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The predictive modeling and design of biologically active RNA mole-
cules requires understanding the energetic balance among their basic
components. Rapid developments in computer simulation promise
increasingly accurate recovery of RNA’s nearest-neighbor (NN) free-
energy parameters, but these methods have not been tested in pre-
dictive trials or on nonstandard nucleotides. Here, we present, to our
knowledge, the first such tests through a RECCES–Rosetta (reweight-
ing of energy-function collection with conformational ensemble sam-
pling in Rosetta) framework that rigorously models conformational
entropy, predicts previously unmeasured NN parameters, and esti-
mates these values’ systematic uncertainties. RECCES–Rosetta recovers
the 10 NN parameters for Watson–Crick stacked base pairs and 32
single-nucleotide dangling-end parameters with unprecedented accu-
racies: rmsd of 0.28 kcal/mol and 0.41 kcal/mol, respectively. For set-
aside test sets, RECCES–Rosetta gives rmsd values of 0.32 kcal/mol on
eight stacked pairs involving G–U wobble pairs and 0.99 kcal/mol on
seven stacked pairs involving nonstandard isocytidine–isoguanosine
pairs. Tomore rigorously assess RECCES–Rosetta, we carried out four
blind predictions for stacked pairs involving 2,6-diaminopurine–U
pairs, which achieved 0.64 kcal/mol rmsd accuracy when tested by
subsequent experiments. Overall, these results establish that com-
putational methods can now blindly predict energetics of basic RNA
motifs, including chemically modified variants, with consistently
better than 1 kcal/mol accuracy. Systematic tests indicate that re-
solving the remaining discrepancies will require energy function
improvements beyond simply reweighting component terms, and
we propose further blind trials to test such efforts.

RNA helix | ensemble prediction | simulated tempering |
thermodynamics | blind prediction

RNA plays central roles in biological processes, including
translation, splicing, regulation of genetic expression, and

catalysis (1, 2), and in bioengineering efforts to control these
processes (3–5). These critical RNA functions are defined at
their most fundamental level by the energetics of how RNA folds
and interacts with other RNAs and molecular partners, and how
these processes change upon naturally occurring or artificially
introduced chemical modifications. Experimentally, the folding
free energies of RNA motifs can be precisely measured by op-
tical melting experiments, and a compendium of these mea-
surements have established the nearest-neighbor (NN) model for
the most basic RNA elements, including double helices with the
four canonical ribonucleotides (6). In the NN model, the stability
of a base pair is assumed to only be affected by its adjacent base
pairs, and the folding free energy of a canonical RNA helix can
be estimated based on NN parameters for each stacked pair, an
initialization term for the entropic cost of creating the first base
pair, and corrections for different terminal base pairs. Although
next-NN effects and tertiary contacts are not treated in the NN
model (7–9), the current NN model gives accurate predictions for
the folding free energies of canonical RNA helices (<0.5 kcal/mol
for helices with 6–8 base pairs) (10, 11) and can be extended to
single-nucleotide dangling ends, chemically modified nucleotides,
and more complex motifs, such as noncanonical base pairs, hair-
pins, and internal loops (11–14). However, it is currently not
feasible to experimentally characterize the energetics of all RNA
motifs due to the large number of possible motif sequences and the

requirement of specialized experiments to address complex motif
topologies, such as three-way junctions (15–17). These consider-
ations, and the desire to test physical models of RNA folding, have
motivated several groups to pursue automated computational
methods to calculate the folding free energies of RNA motifs.
Current computational approaches are beginning to recover

