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Linking up at the BAR: Oligomerization and F-BAR protein function

Nathan A. McDonald and Kathleen L. Gould

Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA

ARTICLE HISTORY
Received 13 April 2016
Revised 9 May 2016
Accepted 11 May 2016

ABSTRACT
As cells grow, move, and divide, they must reorganize and rearrange their membranes and cytoskeleton.
The F-BAR protein family links cellular membranes with actin cytoskeletal rearrangements in processes
including endocytosis, cytokinesis, and cell motility. Here we review emerging information on
mechanisms of F-BAR domain oligomerization and membrane binding, and how these activities are
coordinated with additional domains to accomplish scaffolding and signaling functions.
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Introduction

Dynamic cellular processes like motility, endocytosis, and cytoki-
nesis require cells to remodel their membranes in concert with
cytoskeleton reorganizations.1 The Bin/Amphiphysin/Rvs (BAR)
domain family of proteins is a central player in these processes,
acting to link the plasma membrane to the actin cytoskeleton.
The BAR protein family is defined by its membrane-binding
BAR domain that folds into a dimeric, tightly interwound 6-helix
bundle with a curved, crescent-like shape.2,3 Structural studies
have determined these domains interact with membranes
through the concave face of their crescent-shaped structures.2,3

However, not all BAR domains are shaped the same; multiple
structural varieties exist, including classical BAR domains whose
membrane-binding face is highly curved (BAR, N-BARs),2

inverse BAR domains whose membrane-binding face bows out-
ward to form a convex curve (I-BARs),4 and Fer/Cip4 homology
(FCH) BAR domains that form an elongated, shallow curve
(F-BARs).3 In this review we will focus on the banana-shaped
F-BAR family. F-BAR domains are accompanied by a variety of
other domains in proteins, including SH3, mHD, tyrosine kinase,
or GTPase activating domains (GAPs) (Fig. 1). Here we will dis-
cuss recent work on F-BAR proteins with an emphasis on inte-
grating F-BAR domain activities like oligomerization with
functions of their additional domains in pursuit of a complete
understanding of F-BAR protein function in vivo.

F-BAR domain activities

Membrane binding

The crescent-shaped F-BAR domain binds directly to mem-
branes, localizing F-BAR proteins to various sites of action in

cells. Emphasizing this important characteristic, membrane
binding activity is essential for F-BAR protein function in all
cases tested. For instance, point mutations within the FCHo2
and FBP17 F-BARs that specifically disrupt membrane binding
prevent the proteins from localizing to the plasma membrane
and sites of endocytosis.5-7 Likewise, Schizosaccharomyces
pombe Cdc15 or Imp2 membrane binding mutants are not
functional.8,9 Proteins lacking the F-BAR domain entirely also
fail to properly localize and function: srGAP2DF-BAR and
PACSINDF-BAR fail to localize to the plasma membrane,10,11

while Saccharomyces cerevisiae Hof1DF-BAR and Syp1DF-BAR
lose localization to the bud neck12,13 and sites of endocytosis,14

respectively.
F-BAR domains interact with negatively charged mem-

branes primarily through the concave face of their crescent
shaped dimers, utilizing multiple positively charged surface res-
idues.3,8,9,15 PACSIN F-BAR domains also contain a unique
amphipathic “wedge-loop” that partially inserts into the
bilayer16; mutations in this region consequently disrupt mem-
brane binding. The concave orientation of membrane binding
is conserved in all F-BARs, though a few variations have been
proposed. Under certain conditions in vitro, the FBP17 F-BAR
domain associates with membranes through a side face,7 and
the Drosophila Nwk F-BAR has also been observed in a side
conformation on membranes.17 It is not yet clear if these alter-
native orientations are important for function or if they occur
in vivo; mutations that disrupt this conformation must be
tested for functionality in vivo to confirm that a sideways orien-
tation is utilized in cells.

Given that F-BAR domains use positively charged resi-
dues for membrane binding, it is not surprising that they
are generally capable of binding membranes containing
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negatively charged phospholipids. While most prefer phos-
phatidylserine (PS) or various phosphorylated phosphatidy-
linositol (PIP) lipid head groups, some F-BAR domains
including srGAPs,18,19 Drosophila Nwk,17 and S. pombe
Cdc15, bind membranes containing multiple species of
PIPs.9 Other F-BAR domains display a preference for a cer-
tain lipid, though this preference appears less stringent than
that of other lipid binding domains such as pleckstrin
homology (PH) domains.20 FBP17 and CIP4 prefer PI(4,5)
P2 as well as PS,

6,21 PACSINs prefers PS,21 Fer prefers phos-
phatidic acids,22 S. pombe Imp2 prefers PI(4)P,8 and S. cere-
visiae Rgd1p prefers PI(4,5)P2

15. However, in all of these
cases the F-BAR domains can bind membranes containing
only PS as a negatively charged lipid in vitro.

