
Meta-analysis of rare variant association tests in multi-ethnic 
populations

Akweley Mensah-Ablorh1,2, Sara Lindstrom1,2, Christopher A. Haiman3, Brian E. 
Henderson3, Loic Le Marchand4, Seunngeun Lee5, Daniel O. Stram3, A. Heather 
Eliassen1,6, Alkes Price1,2,7, and Peter Kraft1,2,7

1Department of Epidemiology, Harvard School of Public Health, Boston, MA 02215

2Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, 
Boston, MA 02215

3Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer 
Center, University of Southern California, Los Angeles, California 90033

4Epidemiology Program, University of Hawaii Cancer Research Center, Honolulu, HI 96813

5Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109

6Channing Division of Network Medicine, Brigham & Women's Hospital, Boston 02215

7Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215

Abstract

Several methods have been proposed to increase power in rare variant association testing by 

aggregating information from individual rare variants (MAF<0.005). However, how to best 

combine rare variants across multiple ethnicities and the relative performance of designs using 

different ethnic sampling fractions remains unknown. In this study, we compare the performance 

of several statistical approaches for assessing rare-variant associations across multiple ethnicities. 

We also explore how different ethnic sampling fractions perform, including single-ethnicity 

studies and studies that sample up to four ethnicities. We conducted simulations based on targeted 

sequencing data from 4,611 women in four ethnicities (African, European, Japanese American, 

and Latina). As with single-ethnicity studies, burden tests had greater power when all causal rare 

variants were deleterious, and variance component-based tests had greater power when some 

causal rare variants were deleterious and some were protective. Multi-ethnic studies had greater 

power than single-ethnicity studies at many loci, with inclusion of African Americans providing 

the largest impact. On average, studies including African Americans had as much as 20% greater 

power than equivalently-sized studies without African Americans. This suggests that association 

studies between rare variants and complex disease should consider including subjects from 

multiple ethnicities, with preference given to genetically diverse groups.
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Introduction

Despite the successes of genome-wide association studies (GWAS), which have identified 

hundreds of common variants associated with complex diseases and traits, the genetic basis 

of these traits has not been fully explained.1–4 It is likely that rare variants contribute to the 

remaining heritability, 5,6 but to which extent remains an important open empirical question. 

Individual rare variants (defined here as minor allele frequency (MAF) < 0.005) are difficult 

to study, as they require prohibitively large samples sizes to have adequate power to detect 

realistic effect sizes. As an alternative, many methods have been proposed for aggregating 

information from individual rare variants.7–14 However, these have been proposed in the 

context of studies conducted in a single ethnicity. It remains an open question how to best 

combine rare variants in association testing across ethnicities in a multi-ethnic study, and the 

relative performance of designs using optimal sampling fraction across ethnicities remains 

unknown.

Previous studies evaluating the performance of aggregate rare-variant tests have often used 

simulated genotype data,9–12 which may not adequately capture all of the properties of 

empirical data. Those studies that have used empirical sequencing data have been restricted 

to small sample sizes (under 2,000).15–17 Importantly, most previous studies do not consider 

multi-ethnic populations, and when they do, they focus on samples drawn from at most two 

ethnic groups 18,19 or from within one continental population.20–22

We address some of these gaps using simulations based on empirical targeted sequencing 

data from 4,611 women in four ethnicities (African American, European American, 

Japanese, Latino). It is well established that multi-ethnic designs can aid in identifying the 

causal variant in the context of fine-mapping GWAS-identified loci;23 whether multi-ethnic 

designs increase the power of aggregate rare-variant tests remains an open question. We 

compare the performance of several statistical approaches for combining evidence for rare-

variant association across multi-ethnic samples. We also investigate optimal ethnic sampling 

fractions when samples of multiple ethnicities are available.

Our findings suggest that a multi-ethnic study that includes African American subjects may 

be advantageous since it leverages the greater genetic diversity among Africans.

