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Roles of actin binding proteins in mammalian oocyte maturation and beyond
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ABSTRACT
Actin nucleation factors, which promote the formation of newactin filaments, have emerged in the last decade as
key regulatory factors controlling asymmetric division in mammalian oocytes. Actin nucleators such as formin-2,
spire, and the ARP2/3 complex have been found to be important regulators of actin remodeling during oocyte
maturation. Another class of actin-binding proteins including cofilin, tropomyosin, myosin motors, capping
proteins, tropomodulin, and Ezrin-Radixin-Moesin proteins are thought to control actin cytoskeleton dynamics at
various steps of oocyte maturation. In addition, actin dynamics controlling asymmetric-symmetric transitions
after fertilization is a new area of investigation. Taken together, defining themechanisms by which actin-binding
proteins regulate actin cytoskeletons is crucial for understanding the basic biology of mammalian gamete
formation and pre-implantation development.
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Introduction

The most distinct difference between meiotic cell division in mam-
malian oocytes and somatic cell division in early embryogenesis is
the asymmetric nature of cell division in meiosis.1 Because the cell
division plane is determined by the position of the midbody in the
spindle,2 meiotic spindle migration near the cortex is a crucial step
for this asymmetric cell division process inmammalian gametes.3,4

Dynamic changes in actin filaments during mammalian oocyte
maturation and the importance of actin filaments in asymmetric
division in oocytes have been studied for over 30 y.5-9 One of the
most dramatic changes in the actin cytoskeleton during mamma-
lian oocyte maturation is the formation of the cortical actin cap
near the migrating spindle.5 In addition to actin cap formation,
cytoplasmic actin density10,11 and the thickness of cortical actin12,13

increases during oocyte maturation (Fig. 1). Although the actin
cytoskeleton is the main driving force for asymmetric division in
mammalian oocytes, including murine7 and porcine14,15 oocytes,
the exact mechanism through which actin cytoskeleton remodeling
contributes to asymmetric division in oocytes has not emerged
until recently. The key molecules mediating actin filament remod-
eling are actin-binding proteins (ABPs),16 of which more than 100
exist in mammals, that can be sorted into several classes (Table 1).
One of most extensively characterized families of ABPs, particu-
larly regarding its role in oocytematuration, is the actin nucleator.17

The generation of new actin filaments is a crucial regulatory step in
actin filament remodeling.18 To overcome the thermodynamic bar-
rier for monomeric actin to polymerize as filament actin, actin
nucleation seed, which usually consists of 3 actin monomers, must
be stabilized to accelerate actin filament formation (Fig. 2A).19 The
ARP2/3 complex, a 7-subunit protein complex responsible for gen-
erating branched actin filaments from pre-existing filaments,20,21 is
the most extensively studied actin nucleator and is implicated in

oocyte maturation 22,23 and early embryogenesis.23-25 Formin fam-
ily proteins are also involved in various aspects of actin filament
remodeling.26 Among them, formin-2 (encoded by Fmn2 in
mouse) is thought to be involved in oocyte maturation.27

In addition to actin nucleators, several other classes of ABPs
exist, including monomeric actin (also called G-actin) binding pro-
teins such as depolymerization/severing proteins,28 filament cap-
ping proteins,29,30 filament-binding/crosslinker protein,31 and
myosins, a family of actin-based motor proteins.32 Considering
that other cellular processes, including cell migration and cytokine-
sis, depend on classes of ABPs other than actin nucleators, ABPs
may play crucial roles in actin cytoskeleton remodeling during
oocyte maturation and early embryogenesis. However, the roles of
these classes of ABPs in oocyte maturation have not been as well
studied as those of actin nucleators.

Several previous reviews present general overviews of the roles
of actin remodeling during oocyte maturation and asymmetric
division.4,33-35 In this review, we mainly focus on the roles of ABPs
in terms of their effect on actin dynamics during oocyte matura-
tion. We also describe the roles of ABPs in oocyte maturation and
embryogenesis in relation to their previously studied biochemical
and cellular roles in other systems. In particular, we discuss ABPs
that have not been extensively studied in oocyte maturation and
suggest their potential roles in oocyte maturation and early
embryogenesis.

Actin nucleator and nucleation-promoting factors

Formin-2 and other formin family proteins

In mammals, there are 15 formin proteins containing formin-
homology domain 1 (FH1) and 2 (FH2)26; these domains are
responsible for actin nucleation and elongation activity of the
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protein (Fig. 2B). Formin-2 (Fmn2) was the first actin nucleator
shown to be associated with oocyte maturation.27 Knockout of
mouse Fmn2 causes failure of spindle migration and fertiliza-
tion and results in polyploidy due to arrest in metaphase I (MI)
stage.27,36 During oocyte maturation, formin-2 is localized in
the cortex10 and intracellular vesicles.37,38 Fmn2 is responsible
for the generation of cytoplasmic actin mesh, which dynami-
cally changes during oocyte maturation and is essential for
spindle migration.10,38,39

Other formin proteins, including mouse homologs of Dro-
sophila diaphanous (mDia) family formins, are regulated by
autoinhibitory mechanisms and activated by the Rho-family
GTPase RHOA,26 but the specific mechanisms regulating for-
min-2 are unclear. Biochemical and genetic studies using the
Drosophila formin-2 homolog Cappuccino demonstrate the
presence of an autoregulatory mechanism through an interac-
tion between N-terminal and C-terminal FH2 domains,40,41

suggesting that formin-2 is regulated by similar autoregulatory

mechanisms. However, the mechanisms through which
upstream signaling molecules activate formin-2, particularly
during oocyte maturation or embryogenesis, are unclear.

