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The genomes of large numbers of single cells must be sequenced
to further understanding of the biological significance of genomic
heterogeneity in complex systems. Whole genome amplification
(WGA) of single cells is generally the first step in such studies, but
is prone to nonuniformity that can compromise genomic measure-
ment accuracy. Despite recent advances, robust performance in high-
throughput single-cell WGA remains elusive. Here, we introduce
droplet multiple displacement amplification (MDA), a method
that uses commercially available liquid dispensing to perform high-
throughput single-cell MDA in nanoliter volumes. The performance
of droplet MDA is characterized using a large dataset of 129 normal
diploid cells, and is shown to exceed previously reported single-cell
WGA methods in amplification uniformity, genome coverage, and/or
robustness. We achieve up to 80% coverage of a single-cell genome
at 5× sequencing depth, and demonstrate excellent single-nucleotide
variant (SNV) detection using targeted sequencing of droplet MDA
product to achieve a median allelic dropout of 15%, and using whole
genome sequencing to achieve false and true positive rates of 9.66 ×
10−6 and 68.8%, respectively, in a G1-phase cell. We further show
that droplet MDA allows for the detection of copy number variants
(CNVs) as small as 30 kb in single cells of an ovarian cancer cell line
and as small as 9 Mb in two high-grade serous ovarian cancer sam-
ples using only 0.02× depth. Droplet MDA provides an accessible and
scalable method for performing robust and accurate CNV and SNV
measurements on large numbers of single cells.

single-cell sequencing | whole genome amplification | multiple
displacement amplification | microdroplet | nanoliter volume

Genomic heterogeneity is now appreciated for its functional
significance across oncology, development, neuroscience, and

biotechnology. Rapid advances in cell handling, DNA amplifica-
tion methods, and sequencing throughput have enabled genomic
interrogation of human disease and physiology with single-cell
resolution, including studies of heterogeneity in blood and solid
tumors (1–4), circulating tumor cells (5), neurons (6), gametes (7,
8), and embryos (9). Despite the intense interest in single-cell ge-
nome sequencing, it remains widely inaccessible for two primary
reasons: lack of robustness and high cost. In particular, whole ge-
nome amplification (WGA) is a critical step required to generate
sufficient DNA mass for sequencing in most single-cell genomic
studies, but it is prone to amplification bias, contamination, and
poor coverage. Preferential amplification of some genomic regions
results in distorted representation of the original template and
compromises the accuracy of downstream measurements. High
variation in single-cell genomic coverage and bias, both within ex-
periments and between users, remains a fundamental problem.

In response to these challenges, there has been considerable
effort and advancement in molecular strategies for amplifying low
picogram amounts of genomic material. Of these, three WGA
strategies have been most widely adopted, each with its relative
strengths and weaknesses (10, 11): PCR-based protocols (1, 12),
multiple displacement amplification (MDA) (2–4, 7), and com-
binations of displacement preamplification followed by PCR (8,
13–15). Of these strategies, MDA is most widely used when
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The study of cell-to-cell genomic differences in complex mul-
ticellular systems such as cancer requires genome sequencing
of large numbers of single cells. This in turn necessitates the
uniform amplification of single-cell genomes with high re-
producibility across large numbers of cells, which remains an
outstanding challenge. Here, we introduce a method that uses
commercially available liquid dispensing to perform inexpensive
and high-throughput single-cell whole genome amplification
(WGA) in nanoliter volumes. For the first time, to our knowl-
edge, we demonstrate robust and highly uniform nanoliter-
volume single-cell WGA across a large replicate set consisting of
more than 100 single cells. Comparison with previous datasets
shows that this method improves uniformity and achieves levels
of genome coverage and genomic variant detection comparable
or superior to existing methods.
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maximization of coverage breadth (fraction of reference genome
covered at ≥1×) is the priority. Previous studies have shown that
the implementation of MDA in nanoliter volumes can reduce
amplification bias (7, 16, 17), minimize contamination and non-
specific products, and provide economies of scale that can sig-
nificantly reduce reagent costs. However, to date, this approach
has been demonstrated on only a limited number of single cells
(<10). Although such datasets highlight the optimal performance
of a method, these small sample sizes make it impossible to assess
robustness, performance, or scalability, which are of utmost im-
portance when evaluating a WGAmethod. Furthermore, nanoliter-
volume MDA has been implemented exclusively in microfluidic
devices that require specialized instrumentation and micro-
fabrication, limiting accessibility.
To assess the robustness and performance of nanoliter-volume