Materials and Methods

Breast Cancer Targeted Sequencing Data

We generated next-generation sequencing data targeting 12 regions (Supplementary Table I) 

spanning 5,500kb on 2,316 breast cancer cases and 2,295 controls from three cohorts (the 

Nurses' Health Study 24, the Nurses' Health Study II 25 and the Multiethnic Cohort 26). Our 

study population is ethnically diverse with 937 women of African-American ancestry, 907 
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women of Latino ancestry and 1,256 women of Japanese ancestry from the Multiethnic 

Cohort (MEC) and 1,511 women of European ancestry from Nurses' Health Study (NHS) 

and Nurses' Health Study II (NHSII) (Table I). Boundaries of targeted regions were defined 

by recombination hotspots flanking single nucleotide polymorphisms with published 

genome-wide-significant associations to breast cancer risk. These regions contained 74 

genes, ranging in length from 0.4 kb to 910 kb, for a total of 182 kb of exonic sequence. 

Target capture was performed using custom Agilent baits, and high-depth sequencing was 

performed at the Broad Institute using the Illumina HiSeq platform. Reads were aligned 

using BWA and genotypes called using GATK in batches of approximately 100 

samples27–30. Batches were balanced with respect to ethnicity and case-control status. Over 

97% of bases in coding regions had >20× coverage, with a mean coverage of 174×. All of 

the subjects were previously genotyped using Illumina HumanHap arrays. Concordance in 

genotype calls at variable sites was over 99.7% across four pairs of duplicate samples; 

concordance between sequencing genotype calls and GWAS genotypes was also over 99.7%.

We used SnpEff to annotate coding variants, and restricted analysis to non-synonymous 

SNPs and stop-gain, stop-lost, start-lost, and splice site donor or acceptor variants31.

Simulated case-control data sets

For the 47 genes that had at least one non-synonymous variable site, we simulated case-

control studies under the null hypothesis that the gene was not associated with disease risk. 

In addition, we simulated data under four alternative scenarios that were characterized by 

two conditions: the absolute value of the allele-specific log relative risk was either constant 

or inversely proportional to the minor allele frequency, and the minor alleles at causal loci 

were either all deleterious or a mixture of deleterious and protective alleles.

Case and control genotypes from each ethnic group were sampled by taking random draws 

(with replacement) from the observed genotypes. Assuming the disease is rare, control 

genotypes were sampled with equal probability, while case genotypes were selected with 

probabilities proportional to the genotype relative risks. Specifically: for a given ethnicity, 

the genotype for the ith control g0i = (gi1, …, giJk) in gene k was set equal to gλ = (gλ1, …, 

gλJk) where λ is drawn from the set of subject indices for the observed data {l=1, …, L} with 

probability Pr(λ=l)=π0l=L-1. Here gij is the observed genotype at variable site j for the ith 

individual in a particular ethnicity; L is the total number of subjects sequenced in that 

ethnicity (e.g. L=937 for African Americans); and Jk is the number of rare varying sites 

(MAF<0.005 in the pooled sample of 4,611 women) in gene k. Genotypes for cases were 

sampled based on a specified log relative risk, setting

Here βj is the log relative risk for variable site j, defined by the simulated penetrance model. 

Setting IPro,j equal to 1 if minor allele j has a causal protective effect and 0 for a deleterious 

effect; setting IMD equal to 1 if there is MAF dependence and 0 otherwise; and setting ICau,j 
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equal to 1 if variant j is causal and 0 otherwise, the log relative risk for the minor allele at 

site j is:

Here β is defined so that the mean relative risk over causal variants is equal to a target value 

β̄ ∈ {1.5,2.5,3.0,4.0}:

For all alternatives, we assumed that a fraction of rare variants (pCau) were causal and 

generated the indicator ICau,j for each SNP from a Bernoulli(pCau) distribution. For 

alternatives where causal variants were a mixture of protective and deleterious variants, we 

assumed that a fraction of causal variants (pPro|Cau) were protective (IPro,j i.i.d. 

Bernoulli(pPro|Cau)). ICau,j was shared across ethnicity but IPro,j was drawn independently for 

each ethnicity, introducing heterogeneity across ethnicities for some scenarios.