In addition to formin-2, at least 14 other formin family pro-
teins have been identified in the mammalian genome, some of
which may be involved in oocyte maturation. The biochemical
properties of mDia family formins, including mDia1, mDia2,
and mDia3, have been extensively studied,26,42,43 and mDia1
and mDia2 have been shown to be expressed in mouse
oocytes.44,45 Knockdown of mDia1 or mDia2 decreases polar
body extrusion and causes abnormal spindle morphology,45,46

indicating that mDia family formins are involved in proper
meiotic spindle formation, in concord with previous studies
showing that mDia formins are involved in maintaining the
stability of microtubules in somatic cells.43,47 In addition to for-
min-2 and mDia family formins, mouse formin-like 1 (Fmnl1)
was recently implicated in oocyte maturation.48 However, it is
unclear how many formin family proteins are involved in

Figure 1. Dynamic changes in actin and actin-binding proteins during mammalian oocyte maturation. (A) During oocyte maturation, 3 types of actin reorganization pro-
cesses occur. The first process is a change in cytoplasmic actin density. During the germinal vesicle (GV) stage, cytoplasmic actin mesh is formed at a higher density than
germinal vesicle breakdown (GVBD) or that during the early MI stage,11 and is increased during spindle migration and the anaphase-telophase transition.10 The second
process is the formation of the cortical actin cap,5 which appears at the vicinity of the approaching spindle. Formation of the cortical actin cap is mediated by the RANGTP

signal associated with chromatin.76 Thickening of the cortex during the MI stage12 also occurs. Actin is indicated in red, microtubules in green, and chromatin in blue. (B)
Stages of symmetric division in the mouse zygote and involvement of F-actin dynamics. In MII-stage oocytes, the spindle position is maintained near the cortex by cyto-
plasmic actin streaming generated by ARP2/3-mediated actin polymerization.23 The direction of actin-mediated cytoplasmic streaming is shown as an arrow. After fertili-
zation, the second polar body is extruded after meiosis II. Pronuclei originating from male and female gametes (marked as blue and red, respectively) migrate to the
center of zygotes, and their movement is dependent on actin dynamics and myosin Vb.143 The fine control of pronucleus centering involves high cortical tension medi-
ated by myosin II recruitment.143 Maintenance of the mitotic spindle in the center of zygotes may depend on increased cytoplasm viscosity, which could be linked to an
increased concentration of actin mesh.143 ARP2/3 (shown as yellow) is maintained in cell cortex regions but absent from the cleavage furrow. This polarization of ARP2/3
is maintained until the morula embryonic stage24 and thus results in apical polarization. Note that the SCMC,23,146 a protein complex essential for pre-implantation devel-
opment and symmetric cell division, shows a similar localization during embryogenesis.142,146,147 The timing of each developmental stage of symmetric cell division is
shown as the hour after fertilization. The directions of spindle or pronucleus movement mediated by actin polymerization are shown as arrows. (C) Temporal changes in
actin and ABP levels during oocyte maturation. Temporal changes in actin or ABPs during each oocyte maturation stage are indicated by the height of the bars. Cortical
actin thickness is increased after the MI stage12 and is associated with the exclusion of non-muscle myosin II from the cortex.12 ARP2/3-mediated actin polymerization is
directly involved in this process.13 TPM3.1 is localized in the cortex during oocyte maturation but disappears in MII-stage oocytes.84 p-ERM is localized near the cortex but
is excluded from the region near the spindle.77,123 The RANGTP signal is associated with exclusion of p-ERM near the spindle.77
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oocyte maturation. The novel small molecule inhibitor
SMIFH2,49 which binds to and inhibits the actin nucleation
activity of the FH2 domain, inhibits several formin proteins in
cells and has been used to treat immature oocytes, blocking var-
ious stages of oocyte maturation and resulting in phenotypes
distinct from those of Fmn2(¡/¡) knockout oocytes.45 These
results indicate that other formin proteins besides FMN2 are
involved in oocyte maturation; however, their precise roles in
oocyte maturation and early embryogenesis remain to be
investigated.

Spire

Spire was first identified as a maternal effect locus that mediates
Drosophila embryogenesis.50,51 Spire has 4 Wiskott-Aldrich
syndrome homology 2 (WH2) domains,52 monomeric actin-
binding motifs which are necessary for its actin nucleation
activity.53 In addition to the WH2 domain, a kinase noncata-
lytic C-lobe domain (KIND), which interacts with the C-termi-
nal of FMN2 or cappuccino (the Drosophila homolog of Fmn2),
is located in the N-terminal region of spire,54,55 whereas the
putative zinc-finger domain and modified FYVE domains are
located in the C-terminal region.56

Knockdown of 2 genes encoding spire in the mouse, Spire1 and
Spire2, impairs mouse oocyte maturation and ablation of actin
mesh formation,39 similar to the phenotype of Fmn2 knock-
down.10,11,27,36 Based on the evolutionarily conserved protein-pro-
tein interaction between formin-2 (cappuccino in Drosophila) and
spire, and their colocalization in Drosophila55,57 and mouse
oocytes,39 formin-2 and spire appear to function as a single unit for
actin nucleation in oogenesis in both Drosophila and mammals. In
vitro, the spire protein has relatively weak actin nucleation activity;
however, its activity is significantly increased by interaction with
cappuccino.55 Because formin family proteins exist as dimers, and
artificial dimerization of the WH2 domain of spire significantly
increases its in vitro actin nucleation activity58 and the binding of