In healthy eukaryotic cells, PS and PI(4,5)P2 are exclu-
sively located in the inner leaflet of the plasma membrane.23

PS comprises »2–10% of the inner leaflet of the PM, while
PI(4)P and PI(4,5)P2 are present in trace amounts (�1
%).23 Therefore preferences for PS and PI(4,5)P2 may be
important to direct F-BAR proteins to specific areas
enriched in these phospholipids, like the plasma membrane
or endocytic sites. Conversely, some evidence suggests this
relationship works in the opposite direction; F-BAR pro-
teins may serve to cluster certain plasma membrane lipids
into stable micro-domains.24 F-BAR domain-mediated clus-
tering of lipids could be important for generating distinct
lipid environments at cellular structures like endocytic
sites,25 caveolae,26 or neuronal spines.27 This hypothesis
requires further investigation in vivo, perhaps with specific
lipid sensors to assay for lipid organization defects in
F-BAR membrane-binding mutants.

Oligomerization and membrane bending

Since the earliest characterizations of F-BARs, multiple
F-BAR domains were observed not only to bind, but to bend
membranes into thin tubules when present at high concen-
tration.6,21,28 Tubulation has been observed when certain F-
BAR domains are added to liposomes in vitro, or when over-
produced in cultured cells. F-BAR-coated membrane tubules
formed in this manner adopt a range of diameters from »50
to »200 nm,7,8 indicating a degree of flexibility in the F-
BAR coat. This heterogeneity initially precluded structural
determination of the F-BAR coat; however, Frost and col-
leagues generated homogenously coated tubules using careful
in vitro slow-annealing methods. Using cryo-electron
microscopy, the structure of the F-BAR coat upon these
tubules was determined,7 revealing that CIP4 F-BAR dimers
oligomerize through complex lateral and tip to tip interac-
tions to form a dense coat upon the membrane.7,29 Accord-
ingly, mutations that disrupt oligomerization of F-BAR
domains prevent tubulation in overexpression assays.7,8

Computational methods corroborate the oligomerization
model of tubulation, as an assembly of oligomerized F-BAR
domains can bend a flat membrane into a tubule in molecu-
lar dynamics simulations.30 Attractive models proposing F-
BAR domains oligomerize upon a membrane in order to col-
lectively induce membrane curvature in endocytosis and
other processes have arisen from these structural studies.31-34

Yet, the ability to induce inward-oriented membrane tubules
isn’t conserved in all F-BAR domains. srGAP F-BAR domains
induce tubules of the opposite curvature, outward from the
plasma membrane.10,19 This curvature generation is likely

Figure 1. Human, S. pombe, and S. cerevisiae F-BAR proteins. Conserved domain layouts and select binding partners or substrates of human, S. pombe, and S. cerevisiae F-
BAR proteins. Dashed lines indicate the domain is present only in a subset of the listed F-BAR proteins. �Indicates data from Drosophila homologs. yIndicates data from
mouse or rat homologs.
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accomplished through similar mechanisms as I-BAR proteins,
which also oligomerize to collectively bend a membrane.35

Recent evidence suggests even these two varieties of membrane
tubulation do not adequately describe the functions of all F-
BAR family members. In fact, multiple F-BAR proteins do not
tubulate membranes in standard in vitro liposome binding or
cultured cell overexpression assays. These include: Fer,6 Fes,
RhoGAP4, Gas7, and FCHSD1/2,9 as well as S. pombe Cdc15,9

S. cerevisiae Hof1,15 and Drosophila Nwk.17

It could be argued that the perfect condition (such as a spe-
cific lipid composition) has not been discovered to support tubu-
lation of these F-BARs. However, cultured cells contain a variety
of membranes with different compositions that overexpressed
F-BAR domains can access,36 so this seems an unlikely possibil-
ity. Also, multiple compositions mimicking physiological mem-
branes have been tested in vitro, as well as lipid extracts from
tissue.9 Synthetic membrane conditions with higher concentra-
tions of PIPs or other lipids depart from a realistic cell-like envi-
ronment. Further, sufficiently concentrating any protein upon a
membrane by adding more binding sites (such as PIPs) is suffi-
cient to induce tubulation through molecular crowding effects.37

A simple explanation for the observed lack of tubulation is cer-
tain F-BAR domains do not oligomerize in a manner that con-
fers tubulation activity. And indeed, despite not tubulating
membranes, these F-BAR domains do oligomerize.9,17,38-40 Mem-
brane tubulation by F-BAR domains, therefore, appears be one
specific consequence of a generally shared ability to oligomerize
and simultaneously bind membranes.