single-cell MDA, we adapted a commercially available non-
contact liquid dispenser to systematically test amplification per-
formance across large numbers of replicate reactions. For the
first time, to our knowledge, we characterize the robustness and
performance of a scalable nanoliter-volume single-cell MDA
technology (referred to here as droplet MDA) across a large
dataset composed of 129 normal diploid cells. Using both low-
depth (0.02×) and higher-depth (6.5×) whole genome sequenc-
ing (WGS), we comprehensively compared the performance of
droplet MDA to other recently reported state-of-the-art methods.
This large single-cell dataset shows that our approach exceeds
previously reported methods in one or more key performance
metrics, including amplification bias, robustness, scalability, and
coverage breadth. Our study further reveals that the observed
variability in droplet MDA performance is driven by biological
differences in cell state and cycle.
We then assessed the copy number variant (CNV) measure-

ment capabilities enabled by droplet MDA using single cells from
both a normal diploid cell line and an ovarian cancer cell line with
CNVs on multiple length scales. We next evaluated single nucle-
otide variant (SNV) detection performance in single cells using
both PCR-based targeted sequencing and deep WGS (48×) of
droplet MDA product. Finally, to demonstrate applicability to
primary samples, we used droplet MDA and low-depth WGS to
perform CNV profiling of single nuclei from two high-grade
serous ovarian cancer specimens. Taken together, this dataset
demonstrates that droplet MDA provides a scalable and acces-
sible method of performing robust and accurate CNV and SNV
measurements on large numbers of single cells.

Results
Nanoliter-Volume Single-Cell MDA Reaction Formulation. All cells
and reagents were deposited onto a planar substrate using a
commercially available piezoelectric noncontact liquid dispenser
(Fig. 1 and SI Appendix, Fig. S1). Droplets containing single cells
were obtained by dispensing cells at limiting dilution. Cells were
stained with a fluorescent dye binding double-stranded DNA,

and the number of cells in each droplet was then determined by
fluorescence microscopy. We observed an average single-cell
occupancy rate of 22% over all experiments described here.
MDA reagents were then sequentially deposited onto each
droplet. To minimize evaporation during heating of the sub-
strate, the droplet array was covered with mineral oil before any
heating steps (18). A total MDA reaction volume of 100 nL was
used for this study. Additional details of methods and materials
are available in SI Appendix, Materials and Methods.

Assessment of Amplification Bias from Low-Depth WGS. To evaluate
the amplification bias of droplet MDA, we analyzed cells from
the 184-hTERT mammary epithelial cell line, which has been
well characterized and has a chromosomally stable and nearly
diploid karyotype (19). To make assessment of a large number of
replicates practical, we initially performed low-depth (mean,
0.02×) WGS of single-cell MDA reaction products.
We developed an analysis pipeline to allow for the fair com-

parison of sample datasets having unequal average sequencing
depths using the HMMcopy software package (20) (SI Appendix,
Materials and Methods). We first evaluated the effect of ampli-
fication time and total MDA yield on bias and coverage. Am-
plification bias has been shown to scale with reaction gain (ratio
of output DNA mass to input DNA mass) (10), and reduction
of MDA time has been used to reduce bias (4, 17). In contrast to
previous results, we observed a trend of reduced bias with in-
creasing single-cell MDA reaction time and yield (SI Appendix,
Table S1), as determined by the SD of reads per 1-Mb bin (SI
Appendix, Fig. S2). We posit that this effect is due to the lower
yield of nanoliter-volume reactions and losses in subsequent
sequencing library preparation, because each genomic region
must be amplified above a threshold to be represented in the
library. Based on this result, we performed all subsequent
MDA reactions for 18–20 h. The typical yield of our 100 nL-
volume single-cell MDA reactions was ∼60 ng, representing
roughly a 10,000-fold amplification of a normal diploid human
genome.
Using this optimized protocol, we performed droplet MDA on

