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Empirical tests of adaptive maternal sex allocation hypotheses
have presented inconsistent results in mammals. The
possibility that mothers are constrained in their ability to
adjust sex ratios could explain some of the remaining variation.
Maternal effects, the influence of the maternal phenotype
or genotype on her developing offspring, may constrain
sex allocation through physiological changes in response to
the gestational environment. We tested if maternal effects
constrain future parental sex allocation through a lowered
gestational stress environment in laboratory mice. Females that
experienced lowered stress as embryos in utero gave birth to
female-biased litters as adults, with no change to litter size.
Changes in offspring sex ratio was linked to peri-conceptual
glucose, as those females that had increasing blood glucose
peri-conceptionally gave birth to litters with a higher male
to female sex ratio. There was, however, no effect of the
lowered prenatal stress for developing male embryos and
their sperm sex ratio when adult. We discuss the implications
of maternal effects and maternal stress environment on the
lifelong physiology of the offspring, particularly as a constraint
on later maternal sex allocation.

1. Introduction
Adaptive sex allocation hypotheses predict variation in the sex
ratio of offspring where sex-specific fitness returns vary with
local conditions and/or parental ability to invest [1–4]. Such
hypotheses are logically appealing and have resulted in numerous
empirical tests, including in mammals (reviewed in [5–7]). Initial
reviews in mammals suggested little consistency in support
for adaptive hypotheses, but methodological inconsistencies
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between studies explain some of the variation [5,7]. Nonetheless, unexplained variability both between
and within species in empirical studies occurs, especially in mammals [8]. The unpredictability of effect
sizes suggests that parents may be physiologically constrained in their ability to skew the sex of their
offspring [9,10].

An increasing understanding of the underlying physiological mechanisms for maternal sex allocation
suggests factors that might constrain maternal ability to skew sex ratios [10]. Lifelong and inter-
generational modifiers of maternal physiology may constrain an individual’s ability to respond to
the current local conditions [10–12], particularly through maternal effects, the causal influence of the
maternal phenotype or genotype on developing offspring [13–15]. Several factors have been linked
to sex ratio skews through their physiological actions, including circulating glucose [5], testosterone
[16–18] and stress hormones [19]. Each of these factors is influenced by the local conditions a mother
experiences and can directly affect the developing fetus. Thus, the environment experienced in utero can
alter physiological pathways, thereby changing the individual’s response to the environment as adults
[20]. Such maternal effects may result in parents that are physiologically constrained in their ability to
alter sex ratios in response to current conditions.

Stress responses provide a link between the proposed mechanisms of sex ratio adjustment [19,21] and
can have profound physiological impacts on developing offspring as a maternal effect [22]. Stressors
experienced by the mother are mediated through internal hormone fluctuations; stressors stimulate the
release of corticotropin-releasing hormone from the hypothalamus, which in turn stimulates the release
of adrenocorticotropic hormone from the pituitary gland, resulting in the release of glucocorticoids
(GCs; [23]). GCs then bind to receptors, which allow the body to return to homeostasis through acute
stress events [23–25]. Fetuses are extremely sensitive to GCs [26,27], and so protective enzymes (e.g.
11 beta-hydroxysteroid dehydrogenase type 2) in the placenta metabolize roughly 80% of naturally
occurring GCs, thereby buffering the fetus from high levels of GCs [28,29]. However, the remaining
proportion can cross the placenta, and thereby influence offspring development [30]. These changes can
be either deleterious or advantageous to the offspring (e.g. [31,32]) and can last a lifetime [31], potentially
even persisting across generations [33,34]. Offspring fitness may be increased, for example by matching
poor-quality mothers with reduced offspring demand [35] and offspring traits that increase survival
[32]. However, changes that create a mismatch with the local environment are likely to result in offspring
relatively less suited for the current environment, thus decreasing their fitness [36,37].