NN parameters for the simplest RNA motifs with accuracies
within a few-fold of the errors of experimental approaches. For
example, the Rosetta package has been developed and exten-
sively tested for structure prediction and design of macromole-
cules, including RNA. Recent successes at near-atomic resolution
have leveraged an all-atom “score function” that includes phys-
ics-based terms (for hydrogen bonding, van der Waals packing,
and orientation-dependent implicit solvation) and knowledge-
based terms (for, e.g., RNA torsional preferences) (18). When
interpreting the total score as an effective energy for a confor-
mation, simple Rosetta calculations recover the NN parameters
for all canonical stacked pairs with an rmsd of less than 0.5 kcal/mol
upon fitting two phenomenological parameters, the Rosetta
energy scale and a constant offset parameterizing the confor-
mational entropy loss upon folding each base pair (ref. 18 and
see below). In parallel, molecular dynamics studies have dem-
onstrated calculation of folding free energies of short RNA
hairpins using umbrella sampling, molecular mechanics–Poisson
Boltzmann surface area (MM–PB/SA), free energy perturbation,
and other methods (19–22). Although these calculations have not
yet accurately recovered folding free energies (errors > 10 kcal/mol)
(21, 22), relative differences of NN parameters between different
sequences and other aspects of RNA motif energetics have been
recovered with accuracies between 0.6–1.8 kcal/mol (22–24).
These error ranges are similar or lower than uncertainties of
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empirically defined NN parameters for most motifs, which are on
the scale of 1 kcal/mol. For example, original NN energy esti-
mates for G–U stacked pairs, single-nucleotide bulges, and
tetraloop free energies have been corrected by >1 kcal/mol when
revisited in detailed studies (11, 25–27). Overall, computational
approaches may be ready for calculations of new energetic pa-
rameters, including parameters for these uncertain motifs as well
as for motifs involving nonstandard nucleotides that are being
found throughout natural coding and noncoding RNAs (28, 29)
or used to engineer new RNA systems (30, 31). However, the
predictive power of these methods has not been evaluated through
tests on previously unmeasured NN parameters. Predictive tests
are particularly important because models are increasing in com-
plexity and risk overtraining on previously available data.
Here we report, to our knowledge, the first blind tests of a

method to computationally predict NN energetic parameters.
The newly measured parameters involve RNA stacked pairs
with the nonnatural nucleotide 2,6-diaminopurine (D) paired to
uracil (Fig. 1). To ensure a rigorous comparison, calculations
were carried out by one author (F.-C.C.) and subsequently tested
in independent experiments by another author (W.K.). In pre-
paration for this blind test, we developed a reweighting of
energy-function collection with conformational ensemble sampling
in Rosetta (RECCES–Rosetta) framework to calculate free en-
ergies based on density-of-states estimation and expected errors
from statistical precision, inaccuracies in the NN assumption,
and uncertainties in the weights of the underlying energy func-
tion. Furthermore, to address previous ad hoc assumptions used
to fit conformational entropy from data, RECCES calculates
the conformational entropy of helix and single-stranded states
without fitting of additional parameters. These systematic
improvements—and calibration based on previously measured NN
parameters—ensured that our blind tests carried sufficient power to
rigorously establish the accuracy and limitations of NN energy cal-
culations that seek to make nontrivial predictions.

Results
Recovery of Canonical Helix and Dangling-End Parameters. Blind
tests of a prediction method are not worthwhile if the expected
prediction errors significantly exceed the range of possible ex-
perimental values—on the order of several kilocalories per mole
for NN parameters. We therefore first sought to determine whether
folding free-energy calculations with the Rosetta all-atom energy
function, previously developed for RNA structure prediction and
design, could recover NN energetics for canonical Watson–Crick
stacked pairs and whether these calculations’ uncertainties were ac-
ceptable for making blind predictions. The Rosetta energy function
involves separate component terms for hydrogen bonding, electro-
statics, van der Waals interactions, nucleobase stacking, torsional
potentials, and an orientation-dependent solvation model. Prior
structure prediction and design studies did not strongly constrain
the weights of these components (18). Thus, we anticipated that
NN parameter prediction would require optimization of the weights
and care in uncertainty estimation. To assess whether the errors
due to weight uncertainties would allow nontrivial predictions, we
sought not just a single weight set but instead a large collection of
weight sets consistent with available data.
To discover these weight sets, we developed the RECCES