spire inhibits nucleation activity of formin-2/cappucinno,55,59 spire
may function as an actin nucleator by associating with formin-2
only in vivo. Besides its interaction with formin-2, the regulatory
mechanisms of spire are still elusive. Based on the presence of a
putative rab-binding domain in spire and its colocalization with
RAB11A and formin-2 at the vesicles and cortex in mouse
oocytes,37,38 spire may localize at vesicles via its interaction with
RAB11A. As the expression of dominant-negative RAB11A
impairs spindle migration and actin mesh formation in mouse
oocytes,38 localization of spire on vesicles could be a mechanism
regulating spire activity and formation of cytoplasmic actin mesh.
Mechanistic studies on the regulation of spire in concert with for-
min-2, particularly in terms of the signaling pathways involved in
oocyte maturation such as the maturation promoting factor
(MPF)60 or mitogen-activated protein kinase (MAPK) signaling
pathways,61 would provide more detailed characterization of the
roles of spire in oocyte maturation.

The ARP2/3 complex and nucleation-promoting factor

The ARP2/3 complex is a protein complex that initiates the forma-
tion of new actin branches on the side of pre-existing actin fila-
ments (Fig. 2C).20,21 This complex was the first known and is the
most extensively characterized actin nucleator,62 and its roles in
various cellular processes, including cell migration, have been
extensively studied.63 During oocyte maturation, chemical inhibi-
tion or RNAi-mediated knockdown of ARP2/3 complex compo-
nents causes failure of asymmetric division in murine22,23 and
porcine oocytes.64 Recent studies provide a more detailed under-
standing of the role of ARP2/3 in oocyte maturation. Spindle
migration includes 2 phases; the first slow phase mainly depends
on the action of formin-2, whereas the second rapid migration
phase involves ARP2/3-mediated actin polymerization.65 In addi-
tion, ARP2/3-mediated actin polymerization generates cytoplasmic
streaming inside oocyte cytoplasm and is the main driving force
maintaining the localization of the meiotic spindle near the cortex

Table 1. Actin-binding proteins involved in oocyte maturation. Known biochemical functions, roles in oocyte maturation and embryogenesis are listed.

Classes Proteins Known biochemical roles Physiological roles in oocyte maturation

Actin nucleators
and NPFs

ARP2/3 complex Nucleate new actin filaments by branching from
existing filaments

Cortical actin cap formation22; Subcortical actin
thickening12,13; Generation of cytoplasmic
flow to maintain position of spindle in MII
oocytes23; Fast-phase migration of spindle65

Formins Nucleate actin filaments and facilitate filament
elongation

Spindle migration27,36; Cytokinesis36; Cytoplasmic
actin mesh formation (formin-2)10,11; Meiotic
spindle formation (mDia family)45

Spire Cooperate with formin-2 and form straight actin
filaments

Cytoplasmic actin mesh formation in
collaboration with formin-239

N-WASP Activate the ARP2/3 complex via cdc42 Cortical actin cap formation
WAVE2 Activate the ARP2/3 complex via Rac Spindle formation and migration66; Subcortical

actin formation12

JMY Activate the ARP2/3 complex Spindle formation and migration68

WHAMM Activate the ARP2/3 complex Spindle formation and migraton69

Filament severing ADF/cofilin Sever existing actin filaments and promote
recycling of filaments

Recycling of cortical and cytoplasmic actin

Filament binding
and protection

Tropomyosin(TPM3.1) Bind actin filaments and protect from
depolymerization/modulation of actin-myosin
interactions

Maintenance of cortical actin integrity84

Filament capping Heterodimeric actin-capping
protein (CP)

Bind to fast-growing ends of actin filaments and
block elongation

Control of cytoplasmic actin mesh in
competition with formin-299

Tropomodulin(TMOD3) Bind slow-growing ends of actin filaments and
protect from depolymerization

Maintenance of cytoplasmic actin mesh level
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in mature oocytes.23 Moreover, the ARP2/3 complex is responsible
for the formation of a thicker cortex region called the ’subcortex’;
the formation of the subcortex by ARP2/3 may be a factor mediat-
ing the exclusion of non-muscle myosin II and can cause changes
in cortex softening during oocyte maturation.12,13

Nucleation-promoting factor (NPF) family proteins are neces-
sary for the activation of the ARP2/3 complex, and several NPFs,
including Wiskott-Aldrich syndrome protein family member 2
(WAVE2),66 neuronal Wiskott-Aldrich syndrome protein (N-
WASP),67 junction-mediated regulatory protein (JMY),68 WASP
homolog associated with actin, membranes, and microtubules
(WHAMM),69 andWAS protein family homolog 1 (WASH),70 are

implicated in oocyte maturation(Fig. 2D). Because activation of
NPF is a pivotal regulatory step for ARP2/3-mediated actin poly-
merization, the upstream signal regulating NPF plays a crucial role
in oocyte maturation. In the case of WAVE2, the small GTPase
RAC1 activates WAVE2-mediated actin polymerization,71 and the
expression of a dominant-negative mutant of RAC1 impairs actin
cap formation during oocyte maturation,72 indicating that Rac1 is
a pivotal signaling molecule upstream of ARP2/3-mediated actin
polymerization during oocyte maturation. In addition, CDC42,
which activates N-WASP, is involved in oocyte maturation and the
protrusion of the polar body and formation of the actin cap.67,73