166 single 184-hTERT cells and nuclei in six separate experi-
ments spanning an 8-mo period. Of these, 129 single-cell samples
were selected at random for low depth (mean, 0.02×) WGS, of
which FACS was used to obtain 10 nuclei in G1 phase, 11 nuclei
in S phase, and 13 nuclei in G2 phase (SI Appendix, Fig. S3). The
remaining 95 samples of the 129 samples sequenced were un-
sorted. Three reactions containing cell suspension fluid but no
cells, which were processed on the same substrate directly ad-
jacent to single-cell reactions, were also sequenced as stringent
negative controls to detect potential cross-contamination be-
tween reactions or cell-free DNA in the suspension.
We assessed the bias of droplet MDA relative to the following

published methods that have been shown to achieve high cov-
erage breadth: multiple annealing and looping-based amplifica-
tion cycles (MALBAC) on single cancer cell line cells (15), MDA
of single sperm cells in custom microfluidic devices (referred to
herein as “custom microfluidic MDA”) (7), microwell MDA of
single neurons (MIDAS) (17), MDA of single cancer cell line
cells in G2/M phase (nuc-seq) (4), WGA of genomic fragments
partitioned into picoliter droplets performed on single endo-
thelial cells (eWGA) (21), and MDA of single B-lymphoblast cell
line cells in a commercially available microfluidic device (re-
ferred to herein as “commercial microfluidic MDA”) (22). We
analyzed all publicly available single-cell WGS data in each study,
using data from normal diploid cells for comparison wherever
possible. We note that sperm cells are haploid and thus are
expected to have reduced coverage and increased bias relative to
samples with higher ploidy. Conversely, the nuc-seq method,
which specifically selects single cells with at least four genome
copies, is expected to benefit from increased ploidy.
With these caveats, we sought to perform a fair comparison of

all methods using the aforementioned pipeline to reanalyze all
raw datasets using the same analysis tools and parameters on

Fig. 1. Droplet MDA system. (A) Schematic of single-cell droplet MDA
protocol. (B) Substrate with 100-nL droplets of food dye covered by light
mineral oil.
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equal quantities of aligned data. To reduce the confounding of
bias measurements by true biological variation in single cell ge-
nomes, we performed CNV analysis on sequencing data from
bulk DNA from nonnormal diploid cell lines where available,
and omitted chromosomes with large-scale CNVs from our bias
analysis (SI Appendix, Fig. S4 and Table S2). Although the
omission of such chromosomes is necessary to perform as fair of
a comparison as possible, we note that it often is not done in
other comparisons in the literature. Chromosomes X and Y were
omitted for the sperm cells.
We first computed basic alignment metrics using data from all

samples randomly downsampled to the same number of total
sequenced bases (SI Appendix, Table S3). Single-cell droplet
MDA libraries (n = 129) had a mean duplicate rate of 0.11 ±
0.025%, a mean alignment rate of 97.99 ± 0.65%, and a mean
coverage breadth of 0.71 ± 0.11%. This was the highest observed
alignment rate and the lowest duplicate rate of all methods
compared. The mean coverage breadth of droplet MDA samples
was higher than that of all other datasets, with the exception of
those reported from MIDAS. Libraries generated from droplet
MDA negative control reactions containing cell suspension fluid
but no cells had negligible coverage breadth (mean, 0.065 ±
0.025%; n = 3), showing that contamination, both from external
sources and from other reactions on the same substrate, do not
contribute appreciably to sequencing data.
To accommodate the low WGS depth to which all included

single-cell droplet MDA samples were sequenced, we performed
a comparison using a bin size of 1 Mb (mean of 100 reads per
bin). We then assessed the bias on this genomic length scale by
comparing the SD in reads per bin (Fig. 2). When considering
the 92 unsorted single-cell droplet MDA samples (excluding
three extreme outliers), we observed a median SD lower than
that of both nuc-seq and custom microfluidic MDA. When in-
cluding only the 10 droplet MDA samples (the largest number of
samples available from all other methods compared) with the
lowest SD, the SD values of droplet MDA samples were signif-
icantly (P < 0.05) lower than those of commercial microfluidic
MDA (P = 0.0376, one-sided Wilcoxon rank-sum test), nuc-seq
(P = 0.0152), and custom microfluidic MDA (P = 2.29e-05).
These results are qualitatively reflected in the read depth plots
for the sample with the lowest SD from each method (Fig. 3).
The MIDAS samples were found to exhibit SDs below that of
the unamplified bulk 184-hTERT DNA sample (0.152 vs. 0.19).
This result, based on reported data for the MIDAS method, is

