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Abstract

The most common cause of mortality in cancer patients is metastasis. Therefore, a variety of 

therapeutic strategies are currently under investigation to develop effective drugs that can target 

and inhibit factors that promote tumor invasion. Considerable emphasis has been placed on 

studying cancer as an inflammatory process that proceeds in a dynamic microenvironment. In fact, 

the tumor microenvironment has been implicated to contribute considerably to metastasis. For 

instance, chemokine C-C motif ligand 5 (CCL5) produced by cells in the tumor microenvironment 

has been established as an important contributor to metastatic disease. Recently, the role of CCL5 

in breast cancer invasion has been extensively studied. This review summarizes the recent 

developments in regards to this chemokine, including the conditions that increase the generation of 

CCL5 and the effects mediated by this signaling pathway. Moreover, the potential use of CCL5 
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and its receptor chemokine C-C motif receptor 5 (CCR5) as a target for treating and/or preventing 

breast cancer metastasis is also discussed.
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INTRODUCTION

In the year 2000, Hanahan and Weinberg categorized the acquired properties of cancerous 

tissues into six hallmarks, one of which was metastasis and tissue invasion [1]. Indeed, 

metastatic lesions are considerably difficult to treat and are typically the main cause of death 

for cancer patients. Notably, 10–15% of breast cancer patients present with metastases 

within three years after their first diagnosis [2]. Moreover, breast cancer patients run a 

lifetime risk of developing metastases, as they can appear ten or more years after diagnosis 

[2]. Common sites for breast cancer invasion include the lungs, brain, bones, and liver [3]. In 

light of this information, it is crucial to understand the basis of metastasis and what could be 

done to prevent and/or treat it. There have been extensive studies that also attempt to explain 

metastasis in the context of the complex and dynamic tumor microenvironment, consisting 

of cells, blood vessels, extracellular matrix (ECM), cytokines, and chemokines [4]. In 

particular, inflammatory processes mediated by the tumor microenvironment have been 

emphasized in breast cancer progression [5]. An example of a chemokine that has been 

linked to aggressive breast cancer is chemokine C-C motif ligand 5 (CCL5), which is also 

known as RANTES (Regulated upon Activation, Normal T-cell Expressed and Secreted) [6].

In humans, the CCL5 gene is found at the chromosome location 17q11.2-q12 [7] and the 8 

kDa protein has significant roles in multiple physiological processes. For instance, CCL5 

can be expressed by platelets, endothelial cells, bronchial epithelial cells, and cells of the 

immune system (e.g. macrophages, monocytes, natural killer cells, and dendritic cells) [8]. 

Kruppel-like factor 13 (KLF13) controls the transcription of CCL5 in T lymphocytes [9]. In 

particular, CCL5 mediates migration and chemotaxis of cells, including memory T 

lymphocytes [10], monocytes [10a], dendritic cells [11], eosinophils [12], basophils [12], 

and mast cells [12].

CCL5 has three different chemokine C-C motif receptors (CCRs): CCR1, CCR3, and CCR5 

[13]. In 2006, CCL5 was also discovered to bind G protein-coupled receptor 75 (GPR75) 

[14]. Elevated levels of CCL5 and CCR5 have been detected in more than 58% of basal 

breast cancer and ERBB2+ breast cancer patients [6d]. In addition to the migratory effects 

mediated by CCL5, other CCR5 ligands also trigger the migration of Th1 cells, natural killer 
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(NK) cells, and macrophages [15]. Besides playing a role in breast cancer progression, 

CCL5 expression has also been detected in ovarian cancer [16], prostate cancer [17], 

pancreatic cancer [18], and melanoma [19]. In 2014, the structure of the CCL5-CCR5 

complex was derived [20]. Structural information of this complex represents an important 

advancement for elucidating interactions that can antagonize the effects of CCL5-CCR5 

signaling.

This review summarizes recent studies that reveal the role of CCL5 in breast cancer 

metastasis.