Association tests

For each gene k, we tested for association between rare variants and case-control status 

within each ethnicity separately using two aggregate association approaches: a burden test12 

and the Sequence Kernel Association Test (SKAT)32. Both of these approaches test the null 

hypothesis:

The burden test collapses all rare alleles within a gene by creating an indicator variable Xeik 

which is equal to 1 if subject i in ethnicity e carries any rare variant in gene k and 0 

otherwise. Logistic regression is then used to test the association between case-control status 

and Xeik by fitting the model

and comparing  to a central chi-squared 1 df distribution.
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SKAT is equivalent to the score test for τ2 = 0 from a random effects model where the βjs are 

normally distributed with mean 0 and variance wej
2 τ2 32. We used the default setting for 

SKAT and set wej=Beta(MAFej,1,25), where MAFej is the minor allele frequency in subjects 

of ethnicity e sample. The SKAT test statistic for association in ethnicity e is

where Sej = Σigeij(yei − μei) and μei is the expected value of case-control status Y for subject 

i in ethnicity e under the null. SKAT can adjust for covariates (such as genome-wide genetic 

principal components) by incorporating them in the model for μei. For simplicity we 

simulated and fit models without any covariate effects; in this case μei=μe and is simply the 

proportion of cases in the sample from ethnicity e. The statistic Qe is distributed as a mixture 

of chi-squared random variables, where the mixing proportions depend on the weights and 

genetic covariance in ethnicity e.

Burden-test meta-analysis

Standard fixed-effect meta-analysis techniques can be applied to the ethnic-specific 

estimates of θ̂ek to test the null hypothesis that θ1k =…= θEk = 0 (E is the total number of 

ethnic groups considered). We consider three meta-analysis approaches. The first approach 

is based on the inverse-variance weighted estimate of the mean effect of carrying any rare 

variant across ethnicities. If the causal effects or allele frequencies at the causal variants 

differ greatly across ethnicity—in particular, if some causal variants are monomorphic in 

one or more populations—then the true θeks may differ across ethnicity, and the average 

effect may be small—causing the inverse variance weighted test to lose power. 33,34

The second and third approaches account for possible heterogeneity in θek, at the cost of 

increased degrees of freedom. The second approach tests for heterogeneity in the ethnic-

specific effects using Cochran's Q and has E-1 degrees of freedom. The third approach is a 

joint test of mean effect and heterogeneity that sums the fixed-effect test of the overall mean 

and Cochran's Q. Because these tests are independent, the joint test has E degrees of 

freedom. 33,34

SKAT and SKAT-O meta-analysis

We assume that the allelic effects βj are constant across ethnicity, and calculate a 

homogeneous and heterogeneous MetaSKAT statistic (Hom-Meta-SKAT and Het-Meta-

SKAT) proposed by Lee et al.35:
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Under the null, these statistics are also distributed as a mixture of chi-squared variables, 

where the mixing proportions depend on the ethnic-specific weights and genetic covariance 

matrices.

To apply SKAT-O, described by Lee et al35 as an optimal linear combination of burden and 

SKAT statistics, we selected “optimal” instead of the default method in the MetaSKAT_wZ 

function of the MetaSKAT package in R software.

Comparing studies with different ethnic sample fractions

We selected 14 different combinations of samples from at least two of four ethnicities 

(African American, European American, Japanese, and Latino) to construct studies with a 

total of 3,520 total subjects (tri-ethnic samples have 3,522 subjects). For all of these 

combinations the case-control ratio within each ethnic group was 1:1. We chose four 

combinations that included subjects from all four ethnicities but had differing proportions of 

ancestries (4:1:1:2, 2:1:1:1, 3:2:1:2, or 1:1:1:1 of African American, European American, 

Japanese, and Latino subjects, respectively). We also simulated populations by selecting 

equal numbers of individuals from three out of the four ethnicities at a time (four 

combinations) and finally from only two of the four ethnicities (six combinations).

Results

We hypothesized that there may be differences in rare variant association test performance 

due to both choice of rare variant test statistic and ethnic sampling fractions since rare 

variant tests are better powered in study populations with a higher number of varying sites. 

Distributions of rare variants by ethnicity and gene are given in Tables II-III and Figure I. 