The physiological effects of maternal gestational stress on developing offspring include changes in
the hypothalamic-pituitary-adrenal (HPA) axis function, immunity, glucose and insulin tolerance and
regulation, body condition and adult reproductive behaviour and function in the offspring [38–40].
Stress probably influences maternal sex allocation, through increased susceptibility of male offspring to
adverse conditions during late gestation [41], and more subtly through physiological changes persisting
into adulthood. Changes to the HPA axis (and thereby sensitivity to stress) as a result of maternal
effects during late gestation could influence offspring sex ratios and survival once that offspring
itself reaches breeding age. Furthermore, such changes may influence maternal sex allocation through
interactions with free glucose [5], because hepatic gluconeogenesis results from increased cortisol [42],
and gestational stress can alter glucose levels and insulin tolerance lifelong [43,44]. Increases in peri-
conceptual glucose increase the proportion of male offspring [5,45], due to interactions between free
glucose and X-linked proteins and metabolic pathways [46], where female conceptus development is
compromised under high glucose conditions [45,47] but enhanced under low glucose conditions. GCs
also inhibit the secretion of reproductive hormones, including testosterone, also linked to sex ratio skews
in mammals [48]. High levels of maternal testosterone have been linked to an increasing proportion of
male offspring [49,50], hypothetically altering the receptivity of the egg to either X- or Y-chromosome-
bearing spermatozoa in relation to follicular testosterone [17]. Hormonal differences between adult
males have also been linked to variation in the X to Y ratio in sperm (reviewed in [9]) potentially also
influencing paternal sex allocation. Therefore, maternal stress levels can influence offspring development
during gestation in ways that could alter sex allocation when they reproduce, irrespective of current
local conditions.

Here, we test if downregulated stress during late gestation in laboratory mice impacts (i) the physical
development and reproductive success of offspring and (ii) their sex allocation, in terms of sperm sex
ratios in adult males and birth sex ratios in females. We predict that offspring born to treated mothers
will have an increased number of glucocorticoid receptors [51], and therefore increased susceptibility
to stress [26]. Female offspring may then experience increases in offspring sex ratios as a result of
increased gluconeogenesis [5]; however, we do not predict that these changes should influence male
sperm sex ratios.
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2. Material and methods
We used BALB/c mice bred and housed at the University of Tasmania, Australia. They were kept under
12 L : 12 D photoperiod in a temperature and humidity controlled room and provided with mouse chow
(Barastoc® irradiated food) and filtered water ad libitum.

2.1. Generating focal females and males
The experimental design is outlined in figure 1. Forty nulliparous dams were housed in groups of up
to five until seven weeks of age when they were separated into pairs. One male was introduced to each
cage, and each morning the dams were checked for the presence of a copulatory plug. Those dams that
had a copulatory plug were removed from the cage and placed into group cages. The dams that did not
have a copulatory plug were left with a male until a plug was observed.

We used dexamethasone to reduce stress in these pregnant dams in late gestation. Dexamethasone is a
synthetic GC that simulates an artificial low stress environment [52,53] and is used during late gestation
in humans to reduce the risk of respiratory distress syndrome in premature babies [22]. Fetal effects from
the simulated low stress environment are expected to be exaggerated because dexamethasone is not
metabolized by the placenta [54]. Thus, there are fewer maternal GCs crossing the placenta as a result
of dexamethasone interacting with the mother’s body, as well as free dexamethasone entering the fetus
and blocking its naturally occurring GCs. Combined, these effects result in perceived low stress levels
for offspring.

At day 16 after the presence of a copulatory plug, 1.0 µg ml−1 of dexamethasone (as used by [52]) was
added to the drinking water of 22 dams, and this was replaced with fresh water after 3 days. Although
this method results in variable dosages, it eliminates any increase in GCs from the stress of handling
and injections [53], which potentially could negate the treatment [52]. Water-soluble dexamethasone is
provided in a complex with 2-hydroxypropyl-β-cyclodextrin. Therefore, we had 10 dams whose water
was treated with 14.4 µg ml−1 2-hydroxypropyl-β-cyclodextrin as a vehicle control, to equally match the
amount of vehicle that was required to deliver 1.0 µg ml−1 of dexamethasone. The water of eight dams
was left untreated, as the negative control.

As close as possible to birth and at least within 10 h, the pups were counted to record litter size in case
of infanticide. These pups are considered to be the focal animals; the sperm sex ratios and offspring sex
ratios produced by them are a means of determining the influence that maternal stress had. At 21 days
after birth, the focal pups were sexed via visual examination of the anogenital distance and separated
into single sex group cages. To avoid pseudo-replication, only one focal female and one focal male from
each litter were kept as the focal animals. At seven weeks of age, the focal pups were considered adult,
and body measurements (table 1) were taken.

2.2. Breeding of focal females
Focal females were housed in pairs with an unrelated male until a copulatory plug was noted, after which
females were weighed and blood glucose tested. Three days later the blood glucose test was repeated,
to calculate the change in peri-conceptual blood glucose level. Focal females were allowed to give birth
naturally and pups were again sexed using anogenital distance. Seven focal females did not conceive,
and a further two committed infanticide prior to offspring sexing and were removed from the analysis.
The final sample size was 31 (figure 1). The sex ratio of the resultant litter was recorded.