Compared with WAVE2 or N-WASP, regulatory mechanisms of

Figure 2. Actin nucleators and actin filament nucleation. (A) Actin polymerization is a kinetically unfavorable process and is accelerated by actin nucleators, which are
families of proteins that stabilize unstable actin filament nucleation seeds. Whereas ATP-bound actin is mainly incorporated into fast-growing (also called barbed) ends of
filaments, nucleotide hydrolysis occurs in the filaments, and ADP-bound actin is depolymerized at the slow-growing (also called pointed) ends of filaments. (B) Formin
proteins and spire are important actin nucleators for the generation of actin filaments in oocytes. The domain architecture of canonical formin proteins (left). The proline-
rich FH1 domain recruits profilin-actin complexes and directs them to the FH2 domain, which is responsible for the actin nucleation/elongation activity of the protein. For-
mins are usually regulated by an interaction between the C-terminal domain (CD) and the N-terminal regulatory domain. CD is essential for FMN2 catalytic activity and
interaction with spire.154 The domain architecture of spire (right). Four tandem WH2 domains (marked as W) are responsible for binding with monomeric actin. Spire inter-
acts with formin proteins via the N-terminal KIND.54 The putative Rab-binding domain56 (Spire-box, marked as S) and a modified FYVE domain,155 which usually target the
protein to the membrane, are located in the CD. In mammalian oocytes, FMN2 interacts and cooperates with spire1/239 and is responsible for outer cortical actin and cyto-
plasmic actin mesh.12 (C) The ARP2/3 complex is a 7-protein complex responsible for the generation of branched actin.63 This complex contains 2 actin-related proteins
(ARP2 and ARP3). Two NPFs recruit monomeric actin and bind to the ARP2/3 complex, activating ARP proteins.156,157 (D) Domain organization of typical NPFs. Regulatory
domains can bind various GTPases, including Rac1 in the case of WAVEs158,159 and cdc42 in the case of n-WASP.160 Regulatory regions can also be involved in the localiza-
tion of NPFs and actin polymerization, such as in the case of WHAMM161 or WASH.162 All known NPFs contain C-terminal ‘W-C-A’ motifs consisting of WH2 (marked as W),
cofilin homology (C), and acidic (A) domains. The WH2 motif is responsible for monomeric actin recruitment, whereas ‘C-A’ motifs are required for ARP2/3 binding. Illustra-
tions were adapted from Dominguez and Namgoong163 and modified to accommodate more recent findings.
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other NPFs, including WHAMM, WASH, and JMY, are still elu-
sive. Besides RAC1 or CDC42, the small GTPase RAN, which is
localized as a gradient toward chromatin,74,75 is involved in ARP2/
3-mediated actin polymerization, especially cortical cap forma-
tion.76 The RANGTP gradient is also involved in the polarization of
the inactive Ezrin-Radixin-Moesin (ERM) protein in oocytes.77

However, the signaling pathway connecting RAN with ARP2/3-
mediated actin polymerization is poorly understood. In addition to
the small GTPase pathway, the actin polymerization pathway may
be connected with well-known signaling pathways governing the
cell cycle, including the MPF or Mos-MAP kinase pathways, and
elucidation of these mechanisms could be critical for increasing
our understanding of the regulation of ARP2/3-mediated actin
polymerization based on cell cycle progression. Recent studies12,13

show that WAVE2 is phosphorylated by the extracellular signal-
regulated kinase (ERK) pathway and activates ARP2/3-dependent
actin polymerization as oocyte maturation progresses in mice,
demonstrating the presence of crosstalk between the 2 signaling
pathways. It is also possible that other NPFs and ABPs are regu-
lated byMPF or MAPK pathways during oocyte maturation; how-
ever, the details of thesemechanisms have not yet been elucidated.

Actin filament protection and depolymerization

Actin depolymerization factor/cofilin

Actin filaments initiated by actin nucleators must be depoly-
merized to recycle actin monomers. Therefore, active depo-
lymerization or severing of existing actin filaments are crucial

for dynamic actin filament reorganization.78 The main work-
horse for actin depolymerization is the actin depolymerization
factor/cofilin (ADF/cofilin) family of proteins.79 In mammals,
there are 3 isoforms of cofilin (cofilin-1, cofilin-2, and destrin).
Cofilins bind to actin filaments and monomers with a greater
binding affinity for ADP-containing actin than for ATP-actin;
therefore, cofilin binds to relatively old regions of the actin fila-
ment and severs them into shorter fragments(Fig. 3A).79 Nega-
tive regulation of cofilin is achieved by phosphorylation of the
serine (Ser3) residue at the N-terminal end of cofilin
(Fig. 3B).80,81 Phosphorylation by LIM kinase decreases the F-
actin-binding affinity of cofilin.76 Additionally, LIM kinase
activity is activated by Rho-associated kinase (ROCK)
(Fig. 3B).82 Inhibition of ROCK by chemical inhibitors or
siRNA decreases the phosphorylation of cofilin in oocytes,
thereby increasing the activated portion of cofilin and impair-
ing mouse oocyte maturation,83 indicating that the mainte-
nance of proper levels of activated cofilin is important for
oocyte maturation control. Inhibition of ROCK or expression
of the dominant-active form of cofilin decreases cortical actin
levels and impairs oocyte maturation,83,84 indicating that levels
of activated cofilin should be regulated properly during oocyte
maturation. Phosphorylated cofilin can be reactivated by sling-
shot phosphatases85 through dephosphorylation of phospho-
Ser3 in cofilin, and functional studies in Xenopus oocytes show
the importance of slingshot phosphatases in meiotic spindle
assembly.86 However, the involvement of slingshot phospha-
tases in mammalian oocyte maturation has not yet been
investigated.