difficult to reconcile with the mechanism of MDA amplification,
and we note that another group was unable to reproduce the
MIDAS results (10). The SDs of all samples compared are listed
in SI Appendix, Table S4.
Because visual inspection by fluorescence microscopy was

used to identify cells in droplets, we hypothesize that many of the
non–FACS-sorted samples included apoptotic cells or cellular
debris, from which reduced amplification uniformity relative to
intact and viable cells would be expected. This is supported by
the observation that the SD of droplet MDA samples that were
FACS-sorted before deposition into droplets, and gated to ex-
clude such suboptimal samples, exhibited a much narrower dis-
tribution than unsorted samples (Fig. 2). The FACS-sorted
samples also allowed us to test the effect of cell phase and ploidy
on amplification bias. As noted elsewhere, amplification bias is
dependent on cell phase (4). We observed that the median SD in
reads per bin decreased from G1 phase to S phase to G2 phase
(Fig. 2). Cells in G2 phase exhibited lower SD than the nuc-seq
samples, which selects for cells in G2 phase (P = 0.0095, one-
sided Wilcoxon rank-sum test). Within any given sorted cell
population, the performance of the method displays low vari-
ability. These results strongly support the notion that the main
contributor to MDA variability is biological, and that samples
exhibiting the highest SD likely are cells with increased genomic
variation owing to the biological state of the cell, and are not the
result of variability in the performance of the method itself.
We also examined the GC content in each sample group (SI

Appendix, Fig. S5) before correction for GC content bias. In-
terestingly, the curves for S phase 184-hTERT cells processed by
droplet MDA exhibited distinct peaks at a GC content of ∼0.4,
perhaps suggesting that DNA replication in S phase begins in
regions with this level of GC content. Notably, the curves of
samples from all other methods except nuc-seq exhibited very
similar peaks and were distinct from those of the G1 phase 184-
hTERT cells processed by droplet MDA, which decreased
monotonically.

Fig. 2. Scatterplots and boxplots of SD of reads per 1-Mb bin comparing
other published methods with all 184-hTERT single-cell droplet MDA sam-
ples sequenced to low depth. Unamplified bulk 184-hTERT gDNA is also in-
cluded for comparison. Shown for the 184-hTERT single-cell droplet MDA
samples are unsorted single cells (with three extreme outliers omitted),
single cells FACS-sorted by cell phase (G1, S, and G2), and the 10 samples
with the lowest SDs of all sorted and unsorted single cells.

Fig. 3. Normalized read depth plots using 1-Mb bins for the sample from
each method with the lowest SD in reads per bin.
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Assessment of Amplification Bias from High-Depth WGS. We next
performed higher-depth (mean, 6.5×) WGS on 15 unsorted 184-
hTERT single-cell droplet MDA samples among those with the
lowest SD in reads per 1-Mb bin and the two samples with the
highest SD (determined from low-depth WGS data as described
above), and the 10 sorted G1 phase single-cell samples. We
performed a comparison with data from other methods by
downsampling all datasets to the same depth (3.73×), defined
as the number of aligned bases divided by reference size (taking
into consideration omitted genomic regions). From these
downsampled data, we generated Lorenz curves for each sample
to depict uniformity of coverage. This downsampling step, often
omitted in other published comparisons, is crucial because
higher depth can result in higher coverage breadth and thus a
shift in the X-intercept of the Lorenz curve. Lorenz curves for
the two samples with the lowest SD in each sample group are
shown in Fig. 4A, and those of all samples analyzed are shown in
SI Appendix, Fig. S6. MIDAS samples were not included in this
analysis, because available data were at a depth of only 0.2×. The
most uniform unsorted droplet MDA and commercial micro-
fluidic MDA samples had the highest uniformity of all samples
analyzed, whereas the G1-phase droplet MDA samples were less
uniform than those of all other methods using diploid cells, again
underscoring the important role of cell state.
We then used the analysis pipeline described above to bin

reads into 1 kb-bins (mean of 30 reads per bin), computed the
SD in reads per bin, and plotted coverage breadth as a function
of sequencing depth (0.5–5×) for the sample with the lowest SD
from each method (Fig. 4B). As before, the commercial micro-
fluidic MDA and droplet MDA samples achieved the highest
coverage breadth of all samples at any given sequencing depth,
covering ∼84% and 80% of the reference genome, respectively,
when sequenced to 5× depth.
Next, we used read depths from the 1-kb bins to analyze the