framework for sampling conformational ensembles of the single-
stranded and helix conformations relevant to NN energy estimation
(Fig. 2 and SI Appendix, Table S1). Through the use of a density-
of-states formalism, simulated tempering, and weighted histogram
analysis method (WHAM) integration, RECCES allowed the es-
timation of free energies with bootstrapped errors of less than
0.003 kcal/mol, significantly less than systematic errors of 0.3 kcal/mol
(estimated below; SI Appendix, Tables S2–S4), using two central
processing unit (CPU) hours of computation per molecule. These
methods are similar to replica exchange methods in common use
in molecular dynamics studies, but are simpler in that they do not
require running multiple parallel processes (SI Appendix, Support-
ing Methods). Importantly, the overall RECCES framework did not
require separate fitting of conformational entropy factors, re-
ducing the likelihood of overfitting. Furthermore, starting from
these initial simulations, RECCES enabled evaluation of alterna-
tive weight sets with negligible additional computation (<0.1 s)
through a rapid reweighting of cached energies. Though noisy at
low energies (compare green to blue curves in Fig. 2C), we con-
firmed that this reweighting procedure nevertheless led to an ac-
ceptable mean calculation error of 0.28 kcal/mol (SI Appendix,
Table S4), significantly smaller than the several kilocalories per
mole range of experimental NN parameters (SI Appendix, Table
S1). Further tests of the NN assumption, based on simulations
with different helix contexts for each stacked pair, also gave sys-
tematic errors of 0.2–0.3 kcal/mol (SI Appendix, Table S2).
Hereafter, we conservatively describe the systematic errors of the
RECCES–Rosetta NN parameter estimates to be the higher value
in this range, 0.3 kcal/mol.
To obtain a collection of weight sets, we used RECCES to

optimize the weights of all terms in the Rosetta score function
over numerous runs with different initial values. These optimi-
zation runs minimized the mean square error with respect to the
NN parameters of 10 canonical stacked pairs (four base pairs
next to four base pairs, removing symmetric cases), 32 single-
nucleotide dangling ends (four nucleotides at either the 5′ or 3′
end of four base pairs), and the terminal penalty for A–U vs. G–C.
The resulting 9,544 minimized weight sets were highly diverse,
even after discarding the weight sets with 5% worst rmsd agree-
ment to training data (SI Appendix, Table S5, describes score
terms and summarizes mean and SDs of weights; SI Appendix,
Table S6, gives five example weight sets). Most score terms were
recovered with mean weights greater than zero by more than one
SD, confirming their importance for explaining RNA structure
and energetics. These terms included stack_elec, which models the
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Fig. 1. Base pairs involved in NN parameters considered in this study.
(A) Canonical pairs adenosine–uracil and guanosine–cytidine, (B) guanosine–
uracil wobble pair, (C) nonnatural isoguanosine–isocytidine, (D) nonnatural
2,6-diaminopurine–uracil, and (E) inosine–cytidine.
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electrostatic interaction between stacked nucleobases, an effect
previously posited by several groups to be important for under-
standing fine-scale RNA energetics (14, 32). Terms with wider
variance across weight sets could be explained through their co-
variance with other terms. For example, some pairs of score terms,
such as the nucleobase stacking term fa_stack and the van der
Waals term fa_atr, model similar physical effects, but other pairs
model opposing effects in helix association, such as hydrogen
bonding hbond_sc and the solvation term for burying polar moi-
eties geom_sol_fast (SI Appendix, Table S7). The weights of these
pairs varied significantly across optimized weight sets, but linear

combinations of these weight pairs were nearly invariant across the
weight set collection (SI Appendix, Fig. S1).
Despite the variations and covariations observed across this large

collection of weight sets, each weight set gave an rmsd accuracy of
better than 0.58 kcal/mol for canonical base pairs and dangling ends,
with a mean accuracy of 0.40 kcal/mol across all training data. These
accuracies were significantly better than rmsds of 1.51 kcal/mol and
1.23 kcal/mol, respectively, obtained with the original structure pre-
diction weights, supporting the need for reweighting (SI Appendix,
Table S6). The rmsd over just the canonical stacked base pairs was
0.28 kcal/mol (Fig. 3A), comparable in accuracy to the initial exper-
imental estimates of these values (10, 12) and consistent with the
estimated systematic errors of our calculation strategies (0.3 kcal/mol)
(SI Appendix, Tables S2 and S4). For the dangling-end data, RECCES–
Rosetta also gave an excellent rmsd of 0.41 kcal/mol (Fig. 3B). For
these data, the largest deviations from experiment were tagged as
having the highest expected error from weight uncertainties by
RECCES, supporting this method of error computation (see,
e.g., 5′CG