THE SOURCE OF CCL5 AND ITS EFFECT IN CANCER LESIONS

Mesenchymal stem cells (MSCs) are multipotent progenitor cells that are required for the 

regeneration of tissues such as cartilage, bone, adipose, and muscle [21]. These cells are 

found largely in the bone marrow, but are also present in other tissues [22]. It is known that 

breast cancer cells under hypoxic conditions release certain factors, such as placental growth 

factor (PGF) [23] and chemokine C-X-C motif ligand 16 (CXCL16) [24], that recruit MSCs 

to the tumor microenvironment. Notably, when breast cancer cells were co-cultured with 

MSCs in vitro, it was found that the latter cells produce CCL5 [25]. However, breast cancer 

cells may also secrete this chemokine, although the proportion of CCL5 derived from cancer 

cells may not have a major impact on cancer propagation [26]. The secretion of MSC-

derived CCL5 is driven by a positive-feedback loop. Namely, CCL5 and hypoxia stimulate 

breast cancer cells to secrete colony-stimulating factor 1 (CSF1), which in turn promotes the 

increased production of CCL5 from MSCs [24]. It has been demonstrated that breast cancer 

cells need to be closely associated with MSCs in order to stimulate the secretion of CCL5 

[25]. CSF1 also recruits tumor-associated macrophages (TAMs) (Fig. 1) and myeloid-

derived suppressor cells (MDSCs) to the tumor microenvironment [24]. In addition, CSF1 

promotes secretion of TAM-derived epidermal growth factor (EGF), which acts on breast 

cancer cells to increase their metastatic potential [24]. Moreover, in vivo studies have 

demonstrated that the secretion of CCL5 promotes breast cancer metastasis [25]. PGF and 

CXCL16 released by breast cancer cells stimulate the MSCs to secrete CXCL10, which 

reinforces the action of CCL5 by promoting invasiveness (Fig. 2a) [23, 24]. An additional 

factor that is involved in mediating the release of CCL5 from MSCs is cancer cell-derived 

osteopontin (Fig. 2b) [27]. Osteopontin, which is a glycosylated phosphoprotein that acts as 

a cytokine, also mediates cell adhesion [28], and has previously been associated with breast 

cancer metastasis [29]. Osteopontin causes increased gene expression of CCL5 by binding to 

integrin on the surface of MSCs, subsequently causing activation of activator protein-1 

(AP-1), which is a transcription factor for CCL5 [27]. Osteopontin has also been shown to 

trigger the differentiation of MSCs by increasing their expression of cellular markers that are 

typical of cancer-associated fibroblasts (CAFs) [27]. CAFs are known to contribute to 

angiogenesis and cancer cell proliferation in tumors [30]. Furthermore, CAFs also promote 

the onset of epithelial to mesenchymal transition (EMT) in cancer cells [31]. Further support 

for the role of osteopontin in breast cancer invasiveness comes from studies demonstrating 

that an RNA aptamer that inhibits the activity of osteopontin causes reduced metastasis [27]. 

In essence, several intertwined feedback loops between cancer cells and cells in the tumor 

microenvironment serve to increase the metastatic potential of breast cancer cells.
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In a study where breast cancer cells were made to overexpress CCL5, it was found that the 

chemokine enhances metastasis by increasing the motility and extravasation of cancer cells 

from the blood to a distant site in the body [25]. The same study also demonstrated that the 

CCL5-induced metastatic phenotype is reversible, since cells that have already formed 

metastatic lesions do not display enhanced invasiveness. Additionally, CCL5 was also shown 

to promote metastasis by inducing the secretion of metalloproteinases (MMPs) that break 

down surrounding ECM proteins, thereby facilitating the movement of tumor cells (Fig. 2d) 

[32]. In the normal murine mammary gland (NMuMG), the secretion of both CCL5 and 

CCL9 by MSCs enhanced the invasion of injected 4T1 mammary tumor cells through the 

production of MMP 9 and/or MMP 13, and MMP14 [32]. These MMPs can be produced by 

both cancer cells and cells in the microenvironment [33].