characteristic length scale of coverage bias by computing the
power spectra of read density variations. The mean power spectra
of all samples from each sample group and the power spectrum of
the sample with the lowest SD in reads per 1-kb bin from each
sample group are shown in Fig. 4 C and D, respectively. As ob-
served in other studies, the amplitudes of MDA samples generally
showed a downward inflection point between 104 and 105 bp,
corresponding to the mean fragment length of the MDA product
(10, 15, 23). Whereas the SD in reads per 1-Mb bin of droplet
MDA samples was higher compared with those of eWGA and
MALBAC (Fig. 2), the mean power spectra of the droplet MDA

samples dropped below that of eWGA and MALBAC at length
scales smaller than 104–105 bp, explaining the superior perfor-
mance of the droplet MDA samples in the Lorenz curve and
coverage breadth vs. depth comparisons.

CNV Detection. Because the 184-hTERT cell line is normal dip-
loid and genomically stable, we first assessed CNV detection using
droplet MDA by comparing the concordance of copy number calls
between single-cell samples and unamplified bulk DNA as has
been done elsewhere (14, 24). We again used the HMMcopy
software package, which takes in normalized binned read depth,
groups contiguous bins into segments predicted to have equal copy
number, and assigns a copy number to bins in each segment using
a hidden Markov model (20). We binned the high-depth WGS
data from the 15 samples sequenced to high-depth and bulk
DNA into bins of 1 Mb, 100 kb, and 10 kb (mean of 100 reads per
bin for all bin sizes), assigned a copy number to each bin using
HMMcopy, and computed the binwise concordance (fraction of
genomic bins that have an identical copy number state for two
samples) between each single-cell sample and bulk DNA (SI
Appendix, Fig. S7). For 1-Mb, 100-kb, and 10-kb bin sizes, the
median concordance rate was 100% (of 2,487 bins), 93.1% (of
24,162 bins), and 83.4% (of 227,172 bins), respectively. Using
1-Mb bins (mean of 100 reads per bin), the median concordance
rate for all 129 184-hTERT single-cell samples sequenced to low
depth is 100% (SI Appendix, Fig. S8).
We next performed droplet MDA on 30 single cells from the

TOV2295 cell line (25), derived from a high-grade serous ovarian
cancer, which is genomically unstable and has CNVs on multiple
length scales. Low-depth (mean, 0.02×) WGS was performed on
all 30 samples, and higher-depth (mean, 6.5×) WGS was per-
formed on the eight samples with the highest coverage breadth
calculated from the low-depth WGS data. Using the high-depth
data, reads were binned into 1-Mb, 100-kb, and 10-kb bins (mean
of 100 reads per bin for all bin sizes). Read depth plots using 1-Mb
bins from four representative single-cell samples qualitatively
matched that of bulk DNA (Fig. 5), with many of the same large-
scale variations discernible in both. We again used HMMcopy to
find segments of contiguous bins with the same copy number.
Because the TOV2295 cell line is genomically unstable, unlike the
184-hTERT cell line, there is likely to be true biological variation
between the copy number profiles of individual single cells and
bulk DNA. However, we were able to detect segments with
identical genomic location, size, and copy number in two or more
of the single-cell and bulk samples, as well as segments in two or

Fig. 4. Analysis of amplification bias from high-depth WGS. (A) Lorenz curves depicting uniformity of coverage for the two samples with the lowest SD in
reads per 1-Mb bin from each amplification method. (B) Coverage breadth as a function of sequencing depth for the sample with the lowest SD in reads per
1-kb bin from each method. (C) Mean power spectra of 1-kb binned read depth for all samples analyzed from each amplification method. (D) Power spectra
of 1-kb binned read depth for the sample with the lowest SD in reads per bin from each method.
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more single-cell samples but not in the bulk sample (SI Appendix,
Tables S5 and S6). We reason that these segments represent true
CNV events and cell-to-cell heterogeneity, because it is highly
unlikely that such identical events would be present by chance.
Using a 10-kb bin size, the smallest such segment was 30 kb
in length.

