single sY in our extrac-
tion using the Ising-type model, and the result of sY plotted
against B is shown in Fig. 5 A. As we were using the differ-
ence in wild-type and mutant hTþi-versus-B relationships to
extract sY, and this difference is too small to get a reliable
extraction for B > 0.3, as seen in Fig. 1, we only extract
sY as a function of B for B < 0.3. To compare with Park
et al. (14), we also plotted sY

2 as a function of CW bias in
Fig. 5 B. We also tried varying tY when we extracted sY
as a function of B by assuming a linear relationship between
tY and sY, as suggested in the previous study (14). The re-
sults are essentially the same as in Fig. 5, with the relative
A

B

FIGURE 5 sY (A) and sY
2 (B) as a function of the CW bias extracted

using the 1D Ising-type model.
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FIGURE 6 Comparison of chemotactic motions with or without noise in

exponential ligand profiles. (A) Averaged x positions of the bacterial popu-

lation with (triangles) or without (circles) noise as a function of time for

gradient length d¼ 10 mm. (B) Relative increment in drift velocity for cells

with noise compared to cells without noise in exponential ligand profiles

with different gradient length scales.
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differences of within 1%, which are much smaller than the
error bars.

E. coli cells perform chemotaxis by modulating the length
of their runs, which corresponds directly to the motor CCW
intervals. The motor CW bias has a one-to-one relationship
with the intracellular CheY-P concentration (32). Therefore,
the slope of the CCW-interval-versus-CW bias curve mani-
fests the sensitivity downstream of the chemotaxis signaling
network. We compare the slope for the wild-type and mutant
strains near the wild-type CW bias of 0.15, and found that
the slope dTþ/dB changed from�4.65 0.4 for mutant cells
to �6.5 5 0.4 for wild-type cells, a 40% increase in the
absolute value of the slope.

To investigate the implication of the noise-induced dTþ/
dB increase on bacterial chemotaxis performance, we con-
structed a stochastic model of the chemotactic motion based
on a coarse-grained description of the intracellular chemo-
taxis signaling network following a computational model
that couples signaling and swimming proposed by Jiang
et al. (27). In the simulation, the average run duration was
set to the average motor CCW interval, and we utilized
the simple relation between run length and the CW bias:
TRun ¼ tD/B, with tD ¼ 0.11 s, as fitted from our experi-
mental data (Fig. 4 A).

We simulated cells swimming in an exponential a-methyl-
aspartate concentration profile [L] ¼ [L]0exp(x/d) with
[L]0¼ 5KI, which leads to a constant chemotaxis drift veloc-
ity due to logarithmic sensing in bacterial chemotaxis (35).
For each gradient length d, we simulated the motion of
2000 cells, each of which swims for 30 min starting from
the origin of axis in a random initial swimming direction.
The averaged cell position is calculated as a function of
time, as shown in Fig. 6 A for d ¼ 10 mm. We compared
the cases with and without the fluctuation of CheY-P concen-
tration, and saw a clear difference in the drift velocities
(Fig. 6 A). The percentage increment in dTþ/dB as measured
above should not be directly translated into the same amount
of increment in the drift velocity. In bacterial chemotactic
motion, the increment of sensitivity downstream of the
signaling network feeds-back via the output (modulated
run lengths) into the input, altering the pattern in which the
bacteria sense the environment, thereby resulting in a com-
plex enhancing effect on the drift velocity. We calculated
the effect of noise on the run lengths in the simulation. For
d ¼ 10 mm, the average run length for backward runs
down the gradient was 17.50 mm, and 18.22 mm for forward
runs up the gradient, resulting in a relative difference of 4.1%
between the average forward and backward run lengths.With
signaling noise, the average backward and forward run
lengths were 18.06 and 19.26 mm, respectively, resulting in
a relative difference of 6.6%between the average run lengths.
Consistent with our motor studies (Fig. 1), both backward
and forward run lengths increased when signaling noise
was included, and the relative difference between the forward
and backward run lengths was larger for cells with noise,
increasing the drift velocity. We expect that the increment
in drift velocity due to noise is larger in shallower gradients
of attractants, where the gradient length scale is much larger
than run lengths and therefore extended runs (due to noise)
allow the cell to sense the gradient more efficiently. We
calculated the relative increment in drift velocity for cells
with signaling noise compared to cells without noise under
various ligand gradient lengths d, and showed that the relative
increment is larger for shallower gradients (Fig. 6 B).
DISCUSSION

In this study, we found a surprising difference in the
CCW-interval-versus-CW bias relationship for wild-type
cells and mutant cells that lack the signaling noise. By
comparing the difference in this relationship, we provided
a measurement of the values of the signaling noise sY
for wild-type cells. The values of sY as a function of the
CW bias we measured here agrees qualitatively with the
previous finding that sY decreases with the CW bias,
but our measured values of sY are approximately twice
those from the previous measurement (14). The difference
may in part be due to the fact that they mixed data from
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wild-type cells and cells overexpressing CheR in the previ-
ous measurement (14), and overexpressing CheR sup-
presses the noise. Therefore, we provided an extraction
of this important parameter in bacterial chemotaxis for
wild-type cells. This signaling noise plays an important
role in coordinating multiple motors on a cell, as shown
in recent theoretical studies (11,13). The magnitude of
the noise we measured here falls in the region that is
required to reproduce the coordinated response of adjacent
motors on a cell, as found earlier (13,36). Furthermore,
we found that the signaling noise increases chemotaxis
sensitivity by 40% at the level of the flagellar motor by
increasing dTþ/dB, and a manifest of which in bacterial
swimming behavior is that noise enhances the bacterial
drift velocity in a chemical gradient. This is consistent
with two recent theoretical reports that cells with optimal
signaling noise drift more rapidly in attractant gradients
(13,15). Here, we have found a straightforward phenome-
nological mechanism explaining the enhancement in drift
velocity, which is that the signaling noise increases chemo-
taxis sensitivity by increasing dTþ/dB. Our simulation of
the bacterial chemotactic swimming confirmed this mecha-
nism: when bacteria swim in an attractant gradient, both
forward and backward run lengths increase for cells with
signaling noise compared to those without noise, but the
relative difference in the forward and backward run lengths
is larger for cells with noise, consistent with our finding
that both Tþ and dTþ/dB increase for cells with noise
(Fig. 1). In a previous modeling study not including the
effect of noise, the drift velocity was shown to also be sen-
sitive to the steady-state CW bias, and it was maximal at
low CW bias where the slope of the expected run length
as a function of CheY-P concentration is largest (37).

In summary, by comparing the motor behavior of wild-
type E. coli cells and mutant E. coli cells that lack the
fluctuation of CheY-P concentration, we measured the
SD of the fluctuation on average to be sY ¼ 0.26 5
0.05 mM for wild-type cells, a 10% relative fluctuation.
Here, we found that the noise plays a direct role in
increasing the chemotaxis sensitivity: it increases dTþ/
dB from �4.6 5 0.4 for mutant cells to �6.5 5 0.4 for
wild-type cells, a 40% increment. Considering that dB/
dY is the same for motors of wild-type and mutant cells,
this amounts to a 40% increment in chemotaxis sensi-
tivity. This increment in sensitivity is due to the signaling
noise and the nonlinearity (convex shape) in the motor
response of CCW-interval-versus-CW bias. Considering
the ubiquity of noise and nonlinear response in biolog-
ical networks, similar mechanisms should exist in other
biological systems.
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