2.3. Sperm collection from focal males
Focal males were sacrificed via cervical dislocation at between 67 and 74 days of age. The left epididymis
and vas deferens were dissected into 0.5 ml cryopreservation media (18% raffinose + 3% skim milk). The
semen was squeezed from the vas deferens using tweezers and allowed to swim out of the epididymis
through lateral incisions. The resultant sperm suspensions were stored in straws and cryopreserved in
liquid nitrogen.

2.4. Fluorescence in situ hybridization on sperm
The full methods are described in Edwards et al. [56]. Briefly, the sperm samples were washed and
fixed to glass slides, decondensed and treated with pepsin prior to denaturation in 70% formamide. The
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Figure 1. Diagram of the experimental design. The sample sizes at each stage of the experiment are listed based on treatment.

Table 1. Variables measured from BALB/c mice, used in a mating trial to determine whether maternal effects (in utero treatment with
dexamethasone) have the ability to constrain sex allocation in laboratory mice. Physical body measurements were taken at maturity
(seven weeks of age).

variable description

body condition calculated from the residuals of an ordinary least-squares linear regression of body mass and pes length [55].
Pes length is measured using digital callipers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

anogenital distance calculated as the distance between the anus and the genital opening. Measuring using digital callipers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

digit ratio digit ratio was calculated as the ratio of second to fourth digit on the hind right foot. Digit length is measured
using digital callipers from the tip of the toe to the base of the footpad. Observers were blind to the
treatment of the animal

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

blood glucose blood glucose was measured using an Accu-Chek Performa Nano glucometer, from blood collected via tail
tipping

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X-chromosome probes were labelled with Cy3 and Y-chromosome probes with biotin. Denatured probes
were added to the slides and hybridizations were performed in a warm, moist chamber for 24–48 h.
Slides were washed and detection of the Y-chromosome probe was performed using avidin-fluorescein
isothiocyanate (FITC), prior to counterstaining the sperm heads with 4′6-diamidion-2-phenylindole ml−1

(DAPI) and mounting using an anti-fade solution (Vectashield, Vecta Laboratories, CA). Sperm were
observed using a Leica DMRXA fluorescence microscope, with Cy3, FITC and DAPI specific filters. A
minimum of 500 spermatozoa were counted per individual, from images collected using Leica QFISH
with a cooled CCD camera through ×40 or ×63 oil-immersion objectives.

Of the 40 initial litters, four did not produce any males, three sperm samples were destroyed during
transportation, and one sample failed to hybridize sufficiently for analysis, resulting in 33 focal males
(figure 1).

2.5. Statistics
All analyses were performed in R v. 3.2.2 [57].

2.6. Focal female offspring sex ratio analysis
Binomial generalized linear models with an intercept of 1 were run to determine whether the treatment
group or either control group presented with sex ratios different to the predicted 50 : 50 ratios. These
results are presented as 95% CIs on the estimate.
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Figure 2. Female mice that receive dexamethasone treatment in utero produce litters with sex ratios that are lower than the expected
50 : 50 ratio (GLM: −0.943, −0.161), but females who received the vehicle or untreated water did not (GLM vehicle control:−0.922,
0.738; GLM negative control:−0.798, 0.274). The dotted line indicates the expected 50 : 50 ratio.
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Figure 3. The linear relationship between sex ratio (as percentage of male offspring) and peri-conceptional blood glucose changes from
day 0 to day 3 after confirmed copulation in laboratory mice (GLM, Pr (>χ )= 0.03). Crosses represent the sex ratios of females who
received dexamethasone treatment during late development (in utero). Filled circles represent females who received the vehicle control
and open circles represent females that did not receive any treatments.

A generalized linear model with binomial error was run to determine whether peri-conceptual change
in glucose, treatment or body condition influenced the sex ratio of offspring. This model also included
an interaction effect between peri-conceptual glucose and treatment. While a multivariate analysis of
variance (MANOVA) was run to determine whether the treatment had any effect on the physical body
measurement of focal animals. An analysis of variance (ANOVA) was also run to determine whether
litter size varied with treatment.

2.7. Focal male sperm sex ratio analysis
A full generalized linear model with binomial error was run to determine whether treatment or body
condition influences the sex ratio of sperm. While a MANOVA was run to determine whether the
treatment had any effect on the physical body measurement of focal animals.

3. Results
3.1. Litter sex ratios
The treatment group produced sex ratios that were significantly lower than the predicted 50 : 50 ratio
(generalized linear model (GLM): −0.943, −0.161; figure 2), whereas neither control group differed from
parity (GLM negative control: −0.798, 0.274; GLM vehicle control: −0.922, 0.738).