Consistent with previous reports4,36,37, African Americans have the highest number of rare 

varying sites, followed by Latinos. Consequently, the carrier proportion (the fraction of 

subjects carrying at least one rare, non-synonymous or truncating allele in a gene) is highest 

in these populations (Table II). For most genes, the carrier proportion (CP) was less than 2%, 

except in African Americans (median CP = 2.6%). Table III lists summary values for ten 

genes with the five highest and five lowest overall CP.

Defining rare variants according to ethnic-specific instead of study population MAF 

increases the number of rare variants and CP in each ethnicity. This alternate definition did 

not change the relative ordering of gene CP by ethnicity. On average, African American 

subjects had the highest gene-specific rare variant burden using either definition. A full 

listing of study-wide and ethnic-specific CP is included in Supplementary Table II.

We first evaluated rare variant association meta-analysis techniques under the null. In 

individual ethnic groups, we examined Type I error rates of the burden test and SKAT 

(Figure II, green boxes). In addition to the false positive rate, we explored a measure of test 

statistic inflation, λ for individual ethnic groups (Figure III, left with blue shading) and all 
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five meta-analysis techniques. For the 33/47 of genes with an overall CP higher than 0.01, 

both the burden test and SKAT adequately controlled the Type I error rate. The burden test 

had deflated Type I error when the overall CP was less than 0.01. For some of the genes with 

overall CP less than 0.01, the deflation in the burden test for some ethnic groups was 

considerable (e.g. λ was less than 0.5 in European and Japanese ancestry subjects for 

RMND1), owing to the low CP (the RMND1 CPs for European and Japanese ancestry 

subjects were both 0.002). The SKAT test statistic was generally not dramatically deflated 

for genes with CPs less than 0.01, although 5 out of 14 genes with low CP (<0.01) had λ < 

0.85 in at least one ethnic group.

For most multi-ethnic designs, the meta-analyses based on the burden test--the inverse 

variance weighted meta-analysis, Cochran's Q, and the joint test--all showed deflation 

(median λ < 0.95; Figure II). SKAT meta-analysis test statistics (het and hom) were slightly 

inflated (median λ >1.04; Figure III). As with the single-ethnicity analyses, the deflation for 

the burden test statistics was greater for genes with overall CP less than 0.01. Cochran's Q 

and joint tests had notably miniscule inflation factors (λ <0.7) for designs that included all 

four ethnicities. The most extreme inflation factors (Cochran's Q λ < 0.5) were for genes 

where the CP in European, Latino or Japanese subjects was 0.005 or less.

We next considered how power to detect causal association was influenced by penetrance 

model, design, and overall CP (Figures IV and V). Consistent with previous reports 32, the 

burden test has higher power than SKAT when all of the causal variants are deleterious, but 

SKAT has higher power than the burden test when an appreciable proportion of the causal 

variants are protective. Reducing the total proportion of causal variants gave qualitatively 

similar results, however the advantage of the fixed-effect burden test when all causal variants 

were deleterious declined as we lowered the proportion of deleterious causal sites to 10% 

(Supplementary Figure II, Supplementary Table III, Supplementary Table IV). When only 

10% of the rare variants were causal, MetaSKAT had better power than the fixed-effect 

burden test. Hom-Meta-SKAT and Het-Meta-SKAT have roughly the same power, although 

when all causal rare variants are deleterious, Hom-Meta-SKAT has slightly greater power. 

This is consistent with previous reports when the majority of genetic effects are shared 

across studies.35 The two techniques for meta-analyzing burden test results while accounting 

for possible heterogeneity in effects across ethnicity—the joint test and Cochran's Q—both 

had relatively low power. In the scenarios plotted in Figure V, for example, Cochran's Q had 

less than 20% power, while all other tests had greater than 25% power.