In addition to promoting invasiveness, CCL5 has also been shown to increase the 

proliferative potential of MDA-MB-231 human breast cancer cells (triple-negative) [34]. 

Moreover, other studies using the MCF-7 cell line (estrogen receptor positive) with MSC 

xenografts have also revealed that CCL5 promotes proliferation [25, 35]. The effect of CCL5 

on breast cancer proliferation was demonstrated in an in vivo study as well using a mouse 

tumor model with co-grafted MSCs and MDA-MB-231 cells [27]. However, these results are 

contradicted by other studies claiming that CCL5 improves the metastatic potential of cancer 

cells, but does not affect cell replication. In particular, the inhibition of CCL5 and CCR5 

binding did not affect the growth of MDA-MB-231 cells [6d]. Similarly, it was shown that 

the overexpression of CCL5 or the presence of MSCs does not affect tumor growth kinetics 

in MDA-MB-231 cells [25]. These discrepancies could potentially be explained by 

differences in experimental techniques. For example, the latter study used subcutaneous 

tumor models, whereas the study linking CCL5 to enhanced proliferation used orthotopic 

models. It is possible that an orthotopic environment provides additional factors or 

characteristics that work along with CCL5 to promote breast tumor cell proliferation. In 

general, it is thought that MSCs only promote the proliferation of estrogen receptor positive 

breast cancer cell lines, which typically display limited production of autocrine IL-6, thus 

rendering them more sensitive to paracrine IL-6 [36]. Accordingly, MSCs can provide these 

cell lines with a continuous source of IL-6 [37], which has been shown to promote 

replication of breast cancer cells [36b].

In summary, CCL5, which is mainly produced by MSCs, promotes metastasis by triggering 

MMP production and improving cancer cell motility through a complex network of 

interacting factors and positive feedback loops (Fig. 3).

HYPOXIA INCREASES CCL5 EXPRESSION

Hypoxia inducible factor-1 (HIF-1) is a transcriptional activator that consists of HIF-1α and 

HIF-1β components. HIF-1β is expressed continuously, whereas HIF-1α is increased in 

response to low levels of oxygen. Since the activation of HIF-1 requires both components to 

be present, the protein becomes functional upon HIF-1α stabilization [34]. The activation of 

HIF-1 enables binding to hypoxia-responsive element (HRE), consequently initiating the 

transcription of target genes that respond to hypoxia. Hypoxia is a significant contributor of 

tumor progression, and until recently, the effects of hypoxia on the CCL5-CCR5 axis had 
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not been evaluated. Currently, it is known that HIF-1α contributes to increased expression of 

CCR5 and CCL5, along with enhanced motility of the cancer cells [24, 34]. Recently, HIF-

binding regions in the CCR5 gene have also been identified [24].

HIF is also correlated with the recruitment of MDSCs to the mammary tumor 

microenvironment [24]. A recent study demonstrated that CCL5 secreted by cells originating 

from the bone marrow (e.g. T cells, platelets, and macrophages) is crucial for the growth of 

MDSCs [26b]. MDSCs have been shown to indirectly reduce the numbers of antitumor 

CD8+ T cells, which are needed for host-derived tumor suppressive responses [26b]. The 

same study has also shown that in the absence of CCL5, MDSCs develop a phenotype that 

does not suppress antitumor CD8+ T cells.

CCL5 INDIRETLY PROMOTES EMT OF BREAST CANCER CELLS

In addition to MSCs, TAMs can also enhance metastasis through interactions with breast 

cancer cells. Indeed, macrophages in the tumor microenvironment largely possess the M2 

phenotype that propagates pro-oncogenic functions, such as cell division, metastasis, and 

survival of tumor cells [38]. Therefore, the recruitment of TAMs to the tumor 

microenvironment has been connected to adverse outcomes in breast cancer patients [39]. 