SNV Detection by Targeted Sequencing and WGS. To evaluate the
effectiveness of droplet MDA for nucleotide-level measure-
ments, we then performed targeted sequencing on 29 randomly
selected 184-hTERT single cell droplet MDA samples that un-
derwent WGS. Identification of SNVs by targeted sequencing
can be used to infer clonal structure and evolutionary history (2,
26) at relatively low cost. For each sample, a portion of the MDA
product was used as template for a targeted sequencing library
preparation pipeline targeting 39 known heterozygous loci
identified in a previous study (27). For each sample, a binomial
exact test was used to call the presence or absence of an allele at
each locus covered by at least 50 reads, as described previously
(26) (SI Appendix, Fig. S9). The median allele dropout (ADO)
across all samples was calculated to be 15%, comparable with the
best results that have been reported previously (2). Because we
performed both targeted sequencing and WGS on these samples,
we were also able to determine whether there was any correla-
tion between targeted sequencing performance and bias mea-
sured by WGS. As expected, we observed that single-cell samples
with lower SD in reads per bin generally also had lower ADO (SI
Appendix, Fig. S10). When including only the quartile of samples
with the lowest SD in reads per 1-Mb bin, the median ADO was
reduced to 8%.
We next evaluated the performance of SNV discovery using

WGS data. We performed deep WGS (48× depth) of a single G1
phase 184-hTERT single-cell droplet MDA sample, selected to
have average uniformity as defined by the median of SD in reads
per 1-Mb bin of the 10 G1 phase single-cell samples analyzed.
SNV false-positive rate (FPR) and true-positive rate (TPR) were
evaluated at sites from the dbSNP database using the muta-
tionSeq software tool (28), applying various coverage depth and
SNV-calling probability thresholds (SI Appendix, Table S7; de-
tails in SI Appendix, Materials and Methods). We found that a

large fraction of false-positive SNVs occurred at the ends
of single-cell sequencing “read islands” (SI Appendix, Figs. S11
and S12). Increasing the minimum single-cell coverage depth
threshold removed many of these false positives at the expense
of reducing the set of SNP sites considered. Because FPR and
TPR have an inverse correlation (SI Appendix, Fig. S13),
reporting of both metrics is crucial for the evaluation of SNV
detection performance. For a single-cell coverage depth ≥15 and
a mutationSeq SNV-calling probability threshold of 90%, the
FPR and TPR were 9.66 × 10−6 and 68.8%, respectively. This
FPR is comparable to that obtained by commercial microfluidic
MDA using whole exome sequencing data from a cell in un-
known cell phase (22).

Demonstration on High-Grade Serous Ovarian Cancers. As a dem-
onstration of applicability to primary samples, we applied droplet
MDA to 39 single nuclei isolated from two high-grade serous
ovarian cancer tumor specimens that were previously charac-
terized in bulk using SNP genotyping arrays (29), performed low-
depth (mean, 0.02×) WGS, and binned reads into 1-Mb bins. For
each specimen, read depth plots of four single nuclei samples are
shown in SI Appendix, Fig. S14. In both specimens, read depth
profiles from three of the single nuclei shown closely matched
that of bulk DNA, whereas a fourth nucleus appeared to have a
normal diploid genome, likely from noncancerous tissue col-
lected with the tumor. Using the binned read depths, we again
found copy number segments with identical genomic location,
length, and copy number common to two or more samples
(single nuclei and bulk) for each specimen. We found 59 and 125
such segments ranging in length from 9 to 250 Mb and from 10 to
250 Mb for specimens 1 and 2 respectively (SI Appendix, Tables
S8 and S9).

Discussion
We have implemented a new single-cell MDA method that ex-
ploits the improved reaction performance and reduced reagent
consumption of nanoliter-scale volumes using a commercially
available liquid dispensing system. This approach preserves the
programmable and multistep nanoliter-volume processing of our
previously reported microfluidic droplet-based device (13), but
without the need for any specialized microfabrication. In con-
trast to closed-format microfluidic devices that require multiple
sizes of trapping structures to isolate single cells of various di-
ameters (22), the droplet MDA method is able to isolate cells of
different sizes without any modification. Unlike similar systems
that formulate nanoliter-volume single-cell reactions on an open
array (17, 18), droplet MDA avoids the possibility of cross-
contamination between reactions by using noncontact dispensing
to place reactions in spatially distinct locations separated by oil.
Depending on the speed of the dispenser used, this approach is
also rapid and highly scalable. In this study, we formulated 154
100 nL-reactions per 3 cm × 3 cm substrate in ∼4 min.
Here, we have, for the first time to our knowledge, evaluated a