3′G
dangling end in SI Appendix, Table S1). For both sets of

NN parameters, the rmsd errors were significantly smaller than
the range of experimental values (2.5 kcal/mol and 1.5 kcal/mol for
canonical stacked pairs and dangling ends, respectively), leading to
the visually clear correlations in Fig. 3 A and B. The terminal
penalty for A–U relative to G–C was also recovered with a similar
error (0.3 kcal/mol) (SI Appendix includes further discussion and
computation of other terminal base pair contributions).
Because we directly trained the RECCES score function

against the experimental dataset, the accuracies of these results
were expected. Nevertheless, we gained further confidence in the
use of Rosetta-derived energy functions and RECCES framework
by comparing its performance to the results of two simpler models
trained on the same data. First, a three-parameter hydrogen-bond
counting model, similar to simple phenomenological models that
inspired theNNparametrization (10) (SI Appendix, SupportingMethods),
achieved rmsd accuracies of 0.29 kcal/mol and 0.45 kcal/mol on
canonical stacked pairs and dangling ends, respectively—slightly
worse than the RECCES results (0.28 kcal/mol and 0.41 kcal/mol,
respectively), despite including fitted parameters that account for
conformational entropy loss of base pairs and dangling ends. Sec-
ond, a prior single-conformation Rosetta method, which uses the
same energy function as RECCES–Rosetta but evaluates the score
only for a minimized helix conformation (18) achieved accuracies of
0.30 kcal/mol and 0.44 kcal/mol for canonical stacked pairs and
dangling ends, respectively—again worse than the RECCES–
Rosetta results despite including separately fitted conformational
entropy terms. For all three models, the largest deviation was for
the stacked pair 5′CG

3′GC
, which is less stable than the other stacked

pairs with two G–C pairs by 1 kcal/mol; still, even for this param-
eter, the RECCES–Rosetta calculations were more accurate than
the simpler models. These comparisons supported the utility of

A

B

C

Fig. 2. RECCES thermodynamic framework and reweighting. (A) Example sys-
tems simulated for this study. Degrees of freedom sampled are colored in white.
The relative orientation of first base pair in each helix was fixed (Right, yellow
dashes). (Upper and Lower) Folding reactions of two-base-pair and three-base-
pair systems, respectively. (B) Density of state estimation by simulated tempering
and WHAM. (C) Reweighting demonstration. (Left) State population at room
temperature before (blue) and after (green) reweighting. (Right) Two-dimensional
population histograms of fa_atr (Lennard–Jones attraction) vs. hbond_sc (hydro-
gen bonds) energy components, before and after reweighting.

Table 1. Accuracies of nearest-neighbor parameter predictions

RNA motif category No. motifs

Rmsd accuracy (kcal/mol)

Hydrogen-bond counting Single-conformation Rosetta RECCES–Rosetta RECCES–Rosetta refitted*

Canonical† 10 0.29 0.30 0.28 0.41
Dangling† 32 0.45 0.44 0.41 0.43
G–U‡ 8 0.59 0.49 0.32 0.32
iG–iC‡ 7 0.79 0.85 0.99 1.08
D-U§ 4 0.48 0.40 0.63 0.46
All 61 0.50 0.49 0.50 0.53

*The model was trained with all data available, so all entries in the column are training data.
†Data used in training the models.
‡Data set aside for testing.
§Blind test data.
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the RECCES–Rosetta method compared with less generalizable
models. However, the significance in the accuracy improvement was
difficult to rigorously evaluate because the models contained dif-
ferent numbers and types of parameters; we therefore turned to
independent test sets and blind predictions.

Tests on Independent Nearest-Neighbor Parameter Measurements.
Recent comprehensive experimental measurements have updated
the NN parameters for stacked pairs involving G–U wobble
pairs next to canonical Watson–Crick pairs (11). Because these
values were not used in the training of the models herein and
because the geometry of G–U wobble pair is distinct from G–C
and A–U pairs (Fig. 1B), this set of measurements offered strong
tests of modeling accuracy. Furthermore, the expected error in the
RECCES–Rosetta calculations from weight uncertainties, based on
variation across the large collection of weight sets, was 0.22 kcal/mol
(SI Appendix, Table S1), less than the estimated ∼0.3 kcal/mol
systematic error (SI Appendix, Tables S2 and S4). Both error con-
tributions were significantly less than the full range of predicted NN
parameters (2.1 kcal/mol), supporting the strength of this test. The
actual rmsd accuracy across these G–U NN measurements was
0.32 kcal/mol for RECCES–Rosetta (Table 1), nearly as accurate
as the recovery of training set stacked pairs (0.28 kcal/mol) and
comparable to expected systematic errors. Furthermore, this accuracy
over G–U-containing stacked pairs outperformed the rmsd values
calculated from hydrogen-bond counting and single-conformation