Figure 3. Roles of ABPs in the maintenance of actin filaments. (A) ADF/cofilin (shown as red) binds to and severs actin filaments, thereby promoting the depolymerization
and recycling of actin filaments. The actin and cofilin binding model shown is based on the electron microscopy (EM) model of actin decorated by cofilin(PDB:3J0S).164 (B)
ADF/cofilin activity is regulated by phosphorylation at Ser3 in the N-terminal80 and is mediated by the ROCK-LIM kinase signaling pathway.82 C. Tropomyosins (shown as
yellow) are proteins that bind to the sides of filaments and protect actin filaments from ADF/cofilin.88,165 The actin-tropomyosin model shown is based on the EM-based
actin-tropomyosin structure (PDB:3J8A).166 In oocytes, knockdown of tropomyosin decreases cortical actin levels and impairs cortical integrity during cytokinesis.84 (C) The
2 ends of actin filaments have different affinities for the addition of actin monomer.167 The fast-growing ends of actin filaments are capped by heterodimeric CP (shown
as light blue and blue), which blocks the additional polymerization of actin filaments,168 whereas the slow-growing ends of actin filaments are protected from depolymer-
ization by tropomodulin (shown as green), which also binds with tropomyosin.169 Both CP and Tmod3 are essential for maintaining cytoplasmic actin mesh levels in grow-
ing oocytes.99 Tmod3 and actin binding at the slow-growing end of actin filaments is shown based on the Tmod-actin complex structure (PDB:4PKI, 4PKH).170 CP and actin
binding on the fast-growing ends of filaments was modeled based on the EM reconstitution of actin with CP171 and the structure of dynactin complex,172 which contains
CP, Actin-related protein 1 (ARP1), and b actin (PDB:5ADX).
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Tropomyosin

Whereas ADF/cofilin can sever and promote depolymerization
of existing actin filaments, tropomyosin, a long coiled-coil pro-
tein that binds to the sides of actin,87 protects actin filaments
from depolymerization.88 In mouse oocytes, knockdown of the
non-muscle isoform of tropomyosin (TPM3.1) decreases corti-
cal actin levels and promotes formation of the membrane bleb
structure, which is caused by the collapse of cortical actin dur-
ing cytokinesis,84 indicating that the maintenance of cortical
integrity via the protection of actin filaments is crucial for
proper asymmetric division. These phenotypes are similar to
those induced by ROCK inhibition (i.e., increased amounts of
active cofilin)83 or overexpression of dominant-active cofilin.84

Notably, decreasing cortical actin levels by the expression of
dominant-active cofilin can be suppressed by co-expression of
tropomyosin,84 demonstrating that non-muscle tropomyosin
can protect cortical actin from depolymerization, presumably
by protecting actin filaments from cofilin.

Cortical tropomyosin is excluded as oocytes mature to the
MII stage.84 The moment of exclusion of tropomyosin from the
cortex during oocyte maturation coincides with the exclusion
of non-muscle myosin II,12 which is directly related to cortex
softening, a driving force for asymmetric spindle migra-
tion.12,13,35,89 It is unclear whether exclusion of tropomyosin
from the cortex is the consequence or cause of myosin II exclu-
sion, and the relationship between these proteins needs to be
clarified. However, based on the functional roles of tropomyo-
sin in the regulation of myosin-actin interactions,90-93 the
exclusion of tropomyosin could directly facilitate the exclusion
of myosin II.

Filament end capping proteins and actin mesh control

Actin filaments have 2 ends; one is the fast-growing end (also
called the barbed end), and the other is the slow-growing end
(also called the pointed end).94 Because actin filaments can be
depolymerized from both ends or can grow indefinitely, both
ends should be capped by filament-binding proteins, called
capping proteins(Fig. 3D).95,96

At the fast-growing barbed end of a filament, heterodimeric
actin-capping protein (CP) binds and blocks further elonga-
tion.96,97 CP is a core factor involved in ARP2/3-mediated actin
polymerization.98 When CP expression is reduced by RNAi or
inhibited by overexpression of the CP antagonist CARMIL in
mouse oocytes, asymmetric division of oocytes is compromised,
and cytoplasmic actin mesh levels are significantly reduced.99

How can CP affect cytoplasmic actin mesh that has been nucle-
ated by formin-2/spire10,39? Recent biochemical studies show
that CP and formins can simultaneously bind to the barbed
ends and form a ternary complex called a ‘decision-complex’
involved in elongation or filament end blocking,100,101 indicat-
ing that CPs regulate formin-mediated actin polymerization.
Owing to the processivity of formin-mediated actin elongation
in vitro,42 the length of actin filaments generated by formin
should reach more than tens of micrometers before detach-
ment,101 which is comparable to the diameter of mammalian
oocytes. However, actin mesh lengths are much shorter than
this,10,37 suggesting the presence of a regulatory mechanism

preventing formin-mediated elongation and the start of a new
cycle of actin polymerization. CP in the cytoplasm of oocytes
may regulate actin filament length by competition with FMN2;
however, the detailed mechanisms involved in these processes
are still elusive. Whereas CP binds to and blocks elongation at
the barbed ends of filaments, tropomodulin is responsible for
capping the slow-growing pointed ends of actin filaments and
protects actin filament from depolymerization.102,103 The physi-
ological roles of tropomodulin have been investigated in vari-
ous cells, including blood erythrocytes, skeletal muscle cells,104

and lens cells,105 and loss of tropomodulin impairs actin struc-
ture by promoting depolymerization from the pointed end. The
ubiquitous isoform of tropomodulin, TMOD3, is expressed in
mouse oocytes, and knockdown of tropomodulin causes a sig-
nificant decrease in cytoplasmic actin mesh and impairs oocyte
maturation (Jo et al., manuscript submitted).