The sex ratio of offspring was significantly influenced by peri-conceptual change in glucose
(Pr (>χ )1,29 = 0.033; figure 3), but not by treatment (Pr (>χ )2,27 = 0.676) or body condition (Pr
(>χ )1,26 = 0.915). There was also no interaction effect between the change in peri-conceptual glucose
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and treatment (Pr (>χ )2,24 = 0.554). The treatment did not result in a change in litter size (F2,28 = 3.174,
p = 0.057); however, there was a slight trend for the vehicle control group to have smaller litters. The
treatment also did not influence the physical and physiological body measurements of the focal animals
(F10,48 = 0.955, p = 0.493).

3.2. Sperm sex ratios
The sperm sex ratio was not significantly influenced by treatment (Pr (>χ )2,30 = 0.192) or body condition
(Pr (>χ )1,29 = 0.488). There was also no effect of treatment on any physical or physiological body
measurement of the focal males (F8,56 = 0.975, p = 0.477).

4. Discussion
Maternal effects altered focal female sex ratios, but not the X- and Y-chromosome ratio in focal male
sperm. Females that received the dexamethasone treatment during late-gestational development gave
birth to litters with sex ratios lower than the predicted 50 : 50 ratio, with no change to litter size.
However, increases in blood glucose were more strongly associated with an increase in male offspring
than treatment per se, suggesting that environmental interactions with glucose metabolism may be more
influential than maternal effects.

The developmental impacts of late-gestational maternal stress manipulation influence stress
responses and glucose metabolism in later life [22]. Embryonic female guinea pigs exposed to
dexamethasone in utero have increases in glucocorticoid receptor and mineralocorticoid receptor mRNA
in all regions of their hippocampus and altered GC levels, which are lower in the luteal phase but higher
during oestrous [22]. However, increases in cortisol are associated with hepatic gluconeogenesis [42] and
an overall increase in glucose [58]. Therefore, the lowering of cortisol levels during the luteal phase and
the observed increase in female offspring might be better explained through the glucose hypothesis [5],
through associated low levels of gluconeogenesis, and therefore, an overall decrease in free glucose.

In this study, the focal females that had an increase in blood glucose levels over the time of conception
and early gestation give birth to more sons. This provides further evidence in support of the glucose
hypothesis [5], where early blastocyst females survive better in low glucose environments, and males in
high glucose environments [45]. Change in blood glucose levels significantly influence sex ratios while
treatment only did so indirectly through an interaction with glucose levels, probably due to the delivery
method, because drinking water results in variable dosages [52]. However, as dexamethasone was used
to simulate low stress, variable dosage was preferable to negating the treatment from injection-induced
stress [52,53].

The possibility of maternal effects constraining a father’s sperm production has not been previously
investigated. No significant shift in sperm sex ratios of the focal males is unsurprising, as we do not
anticipate that stress or changes to HPA axis functioning should affect sperm production. Unlike mothers,
mammalian fathers do not require large energetic investment in the production of gametes [59], or even
in the offspring themselves [59], and therefore, changes to stress pathways are unlikely to influence
paternal sex allocation. However, research into paternal sex allocation and the possibility of adaptive
control by fathers is limited ([9], but see [60–62]), and it is unknown under what circumstances paternal
sex allocation could occur [9,56], although James [63] has suggested a role for pre-mating androgens
in fathers.

There were no changes to the physical appearance of either sex offspring, even though previous
studies on gestational dexamethasone have shown variation in physical characteristics (reviewed in [64]).
Many of the studies that have presented offspring with physical changes have used much larger
intravenous or subcutaneous dosages, and even multiple dosages, which leads to greatly exaggerated
effects [64]. In comparison, our dosage was high enough to have physiological effects on subsequent
sex ratios (suggesting changes to underlying physiology) but not enough to have deleterious effects on
offspring morphological development. In addition, we found no evidence that testosterone was linked
to sex allocation. We measured both the digit ratio and the anogenital distance of the mice, which are
indicative of the female’s prenatal androgen exposure [65], but neither of these were correlated with sex
ratio. There is contention regarding the use of digit ratios as androgen exposure indicators [66], and,
therefore, although our data show no support for a role of testosterone, we cannot rule out a role for
testosterone influencing sex ratios.

We have shown that the gestational environment results in female offspring whose physiology is
altered in a way that affects her reproductive functioning as an adult, which could influence the success
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of management and captive breeding programmes. Changes to female physiological pathways due to
maternal effects can constrain maternal sex allocation in subsequent generations, producing females that
respond differently to the same environmental conditions, despite appearing otherwise similar.
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