The proportion of the total sample in different ethnicities affected the power of multi-ethnic 

meta-analyses (Figures IV and V). Fixing the total sample size, the power for the different 

sampling fractions we considered differed by as much as 0.25 (for models with fixed relative 

risks) or 0.37 (for models where the relative risk increased with decreasing MAF 

(Supplementary Table V). Study populations with African Americans maintained better 

power when the majority (70%) of causal variants were protective (Supplementary Table 

VI),

Notably, studies restricted to African Americans had greater power than studies of other 

single ethnic groups, as well as many studies that sampled multiple ethnicities. This raises 
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the question of whether ethnicity influences power after controlling for differences in CP. In 

single ethnicities, power for gene-based tests grouped according to ethnic-specific CP 

(Supplementary Table II) were similar across the four ethnicities. Given the same CP, gene-

based tests were equivalently powered regardless of ethnicity. The overall CP had a much 

stronger effect on power than ethnicity: the average power for genes with overall CP less 

than 0.01 and those with CP greater than 0.03 differed by more than 0.60 in many scenarios.

Discussion

Using empirical targeted sequencing data on a large sample of 4,611 women from four 

ethnic groups (African American, European American, Japanese and Latino), we evaluated 

the performance of several different approaches to meta-analyzing aggregate tests of 

association between rare variants and disease, as well as the power of designs with varying 

sampling fractions across the four ethnic groups.

Although Type I error rates were low for the meta-analysis techniques we explored, Type I 

error rates for genes with sufficient variation (CP ≥ 0.01) in all ethnicities were consistent 

with nominal alpha levels. Our findings are analogous to the work of Ma et al. who also 

observed deflated type I error rates for meta-analysis of individual sites with allele 

frequencies below 1% in a population of 908 subjects of Northern European ancestry.38 

Choice of study subjects also influenced Type I error rates and, unlike inverse-variance 

meta-analysis of burden tests and MetaSKAT, which held relatively steady, Type I error for 

the joint test and Cochran's Q were greatly deflated for all genes as the number of ethnicities 

increased and subgroup sizes dropped.

We hypothesized that causal variants might be detected using tests of heterogeneity due to 

population private variants, but this was not the case. Both Cochran's Q and the joint test had 

low power to detect bidirectional and unidirectional effects compared to MetaSKAT and 

inverse-variance meta-analysis of the burden test. For high CP, MetaSKAT and the burden 

test were both well-powered to detect association when all causal variants were deleterious. 

The burden test meta-analysis was better powered to detect uniformly deleterious variants 

than MetaSKAT, but in the presence of protective effects, both MetaSKAT approaches 

maintained higher power. Our results suggest that Hom-Meta-SKAT is preferable to Het-

Meta-SKAT. These tests were nearly indistinguishable in the presence of protective effects, 

but Hom-Meta-SKAT was better-powered to detect deleterious variants. Of the meta-

analyses techniques explored, Hom-Meta-SKAT performed best under the alternate 

hypotheses while maintaining appropriate Type I error.

Study populations that included higher proportions of African Americans had more valid test 

statistic performance under the null and had more power to detect association using either 

the burden test or MetaSKAT regardless of penetrance model. This may be due to the higher 

number of rare varying sites in African American study populations 4 (Supplementary 

Figure I). This suggests that studies testing for association between rare variants and 

complex disease should consider including subjects from multiple ethnicities, with 

preference given to genetically diverse groups. We emphasize that we have only considered 

a small subset of possible sampling fractions, as we were limited by the grid of sampling 
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fractions we chose (due to computational constraints) and, more importantly, by the four 

populations included in our sample. Further work on the study design incorporating multiple 

ethnicities in the candidate gene, candidate pathway, exome- and genome-wide contexts is 

needed.

Because we focused on test validity and power, our simulations did not model intra- or inter-

ethnicity population stratification bias. This is an important concern for analysis of empirical 

data 39–42. Our stratified analysis strategy accounts for possible inter-ethnicity differences in 

disease rates. Methods for accounting for intra-ethnicity population stratification are also 

important. For example, O'Connor et al. show that including ten principal components of 

genetic variation to account for fine-scale population structure may be sufficient to reduce 

inflation in aggregate rare variant tests due to differences in disease rates across European 

subpopulations41.