Rosetta scoring methods (0.59 and 0.49 kcal/mol, respectively) by 50–
80%, supporting the importance of carrying out detailed physical
simulations of the conformational ensemble via RECCES over sim-
pler approaches. Here and below, the predictions and their estimated
errors were calculated by computing means and SDs of NN param-
eters across the full collection of weight sets discovered by RECCES.
Compared with this averaging over multiple models, using the
single weight set with best fit to the training data gave slightly worse
accuracies on the test data (SI Appendix, Table S6) (33).
A more difficult test involved seven previously measured NN

parameters of a nonnatural base pair, iG–iC (Fig. 1C) (34). The
rmsd for the iG–iC test case was 0.99 kcal/mol, mainly due to two
significant outliers: 5′iGiC

3′iCiG
and 5′GiC

3′CiG
(Fig. 3D). The predicted NN

parameters for these outliers were larger than experimental
values (less stable) by 2.2 and 1.3 kcal/mol, respectively. Never-
theless, over the other five iG–iC NN parameters, the rmsd was
0.51 kcal/mol, and the discrepancies appeared primarily due to a
systematic offset in the predictions (Fig. 3D). The accuracy was
comparable to the maximum errors expected from weight un-
certainties (0.4–0.5 kcal/mol) and similar, in terms of relative
accuracies, to the canonical and G–U-containing stacked pairs
above. Compared with RECCES–Rosetta, the simpler hydrogen-
bond counting and single-conformation Rosetta scoring models
gave 15–20% better accuracies (0.79 and 0.85 kcal/mol, re-
spectively; 0.47 and 0.44 kcal/mol, excluding outliers); but both
simple models gave near-constant NN parameters (range less
than 0.3 kcal/mol) over all stacked pairs, providing no explana-
tion for the 2.2 kcal/mol range in experimental measurements or
for the outliers (Fig. 3D). On one hand, the two outliers suggest
that some important physical effect is missing or incorrectly
implemented in the current calculation procedure (see Discussion).
On the other hand, the excellent accuracies over the other iC–iG-
containing stacked pairs, along with the performance in the G–U
test set, motivated us to continue with blind comparisons.

Blind Tests Involving Diaminopurine–Uracil Base Pairs. As a blind
test, we applied RECCES–Rosetta to predict the NN parame-
ters for stacked pairs involving a distinct nonnatural base pair,
2,6-diaminopurine paired with uracil (D–U) (Fig. 1D). Predictions of
these parameters (SI Appendix, Table S1) suggested a wide range of
NN values and confirmed that errors from weight uncertainties
were smaller or comparable to other systematic sources of error
(0.3 kcal/mol). To test these predictions, we measured NN param-
eters for the four stacked pairs involving D–U next to G–C pairs,
which were expected to have a range of 0.8 kcal/mol. SI Appendix,
Table S8, gives construct sequences and experimental folding free-
energy values for these constructs, and Table 1 and SI Appendix,
Tables S1 and S9, summarize the NN parameter estimation. The
rmsd of the RECCES–Rosetta blind predictions was 0.63 kcal/mol
(Fig. 3E). The hydrogen-bond counting and single-conformation
Rosetta scoring models, which fared worse than RECCES–Rosetta
in most tests above, gave rmsds of 0.48 and 0.40 kcal/mol, re-
spectively, better than RECCES–Rosetta by 24–37% (Table 1). This
result is similar to what we observed in the iG–iC test case; indeed,
the two simple models again produced near constant predictions
(range< 0.2 kcal/mol) for the D–U stacked pairs that did not account
for the 0.8 kcal/mol range of the measured values (Fig. 3E). Given
the blind nature of the test and our attempts to ensure its power to
falsify our calculations, this test unambiguously indicated that some
physical term is missing in the current Rosetta all-atom energetic
model (as well as simpler models). Nevertheless, the results are en-
couraging: the blind predictions from each of the three models over
each of four NN values separately achieved better than 1 kcal/mol
accuracy compared with subsequent experimental measurements.