Correspondingly, low numbers of TAMs at the tumor site has been linked to decelerated 

tumor progression [40]. The recruitment of monocytes from the blood stream is driven by 

CCL5 [41], CCL2 [41b], and CSF1 [40] in the tumor microenvironment (Fig. 1). The 

secretion of CSF1 by breast cancer cells is induced by CCL5 and hypoxia [24]. Once the 

monocytes have arrived at the tumor site, the breast cancer cells promote their differentiation 

into TAMs [42]. This process is mediated by granulocyte macrophage-colony-stimulating 

factor (GM-CSF), which is secreted by mesenchymal-like cancer cells [42]. Furthermore, 

lactate, which is a common metabolic product of cancer cells, also contributes to 

macrophage differentiation [42]. Thereafter, the fully differentiated TAMs secrete CCL18 

that binds to the PITPNM3 receptor on cancer cells to trigger downstream calcium signaling, 

which promotes EMT [39]. A positive-feedback loop is formed, as cancer cells that have 

recently acquired a mesenchymal phenotype will further promote macrophage 

transformation into TAMs (Fig. 1). In essence, CCL5 does not directly stimulate EMT, 

rather this process is indirectly driven by CCL5, CCL2, and CSF1, which recruit monocytes 

to the cancer lesion (Fig. 1).

FURTHER INTERACTIONS WITH CCL5 IN THE TUMOR 

MICROENVIRONMENT

Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), CCL5, and CCL2 (also known as 

monocyte chemoattractant protein, MCP-1) act synergistically to promote breast cancer 

progression [43]. The expression of all four factors is enhanced in breast tumors as 

compared to normal breast tissue [43]. Together these factors act in a spatiotemporally 

controlled manner to promote malignancy. In fact, IL-1β and TNF-α stimulate the secretion 

of CCL5 and CCL2 from breast cancer cells (Fig. 2c) [43], while CCL2 elaborates the 

exocytosis of CCL5 from breast cancer cells [44]. Additionally, TNF-α is involved in 

triggering actin cytoskeleton rearrangements and the onset of EMT, thus promoting 
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metastasis [43]. The same study has also shown that IL-1β also triggers tumor progression 

through EMT, although to a lesser extent than TNF-α. Accordingly, patients displaying 

relapse from invasive ductal carcinoma have increased levels of TNF-α and IL-1β [43]. 

CCL5 also acts as a mediator that promotes shedding of microparticles containing the 

S100A4 protein from the outer membranes of various cells, including fibroblasts [45]. Once 

released, S100A4 increases CCL5 and fibronectin expression, and enhances cellular 

migration and overall metastatic potential [45]. Together, CCL5 and S100A4 increase 

invasiveness by inducing the recruitment of cells that belong to the tumor stroma and 

immune system [45]. These cells collectively contribute to the growth of tumor cells in a 

location distant from the primary tumor.

An additional signaling molecule that affects CCL5 production in the tumor 

microenvironment is transforming growth factor-β (TGF-β). TGF-β is known to contribute to 

breast cancer progression by promoting EMT and metastasis [31, 46]. Serum CCL5 has been 

positively correlated with TGF-β1 [47]. Notably, it has been shown that in colon cancer, the 

CCL5/CCR5 axis promotes production of TGF-β in T regulatory cells (Tregs), which 

subsequently causes apoptosis of antitumor CD8+ T cells [48]. Antitumor CD8+ T cells are 

needed for an efficient immune response against cancer. In the 4T1 mammary tumor model, 

we observed a significant decrease in tumor-infiltrating Tregs in the absence of CCL5 [26b], 

suggesting that a similar CCL5-mediated increase in Tregs is involved in breast cancer 

progression.

Furthermore, there exists a negative correlation between serum levels of CCL5 and estradiol 

[47], indicating that the systemic levels of CCL5 rise and fall cyclically in premenopausal 

women. In fact, circulating CCL5 levels fall significantly during the mid-follicular phase 

[47]. Moreover, a negative correlation between serum levels of CCL5 and progesterone has 

also been found [47].