We examined a diverse set of rare-variant association tests in multi-ethnic samples, but an 

exhaustive survey is beyond the scope of this paper. Many other methods have been 

proposed for meta-analysis of GWAS data including MANTRA of Morris,43 a binary effects 

model by Han and Eskin44 for burden scores and RE-VC and RE-VC-O of Tang and Lin.45 

Varying parameters of the approach described by Lee and colleagues35 and examined here 

could also provide an endless array of approaches to address this question. SKAT-O35, a 

weighted combination of SKAT and the burden test statistics, was powered just as well or 

better than the burden test or SKAT. (Supplementary Table VI)

Next generation sequencing association studies–including targeted sequencing, exome 

sequencing, and soon whole-genome sequencing studies–are still in their earliest stages and 

this study is one of the largest of its kind. The current study included more ethnicities than 

most next-generation sequencing studies to date16,20,27,32,36,43,46–48. A larger sample size 

allows detection of more rare variation and greater power in association testing. However, 

our study population was not infinite and simulations drawing from a finite population to 

generate larger population sizes could lead to an underestimate of the amount and perhaps, 

influence of rare variation. In addition, the current study still omits some continental 

populations. Future studies may uncover new ways to optimize rare variant studies with even 

more diverse populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Observed total non-singleton sites in subjects of each ethnicity for the sample size indicated 

in legend. Bars display median counts of singletons, doubletons and tripletons for 500 

bootstrap samples of 907 subjects from each ethnicity.
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Figure 2. 
Type I error (at nominal 5% alpha) for individual ethnic results and several sampling 

fractions Panels a-d each contain vertical box-plots of gene Type I error (false positive) rates 

for indicated metaanalysis statistic. Green horizontal line is placed at the nominal type I 

error rate of alpha=0.05. The X-axis lists study populations as a ratio of African American, 

European American, Japanese American, and Latina subjects. Box plots are arranged from 

left to right by increasing median Type I error rate for fourteen multiethnic and four mono-

ethnic study populations. Green box plots are burden (panels a,b, and d) or SKAT tests 

(panel c) in a mono-ethnic population.
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Figure 3. 
The blue-shaded portion to the left shows median λ for burden and SKAT tests in four 

monoethnic populations. Median λ is shown to the right by decreasing joint test lambda GC 

for five color-coded metaanalysis statistics. X-axis lists study populations as a ratio of 

African American, European, Japanese, and Latino subjects.
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Figure 4. 
In panels a and b, all causal variants are deleterious. In lower panels, a portion of causal 

variants are protective. Panels a and c display burden tests and meta-analysis of burden tests. 

Panels b and d display MetaSKAT and SKAT tests. Within each panel, left field shows 

statistical power for all genes by CP and by overall CP for fourteen multi-ethnic populations. 

Study populations are ordered by increasing mean power for all genes from left to right. In 

the far right field of each panel, four ethnicities are arranged from left to right by mean 

power for all genes. Mean power is shown for genes in each category of ethnic-specific CP 

for the indicated ethnicity. Legend: Overall CP was estimated in a population of 4,611 

women as the proportion of women carrying at least one rare variant. Ethnicity specific CP 

was estimated in each ethnicity as the proportion of women of that ethnicity who carry at 

least one rare variant.
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Figure 5. 
Both penetrance models use a RR of 2.5. In the left panel, all causal variants are deleterious 

and in the right panel, a portion of causal variants are protective. Multiethnic study 

populations are arranged in the same order for both left and right panels and power for 

inverse-variance meta-analysis of burden tests increases for all deleterious causal variants 

increases from left to right. Again, X-axis depicts multiethnic study populations as the ratio 

of African American, European American, Japanese American and Latina subjects. Not 

shown: power for Cochran's Q was under 0.2 for all scenarios depicted.
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Table I
Study Subject Count by Cohort and Ethnicity

Cohort Ethnicity Total (% Subjects)

African American 937 (20%)

MEC Japanese American 1,256 (27%)

Latino American 907 (20%)

NHS European American 1,511 (33%)

All 4,611 (100%)

Sequencing was performed for subjects from three cohorts — Multiethnic Cohort (MEC) and Nurses' Health Studies (NHS) I and II. Ethnicity 
refers to self-reported ancestry validated by GWAS data.
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