Tropomodulins interact with tropomyosin and stabilize tropo-
myosin binding on actin filaments.106,107 Inmouse oocytes, overex-
pression of the N-terminal part of TMOD3, which has a
tropomyosin binding region, produces dominant-negative effects
similar to the phenotype caused by TMOD3 knockdown (Jo et al.,
manuscript submitted). Simultaneous knockdown of TPM 3.1 and
TMOD3 has an additive effect on decreasing cytoplasmic actin
mesh levels, indicating that interaction and cooperation between
TMOD3 and TPM 3.1 is essential for maintaining tropomyosin.
Collectively, these results show that the capping of both ends of
actin filaments by ABPs is essential for maintaining cytoplasmic
actin mesh. However, it is not yet clear whether regulation of fila-
ment end-binding protein activities are responsible for the dynamic
changes in cytoplasmic actinmesh levels during oocytematuration.
CPs are regulated by several factors, including phosphatidylinositol
4,5-bisphosphate108 and various ‘decapping’ proteins such as CAR-
MIL109,110 and CD2AP.111 In the case of TMOD3, protein phos-
phorylation by AKT2 is implicated in the regulation of Tmod3 in
mouse fibroblasts.112,113 Based on reports showing that chemical
inhibition of AKT2 affects oocytematuration,114-116 TMOD3 could
be regulated by phosphorylation through AKT during oocyte mat-
uration. However, the potential regulation of TMOD3 by AKT or
other signaling pathways needs to be investigated.

Myosin motors in oocyte maturation

Non-muscle myosins play roles in various cellular processes
including cell adhesion, cell migration, and cell division.117 In
mouse oocytes, myosin IIA and IIB are expressed on the cortex
in germinal vesicle (GV)-stage oocytes, whereas myosin IIA is
only expressed on meiotic spindles in mature oocytes
(Fig. 4A).118 Anti-myosin II antibody injection118 or chemical
inhibition of myosin light chain kinase119 effectively blocks
spindle migration, supporting the essential role of non-muscle
myosin II in oocyte maturation. Recently, myosin II exclusion
from mature oocytes was shown to mediate cortex softening in
MII-stage oocytes and to be essential for spindle migration dur-
ing meiosis.12,13 Interestingly, ARP2/3 complex-mediated actin
polymerization in the cortex is implicated in myosin exclu-
sion,13 although the underlying mechanisms are still not clear.
Biochemical studies show that tropomyosin has antagonistic
effects on ARP2/3-mediated actin polymerization,120 whereas
ARP2/3 and cofilin, in turn, control the binding of tropomyosin
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to filamentous actin.121 A recent report showed that tropomyo-
sin is excluded during the MII stage of mouse oocytes,84 sug-
gesting that tropomyosin plays important regulatory roles in
ARP2/3-mediated actin polymerization in the cortex and myo-
sin exclusion in mature oocytes. However, the detailed roles of
tropomyosin in ARP2/3-mediated actin polymerization and
myosin recruitment/exclusion in the cortex need further
investigation.

In addition to non-muscle myosin II, myosin Vb is also
present in the cytoplasm in oocytes and plays roles in the
movement of vesicles and the formation of cytoplasmic actin
mesh.37,38 In contrast to the long-range movement observed in
most somatic cells, vesicles in oocytes move along microfila-
ments, and myosin Vb carries vesicles as cargo along actin fila-
ments formed by the actin nucleators FMN2 and spire
localized at the vesicular surface.37,38 Expression of dominant-

Figure 4. Various molecular events governed by ABPs in maturing oocytes. Localizations of ABPs in the oocyte are also indicated. Actin in oocytes were marked as red. (A)
Actomyosin contraction between actin filaments and non-muscle myosin II is responsible for maintaining the cortical tension of the oocyte cortex.12,13,123 During oocyte
maturation, delocalization of myosin II decreases cortical tension and is crucial for spindle migration.12 (B) ARP2/3-mediated actin polymerization is responsible for the for-
mation of the cortical actin cap67,73,76 and cortex thickening during oocyte maturation.12,13 Small GTPases including RAC1,72 CDC42,67 and RANGTP/GDP76 are implicated in
the activation of NPFs, which in turn activate the ARP2/3 complex. The MOS-MAPK pathway173 is also involved in triggering WAVE2-dependent ARP2/3-mediated actin
polymerization.12 (C) ERM proteins localize in the oocyte cortex, act as link between the plasma membrane and cortical actin, and are involved in maintaining cortical ten-
sion.123 ERM protein is activated by phosphorylation on the C-terminal tail domain and deactivated by dephosphorylation.122 A recent study suggests that p-ERM is
excluded at the cortex near the approaching spindle, which is mediated by RAN-based signaling.77 (D) In the oocyte cortex, Tpm3.1 is present with cortical actin and pro-
tects against depolymerization by cofilin.84 Cofilin activity in oocytes is regulated by phosphorylation by ROCK-LIM kinase cascades.83 (E) Formin-2 and spire are both
responsible for the generation of cytoplasmic actin mesh or cortical actin10,11,38,39 in mammalian oocytes. Biochemical results55,59,154 suggest that both proteins synergisti-
cally promote actin nucleation. WH2 domain (marked as W) recruit monomeric actin. The presence of a potential Rab-binding domain and membrane-binding FYVE
domain in the C-terminal part of spire56 suggests the possibility that spire mediates the recruitment of formin-2 in vesicles and the membrane in cooperation with
Rab11a.38 (F) Formin-2 and heterodimeric CP compete against each other at the fast-growing filament end and regulate actin elogation100,101 Because the length of actin
filaments generated by formins is much longer than that of cytoplasmic actin mesh10,37,101, some mechanism must regulate the elongation of actin filaments by formin-2.
Impairment of CP in mouse oocytes decreases cytoplasmic actin density,99 suggesting that CP regulates actin mesh.
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negative mutant myosin Vb impairs spindle migration,38 indi-
cating the importance of myosin Vb in vesicle movement and
actin mesh formation.