single-cell nanoliter-volume WGA method across a large data-
set comprising 129 normal diploid cells of known genotype. In
contrast, previous studies have presented data from 10 or fewer
replicates. In total, we analyzed 219 single-cell droplet MDA
samples for this study. Through random selection of a large
fraction of all samples that were processed, this dataset allows
for evaluation of the method’s robustness and the variability in
performance across samples. We believe that such efforts are
essential to establish the reproducibility needed to drive such
applications as single-cell tumor sequencing, where biological
insight depends on a method that is consistent across large
numbers of cells.
We have shown that the biological state of the processed cells

has a major influence on the observed amplification perfor-
mance. In particular, cells sorted to exclude apoptotic cells and
cellular debris exhibit a much narrower distribution in amplifi-
cation bias than unsorted cells. Furthermore, our experiments on
cells sorted by cell phase demonstrate that ploidy is an important

Fig. 5. Normalized read depth plots using 1-Mb bins for TOV2295 bulk DNA
and four single-cell samples. Horizontal green lines indicate segments of
contiguous bins inferred to have the same copy number, where the read
depth of each segment is equal to the median read depth of the bins in that
segment. Inferred copy numbers are indicated by the color of the data point
for each bin.
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determinant of single-cell WGA performance, including both
GC content bias and uniformity. Within each sorted cell pop-
ulation, the performance of droplet MDA was highly robust,
displaying low variability.
Our analyses of low-depth and high-depth WGS data indicate

that the performance of droplet MDA compares favorably to
that of other methods considered, with our least-biased samples
having comparably low bias on multiple length scales relative to
other methods. Nonetheless, we emphasize that comparing our
method with previous reports is complicated by differences in
sample type, quality, and size. Our data demonstrate a clear
effect of cell cycle on amplification uniformity, suggesting that
direct comparison of methods should be done using datasets
from normal diploid cells sorted for G1 phase. Apart from the
nuc-seq protocol, which focuses on isolation of G2 phase cells,
previous reports do not control for cell cycle. This factor makes it
difficult to evaluate performance in cases where data are present
from only a small number of cells, and where the rationale for
selecting single cells for analysis is not made explicit. Similarly, the
absence of large datasets makes it impossible to evaluate robust-
ness and variability of any given method.
The uniform coverage enabled by droplet MDA allows for

recovery of a high fraction of the genome with relatively little
sequencing effort and also enables accurate CNV calling. We
identified copy number segments as small as 30 kb using 6.5×
WGS in a cancer cell line, which to our knowledge is the most
sensitive CNV detection yet demonstrated from an MDA-am-
plified single-cell genome, and as small as 9 Mb in primary tumor
specimens using only 0.02× WGS. In both tumor specimens,
droplet MDA analysis was able to clearly distinguish populations
of cells with diploid and low aberration content from those with
multiple CNVs and chromosomal structure aberrations using
very low-depth WGS. A significant advantage of MDA is that its
high coverage breadth and large mean fragment length allow for

application of both WGS and targeted sequencing to the same
single cell. We demonstrated this by performing both on 29
single cells, achieving excellent SNV measurement performance,
as quantified by low ADO. We also evaluated the performance
of SNV discovery using deep WGS data from our median per-
forming G1-phase cell and observed a false discovery rate that
compares favorably with that reported in other methods from
single cells in unknown cell phase.
These results demonstrate that droplet MDA provides an

easily accessible way for researchers to exploit the benefits
of nanoliter-volume processing for robust and cost-effective in-
terrogation of single-cell genomic variation at both the copy
number and single-nucleotide levels. We anticipate that this will
be an increasingly useful tool as interest in single-cell studies
continues to expand across numerous disciplines in the biological
sciences.

Materials and Methods
More detailed information on the materials and methods used in this study is
provided in SI Appendix,Materials andMethods. Ethical approval was obtained
from the University of British Columbia Ethics Board. Women undergoing
debulking surgery (primary or recurrent) for carcinoma of ovarian/peritoneal/
fallopian tube origin were approached for informed consent for the banking
of tumor tissue. Tissue was obtained from tumor sites in women histologically
diagnosed with high-grade serous ovarian cancer and was collected before
adjuvant therapy and frozen in cryovials. Consistent with the practice at Uni-
versity of British Columbia and the British Columbia Cancer Agency, all pa-
tients with high-grade serous cancer are referred to the hereditary cancer
clinic and offered genetic testing for BRCA1 and BRCA2 mutations.
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