Post Hoc Fit Across All Data. Though post hoc tests of models on
prior collected data are less rigorous than blind trials, they can

Fig. 3. Calculations vs. experiment for each NN parameter set. (A) Canonical
stacked pairs; (B) single-nucleotide dangling ends; (C) stacked pairs including
one G–U pair; (D) stacked pairs including at least one iG–iC pair; (E) stacked
pairs including one D–U pair. All panels are drawn with the same axis limits
and a line of equality (dashed) to aid cross-panel visual comparison.
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help guide future work. As a final test, we wished to understand
possible explanations for the worse accuracy of RECCES–
Rosetta in iG–iC test cases and blind D–U trials compared with
the G–U test cases. One model for this inaccuracy was that
overfitting of energy function weights to the training data wors-
ened predictive power over the new data. Another (not neces-
sarily exclusive) model was that the underlying energy function
derived from Rosetta score terms was fundamentally incapable
of modeling the available NN data under any weight set with the
RECCES procedure. We were able to test these models by car-
rying out a post hoc global fit of energy function weights over all
available NN data (Fig. 4 and Table 1). As expected, we observed
better fits to the test data, including an improvement in rmsd
accuracy for the four D–U stacked pairs from 0.63 kcal/mol to 0.46
kcal/mol; this result suggests a modest overfitting to the training
set in the studies above. However, we observed somewhat worse
fits to the training data, including a worsening of rmsd accuracy for
the 10 canonical stacked pairs from 0.28 to 0.41 kcal/mol, worse
than expected systematic errors in our calculations (0.3 kcal/mol)
(SI Appendix, Tables S2 and S4) supporting the second model
of fundamental energy function inaccuracy. Furthermore, this
global fit still failed to account for the two striking outliers involving
iG–iC base pairs, again giving evidence for the second model:
energetic calculations based on the current Rosetta score function
are fundamentally incapable of accounting for all of the data within
expected error, even with a post hoc optimized weight set.

Discussion
This study reports, to our knowledge, the first blind test of the
predictive power of high-resolution, all-atom modeling methods
for RNA folding energetics. We developed a RECCES strategy
in the Rosetta framework that rigorously models conformational
ensembles of single strand and helical states, is computationally
efficient (hours with currently available CPUs), and brackets
systematic errors based on comprehensive reweighting tests.
Compared with simpler phenomenological methods, RECCES–
Rosetta achieved excellent rmsd accuracies for the NN param-
eters of canonical base pairs, dangling ends, and G–U pairs, but
somewhat worse results for NN parameters involving nonnatural
base pairs iG–iC and D–U. The latter D–U parameters were
measured after the predictions as a blind test. The computational
accuracies were better than 1 kcal/mol in all cases, based on rmsd
values over each separate set of NN parameters (0.28, 0.41, 0.32,
0.99, and 0.63 kcal/mol for canonical, dangling end, G–U, iG–iC,
and D–U parameters, respectively) and also individually for each
of the four blind predictions. These rmsd values are significantly

smaller than the 2–3 kcal/mol ranges measured for these sets of
NN values (Fig. 4 and SI Appendix, Table S1), are comparable to
errors in ad hoc fits used in the current NN model for most motifs
(11, 25–27), and are generally smaller than molecular dynamics
calculations that remain significantly more expensive (21, 22). The
generality of the RECCES–Rosetta framework and this level of
success in initial tests support the further development of RECCES–
Rosetta for nonnatural nucleotides and for motifs more complex
than the helical stacked pairs and dangling ends considered herein.
While achieving consistently sub-kcal/mol accuracies, there is

room for improvement in the RECCES–Rosetta approach. For
example, the modeling does not account for the 1 kcal/mol sta-
bility increase of the 5′GC