ERM family proteins and linking with the plasma
membrane

ERM family proteins crosslink the plasma membrane and actin
filaments, providing structural links to strengthen the cell cor-
tex(Fig. 4C). These proteins also participate in cellular signaling
cascades.122 In oocytes, ERM proteins are localized in the cellu-
lar cortex, and the activation of ERM by phosphorylation is
important for maintaining cortex integrity and cortical ten-
sion.123 Interestingly, activated phospho-ERM (p-ERM) in the
cortex is excluded when the meiotic spindle approaches the
cortex,77,123 and polarization of p-ERM is induced by the
RANGTP signal,77 which migrates along chromatin and is
responsible for the formation of the cortical actin cap.76 These
findings suggest that inactivation of ERM in the cortex near the
actin cap and cortical granule-free domain is involved in polar
body extrusion by modulation of cortical tension.123 How
RANGTP/GDP induces cortical polarization of p-ERM and the
actin cap is still not clear, but the polarization of p-ERM has
been shown to be independent of RAC or CDC42 signaling.77

Recently, kinetochore-localized protein phosphatase 1
(PP1)-SDS22 holoenzymes were shown to dephosphorylate p-
ERM in the cell cortex and break cortical symmetry.124 It is not
clear whether PP1-SDS22 is responsible for p-ERM exclusion
in the region of the cortical actin cap in oocytes, and further
studies are needed to validate these results. However, because
the PP1 targeting subunit SDS22 contains a predicted leucine-
rich repeat domain, which is frequently found in many RAN-
binding proteins including RANGAPs,125 this finding suggests
the possibility that the protein phosphatase activity of SDS22-
PP1 is regulated by the RANGTP gradient.

Actin monomer-binding proteins: Potential roles in oocyte
maturation?

Because the cellular concentration of total actin is more than
0.1 mM, and actin tends to polymerize under physiological salt
concentrations in vitro,126 most cellular actin should exist as fil-
aments; however, approximately 40% of total actin in cells is
present as monomers.127 One explanation for this disparity is
that most monomeric actin exists as a complex with ABPs,
including profilin and thymosin b4.128 Besides preventing
spontaneous actin polymerization, profilin binds to actin
monomers and facilitates rapid exchange of actin-bound ADP
to ATP.129 The Drosophila profilin mutant(chickadee) is impli-
cated in oogenesis defects,130 and ablation of profilin in bovine
embryos impairs early embryonic development,130 indicating
the essential roles of profilin in mammalian embryogenesis.

Although profilin-bound actin is a better substrate for for-
min-mediated elongation, it is a poor substrate for ARP2/3-
mediated actin nucleation.131,132 Therefore, upregulation of the
ratio of profilin-bound actin could promote actin polymeriza-
tion by formin instead of ARP2/3. In budding yeast, the differ-
ent actin structures generated by formin or the ARP2/3

complex can be regulated by manipulation of the fraction of
profilin-bound actin in monomeric actin.133

Because ARP2/3- and formin-mediated actin polymeriza-
tion processes are both important for oocyte maturation, profi-
lin may play important roles in controlling the balance of the
actin polymerization pathway between ARP2/3- and formin-
mediated actin polymerization, thereby controlling oocyte mat-
uration, as has been observed for Drosophila oogenesis.130

However, the specific roles of profilin in mammalian oocyte
maturation are still unclear.

In addition to profilin, thymosin-b4, another monomeric
actin-binding protein, is involved in maintaining monomeric
actin pools.134 Apart from its role in monomeric actin seques-
tration, thymosin-b4 is involved in the regeneration and prolif-
eration of cardiac cells135,136; therefore, thymosin-b4 may play
a role in early embryogenesis (e.g., cell fate specification). How-
ever, its roles in oocyte maturation and embryogenesis have
not yet been investigated. Collectively, actin-monomer—bind-
ing proteins, such as profilin and thymosin-b4, have the poten-
tial to function in oocyte maturation and embryogenesis, but
further studies are needed to determine their specific roles in
these processes.

Transition between asymmetric and symmetric division:
Roles of F-actin

The most dramatic changes from meiotic cell division to the
first mitotic division include the transition from asymmetric-
to-symmetric cell division. Because the position of the midzone
in the spindle determines the cleavage planes in cytokinesis,2

spindle movement near the cortex during oocyte maturation is
the main reason for asymmetric division in oocytes and is
mainly driven by actin cytoskeleton remodeling. We then won-
der how the first mitotic spindle maintains its position in the
zygote and mediates symmetric division. Although most animal
cells depend on astral microtubules for the positioning of the
spindle at the center of the cell,3 most mammalian zygotes lack
astral microtubules137; therefore, the positioning of the spindle
in zygotes may not rely on microtubule interactions.

As previously mentioned, both formin-2/spire- and ARP2/
3-mediated actin polymerization processes are important for
spindle migration in oocytes, and cytoplasmic streaming gener-
ated by ARP2/3-mediated actin filaments maintains the locali-
zation of meiotic spindles near cortex in MII oocytes. Studies
have also examined changes that block the movement of the
spindle in fertilized zygotes.