BLOCKING CCL5/CCR5

The CCL5/CCR5 axis is enhanced in basal breast cancers and ERBB2+ breast cancers [6d, 

49]. In a primary breast tumor population, only a small proportion of cancer cells are 

positive for CCR5 expression [6d]. On the contrary, the in vivo analysis of secondary breast 

tumors that have metastasized to a distant site has revealed an eight-fold increase in the cell 

population that is positive for CCR5 [6d]. This observation could potentially be due to 

enhanced invasiveness of cells that express CCR5, or elaborated CCR5 expression promoted 

by the secondary tumor environment. In vitro, CCR5+ basal breast cancer cells are 40-fold 

more invasive than their CCR5-counterparts [6d], indicating that increased invasive ability is 

the reason for the higher fraction of CCR5+ cells in secondary lesions.

Maraviroc, a US Food and Drug Administration (FDA)-approved anti-viral drug, is known 

to prevent the function of CCR5 [49]. In particular, the human immunodeficiency virus 

(HIV) can bind to CCR5 through the gp120 viral surface protein, thereby mediating viral 

entry into target cells [49–50]. Indeed, systemic administration of maraviroc proved useful 

in reducing breast cancer metastasis to the lungs, providing further evidence for the 

importance of CCL5 for metastatic dissemination [49]. Notably, maraviroc does not affect 
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the proliferation of the cancer cells, indicating that a reduction in metastasis is not due to a 

drug-induced anti-proliferative effect [6d]. However, CCR5 has also been shown to promote 

adaptive immune responses that suppress tumor progression, through the activation of T 

cells that have antitumor functions [51]. It has also been shown that in ovarian cancer, CCL5 

secreted by CD4+ T cells attracts CCR5+ dendritic cells (DCs) to the cancer lesion, 

subsequently activating them. The DCs then prime CD8+ T cells, which also have antitumor 

functions [52]. Therefore, it has been postulated that therapeutically it may be more 

beneficial to stimulate CCR5 than to inhibit this receptor. It is yet to be seen whether 

blockage of CCR5 impairs the antitumor adaptive immune response to such an extent that 

the resulting enhancement of cancer progression outweighs the benefits of blocking CCR5.

Additionally, the blockage of CCR5 will also affect the function of other ligands that bind to 

this receptor, including CCL3 (macrophage inflammatory protein-1α, MIP-1α), CCL4 

(MIP-1β), CCL5, CCL8 (monocyte chemotactic protein 2, MCP-2), and CCL3L1 (MIP-1α/

LD78β) [51, 53]. For instance, the interactions between DCs and CD4+ T cells are mediated 

by CCL3 and CCL4, which also have the ability to recruit CD8+ T cells [54]. Therefore, it 

may be more advantageous to therapeutically suppress CCL5 as opposed to CCR5, in order 

to retain immunological antitumor function. Moreover, the choice of whether to block the 

receptor or the ligand should also be based on the corresponding cell types, i.e. CCL5 is 

mainly produced by MSCs and CCR5 is present on breast cancer cells. In this regard, it may 

be easier to use MSCs as a therapeutic target as they are typically present in smaller 

quantities than cancer cells [55], thereby requiring less therapeutic agent to achieve 

complete blockage of the signaling pathway. Furthermore, since the genome of cancer cells 

is relatively unstable [56], these cells are more likely to undergo mutations that render them 

resistant to therapy. On the contrary, non-cancerous cells in the tumor microenvironment are 

presumed to be genetically stable, potentially making them a more suitable therapeutic target 

[57].

FUTURE CONSIDERATIONS

The metastatic properties of breast cancer cells mediated by CCL5 are only transiently 

upregulated and the metastatic phenotype is reversible [25]. Consequently, it has been 

proposed that it could be challenging to detect temporary expression of molecules and 

phenotypes that propagate breast cancer. Accordingly, whereas many studies have reported 

elevated CCL5 levels in breast cancer patients [6b, 58], one study reported similar levels of 

circulating CCL5 in healthy women and women with breast cancer [47]. The lack of 

difference in CCL5 levels between healthy individuals and breast cancer patients could be 

due to variations in CCL5 levels during different stages of the menstrual cycle [47]. Hence, 

future studies with human subjects should control for menstrual cycles while analyzing 

plasma CCL5 levels in breast cancer patients.