3′CG
NN parameter relative to 5′CG

3′GC
; the

electrostatic term stack_elec does favor the former, but is not
assigned a strong enough weight in the final fits to account for
the stability difference. Also, the rmsd accuracies still remain
larger than estimated systematic errors (0.3 kcal/mol), particu-
larly for the nonnatural base pairs in the test data, and the dis-
crepancies remain even if those data are included in a post hoc
fit of the energy function weights to all available measurements.
Our results help bracket which strategies might improve the
accuracy and which might not. On one hand, nonnatural pairs
present their atomic moieties in different bonded contexts, which
might modulate the strengths of hydrogen bonds or other in-
teractions that they form. For example, a previous analysis sug-
gested that the hydrogen bonds in an iG–iC base pair might be
stronger than in a G–C base pair by ∼0.4 kcal/mol (14). Ac-
counting for this effect would be predicted to offset our calcu-
lated NN parameters for all iG–iC stacked pairs, without
changing their relative ordering, and cannot account for strong
outliers. Indeed, if we added an extra fitting term for stabilizing
iG–iC pairing, the rmsd accuracy over these data did not sig-
nificantly improve (0.96 kcal/mol vs. 0.99 kcal/mol without the
extra term). On the other hand, several unmodeled factors are
sensitive to the ordering of base pairs within stacked pairs and
could affect the relative ordering of NN parameters within each
set. For example, the current Rosetta all-atom score function
models electrostatics through fixed charges with a distance-
dependent dielectric and does not explicitly model water or
counterions that may differentially stabilize the base pair steps
(35, 36). Recent and planned additions of nonlinear Poisson–
Boltzmann solvation models, polarizable electrostatic models,
and a potential of mean force for water-mediated hydrogen
bonding into the Rosetta framework should allow evaluation of
whether these physical effects can improve accuracy of NN

Fig. 4. Calculations vs. experiment across all NN parameters. Comparisons are based on (A) RECCES–Rosetta weight sets trained on canonical and dangling-
end data (same values as in Fig. 3) and (B) “best-case” weight sets fitted post hoc over all available NN parameters, including D–U stacked pairs measured for
blind predictions.
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parameter calculations to the 0.3 kcal/mol fundamental limit of
the RECCES method. If these models can also be expanded to
calculate the temperature dependence of solvation, it may also
become possible to compare calculated and measured entropies
and enthalpies of the NN parameters, which are well measured
but may be dominated by solvation effects. In addition, we
propose that calculations for recently characterized stacked pairs
that give anomalous NN parameters, including some tandem
G–U stacked pairs (11) and pseudouridine-A–containing stacked
pairs (37, 38), could offer particularly stringent tests.
Continuing work in modeling RNA energetics will benefit from

further blind trials, perhaps in a community-wide setting analogous
to the ongoing RNA-puzzle structure prediction trials (39, 40). The
prediction of two kinds of parameters could serve as future blind
tests. First, based on the results herein, nonnatural base pairs offer
good test cases and require the same amount of computational
power as canonical base pair NN parameter estimation. Alterna-
tive approaches based on, e.g., molecular dynamics, should also be
applicable to these cases. We have completed RECCES–Rosetta
predictions for additional stacked pairs involving iG–iC and D–U
pairs, as well as for inosine–cytosine (I–C) base pairs (Fig. 1E and
SI Appendix, Table S1), but are waiting to make experimental
measurements until there are comparison values from other groups
and approaches. Second, future blind trials might involve predict-
ing energetics of RNA motifs more complex than those considered
herein, such as apical loops, internal loops, multihelix junctions,
and tertiary interactions. For these cases, an expansion of the

RECCES approach in which physically realistic candidate confor-
mations of each motif are first estimated with structure prediction
(18, 41) and then subjected to rigorous RECCES-based free-en-
ergy calculations may offer predictive power. Such an approach may
also allow calculations of next-NN effects and development of rapid
approximations to estimate conformational entropy of candidate
conformations, which would be useful for structure prediction and
design (SI Appendix, Fig. S2). A new generation of high-throughput
RNA biochemistry platforms (42–44) offers the prospect of both
training these next-generation energetic prediction algorithms and
carrying out blind tests with many thousands of measurements.

Materials and Methods
Details of NN parameter estimation with RECCES (including basic equa-
tions, simulation parameters, and energy function) and with simple single-
conformation methods, as well as methods used to experimentally estimate
NN parameters for helices with D–U base pairs, are presented in SI Appendix.
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