Early mitotic spindle formation until the 8-cell stage in
oocytes is similar to the acentriolar microtubule-organizing
center-mediated spindle formation that occurs during oocyte
maturation138; therefore, transitions from asymmetric division
in oocytes to symmetric division in zygotes may not be caused
by different spindle assembly mechanisms. Moreover, because
parthenogenetic activation of mammalian oocytes by chemical
or electric stimulation results in symmetric division,139,140

asymmetric-to-symmetric division in mammalian oocytes may
not be affected by sperm-derived factors.

Several studies141,142,143 show that the actin cytoskeleton is
responsible for maintaining symmetric division in one-cell
zygotes. For example, treatment with actin depolymerization
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agents (e.g., latrunculin-A) in one-cell zygotes impairs symmet-
ric division in the first cleavage of mouse zygotes.141 A recent
study shows that symmetric division in zygotes is achieved by
modulation of F-actin dynamics in multiple steps.143 First,
male and female pronuclei centering is mediated by F-actin/
Myosin-Vb actin mesh. Second, cortical tension, which is
implicated in spindle movement during meiosis,12 is responsi-
ble for the fine centering of the first mitotic spindle. Finally,
maintenance of spindle position relies on a passive mechanism,
presumably by increased cytoplasm viscosity, although the
underlying mechanism is not clear. Previous work in oocytes38

showed that an increase of cytoplasmic actin mesh by overex-
pression of formin-2/spire or dominant Rab11a impairs spin-
dles, therefore changes in cytoplasmic actin density may be
responsible for restricting spindle movement.

Additional studies show that the subcortical maternal com-
plex (SCMC) contains 4 proteins (MATER, FILIA, FLOPED,
and TLE6)144-147 that are essential for maintaining early cell
division in embryos and are involved in the control of F-actin
dynamics, presumably by controlling ADF/cofilin.142 The
potential interactions of other ABPs with SCMC are not well
understood. In mouse embryos, ARP2/3 is localized in the cor-
tex of embryos and not in the cell-to-cell junction,24 similar to
the localization pattern of SCMC.142 Inhibition of ARP2/3 by
chemical inhibitors results in the failure of embryogenesis in
the 2- or 4-cell stage,142 similar to the phenotypes of Mater-,
Filia-, or Floped-knockout embryos, suggesting that ARP2/3
interacts directly or indirectly with SCMC and that ARP2/3-
mediated actin polymerization is involved in symmetric cell
division in early embryos.

In addition to the ARP2/3 complex, FMN2/spire regulation
after fertilization should be examined. Because knockout of
FMN2 or RNAi-mediated downregulation of spire causes fail-
ure of spindle migration in oocytes,27,39 the activity of FMN2
and/or spire could be regulated after fertilization. However, our
lack of knowledge of the mechanisms regulating FMN2 and
spire prevents our understanding of how these proteins are reg-
ulated after fertilization; therefore, elucidation of the mecha-
nisms regulating FMN2 and/or spire is crucial.

Concluding remarks

During the last 10 years, our understanding of the mechanism
of asymmetric division in mammalian oocytes has increased
substantially, particularly regarding the roles of actin nucleators
and their regulators in spindle migration and asymmetric divi-
sion, as summarized in the Figure 4. However, studies of the
roles of other ABPs and their regulatory mechanisms during
oocyte maturation and early embryogenesis are still in their
infancy. Several profound questions remain. 1) How are
FMN2/spire regulated during oocyte maturation and early
embryogenesis? Because dynamic changes in cytoplasmic actin
mesh are crucial during oocyte maturation and spindle migra-
tion, the regulation of FMN2/spire may be a critical step in
these processes. 2) How are asymmetric division and spindle
migration transformed into symmetric division during first
cleavage at the zygote stage? Although the functional roles of
several actin nucleators, including ARP2/3, FMN2, and spire,
are involved in asymmetric division, their roles in symmetric

division during embryogenesis are unclear. 3) Several NPFs,
including n-WASP, WAVE2, JMY, WASH, and WHAMM, are
implicated in oocyte maturation, but the mechanistic roles of
each NPF are poorly understood. Some actin nucleators, espe-
cially WASH, WHAMM, and JMY, have been characterized in
terms of their ability to activate ARP2/3-mediated actin poly-
merization at distinct cellular locations, including golgi, endo-
cytic structure, and membrane ruffles.17 Further studies could
clarify the exact functional roles of each NPF in terms of actin
filament formation in different cellular contexts. 4) Are there
other ABPs that have roles in oocyte maturation and embryo-
genesis, and if so, how is their activity regulated during these
processes, particularly with regard to connections with signal-
ing pathways governing the cell cycle? For example, filament
crosslinker proteins like filamin,148 actin polymerases like Ena/
VASP proteins,149 and filament-bundling proteins like a-acti-
nin150 or fascin151 are actin binding-proteins studied exten-
sively in other cellular process but not in oocyte maturation
and early embryogenesis. In addition to cell division, recent
studies suggest that controlling actin dynamics can also affect
cell fate specification between trophoblasts and the inner cell
mass during embryogenesis152 via the Hippo signaling path-
way.153 The involvement of various ABPs in the regulation of
the Hippo signaling pathway, and thus the control of cell fate
specification during embryogenesis, should be elucidated in
future studies.

Collectively, a mechanistic understanding of the func-
tional roles of ABPs in biochemical or cellular studies in
other model systems may provide insight into their roles in
oocyte maturation and early embryogenesis. In turn, oocyte
maturation and early embryogenesis could provide a simple
and physiologically relevant model system for the functional
study of ABPs.
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