In the context of therapeutics, the use of maraviroc to antagonize CCR5 function has shown 

promising results in terms of reducing breast cancer metastases to the lungs [49]. 

Alternatively, small interfering RNA (siRNA) against CCL5 or CCR5 could be used to 

specifically suppress the expression of these proteins. In fact, siRNA has been used 

extensively in vitro and in vivo to reduce the levels of various oncogenes [59]. Since the 
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delivery of naked siRNA is challenging due to rapid degradation and low intracellular 

uptake, the use of biocompatible nanodelivery systems could provide the means for 

achieving therapeutic efficacy [60]. The CCL5-CCR5 axis may prove to be an especially 

useful target for triplenegative breast cancer, as this disease has limited treatment options in 

comparison to breast tumors expressing estrogen, progesterone, and/or epidermal growth 

factor receptors [61]. Importantly, CCL5 does not play a crucial role in other biological 

functions indicating that CCL5 inhibition should not produce adverse side effects. In fact, 

CCL5-knockout mice appear to undergo normal development and growth stages, and their 

ability to resist various infections remains mostly unchanged [62].

In essence, CCL5 represents a potentially efficacious target for preventing breast cancer 

metastasis. Nevertheless, the impact of impairing or stimulating CCL5 signaling should be 

carefully evaluated in the context of this disease. It is likely that the effect of CCL5 signaling 

will be different depending on the breast cancer type and stage of disease, suggesting that 

precision medicine and the appropriate design of dosage regimens could be crucial for 

obtaining therapeutic efficacy.
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Figure 1. 
Mesenchymal stem cells (MSCs) secrete chemokine C-C motif ligand 5 (CCL5) in the 

breast tumor microenvironment. CCL5, combined with hypoxia, stimulates breast cancer 

cells (BCCs) to secrete colony-stimulating factor 1 (CSF1). CSF1 and MSC-derived CCL5 

promote monocyte recruitment. CCL2 (not shown here) also helps recruit monocytes from 

the blood. Monocytes in the tumor microenvironment differentiate to form tumor-associated 

macrophages (TAMs). CSF1 from BCCs also stimulates TAMs to release epidermal growth 

factor (EGF), which enhances BCC invasiveness. TAMs also secrete CCL18, which initiates 

the epithelial to mesenchymal transition (EMT) in tumor cells. BCCs that have undergone 

EMT then release lactate and granulocyte macrophage-colony stimulating factor (GM-CSF). 

These factors promote monocyte differentiation into TAMs, which propel further EMT in 

BCCS by secreting CCL18.
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Figure 2. 
(a) Under hypoxic conditions, BCCs release placental growth factor (PGF) and chemokine 

C-XC motif ligand 16 (CXCL16), which recruit MSCs to the site of the primary breast 

tumor and trigger their secretion of CXCL10 and CCL5. (b) Osteopontin released by BCCs 

stimulates MSCs to release CCL5. In addition, MSCs also secrete CXCL10 upon 

stimulation by BCC-derived PGF and CXCL16. CCL5 and CXCL10 enhance the metastatic 

potential of BCCs. (c) Factors such as CCL2, tumor necrosis factor-α (TNF-α), and 

interleukin-1β (IL-1β) stimulate CCL5 secretion by BCCs. (d) CCL5 stimulates BCCs (not 

shown) and stromal cells such as fibroblasts to secrete metalloproteinases (MMPs). MMPs 

break down the proteins of the extracellular matrix (ECM), which enhances metastasis of 

BCCs.
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Figure 3. 
CCL5, epidermal growth factor (EGF), and CXCL10 improve the invasiveness and motility 

of cancer cells. MMPs break down the surrounding ECM, thereby facilitating BCC motility. 

MSCs, monocytes and stromal cells, such as fibroblasts, are recruited to the 

microenvironment. Monocytes differentiate into TAMs. CCL5 also promotes the later steps 

of metastasis, by aiding extravasation from blood vessels to the metastatic niche. Breast 

cancer cells mainly metastasize to the lungs, bones, liver, and brain.
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