One example of an oligomerization mechanism that does
not lead to membrane tubulation can be found within the
S. pombe Cdc15 F-BAR. EM studies showed this F-BAR
domain oligomerizes into linear filaments even in the absence
of membrane9 through direct tip to tip electrostatic interactions
between F-BAR dimers. Other examples include oligomeriza-
tion of the Drosophila Nwk F-BAR, which forms short zig-zag
structures that can subtly bend and pucker membranes in
vitro,17 and lateral contacts between dimers of the Fer and
RhoGAP4 F-BAR domains.9 Each case of F-BAR oligomeriza-
tion studied so far has defined a distinct mechanism of dimer-
dimer interaction; F-BAR domains therefore have evolved
multiple ways to link together. Further investigation will be
necessary to determine the full complement of oligomerization
mechanisms used by this protein domain. Targeted mutagene-
sis of prominent charged surface patches on the tips and sides
of F-BAR domains (which could mediate dimer-dimer interac-
tions), and subsequent screening for loss of oligomerization has
previously been successful in identifying oligomerization
interfaces.9

Oligomerization that does not lead to tubulation neverthe-
less appears central to F-BAR protein function. Cdc15’s linear
oligomerization supports a robust avidity (as each repeating
F-BAR unit has membrane binding contacts) toward a flat
membrane surface. This high avidity membrane binding is crit-
ical to accumulate and stabilize Cdc15 at the cell division site9

where it recruits and scaffolds multiple cytokinesis proteins.41,42

Mutations that disrupt F-BAR oligomerization sharply decrease
the abundance and increase the turnover of Cdc15 at the divi-
sion site, which consequently leads to cytokinetic failures.9

Mutations in Fer that block oligomerization compromised its

ability to induce lamellipodia formation and enhance cell
migration, possibly due to a loss of strong localization to the
leading edge membrane.9 Additionally, mutations in the
RhoGAP4 F-BAR that disrupt oligomerization compromised
RhoGAP4’s ability to inhibit cell migration.9 These examples
highlight what may be a generally important characteristic of
F-BAR domains - their ability to form oligomers on membrane
surfaces for the purpose of scaffolding additional protein ele-
ments or forming signaling centers.

Surprisingly, the importance of oligomerization for phys-
iological function in the cases of tubulating F-BARs has
rarely been directly tested, though it is clear that blocking
oligomerization inhibits tubulation of liposomes in vitro
and of the plasma membrane in mammalian cell overex-
pression assays.7 In other words, whether the tubulation
activity of F-BAR proteins in vitro is connected to their
functions in vivo has not been rigorously established in
most cases. To our knowledge, this connection has been
tested in only two cases of tubulating F-BARs and different
results have been obtained. In the first, it was found that
patient derived mutations in FCHO2 that block oligomeri-
zation but not membrane binding inhibit FCHO2 recruit-
ment to endocytic sites.5 This may be due to a reduction in
membrane binding avidity, similar to the case of Cdc15. In
the second, mutations that block oligomerization and tubu-
lation of S. pombe Imp2 have no discernable impact on its
localization or function.8 While this is still surprising, the
lack of oligomerization may be compensated for by other
protein-protein interactions which enforce a local concen-
tration of Imp2 at the division site.42 Clearly though, these
examples highlight the value of clarifying the importance of
F-BAR domain oligomerization in other F-BAR proteins. As
it is now established that F-BAR domains utilize different
interaction surfaces to bind one another and oligomerize,
this will not be a simple matter of creating homologous
mutations, but will require elucidation of each protein’s
mechanism of oligomerization.

Considering the diversity of oligomerization modes and
their functional importance, we propose F-BAR domains in
general act as membrane binding, oligomerizing modules
that serve to concentrate and stabilize F-BAR proteins at
sites of action (Fig. 2). Beyond this generalization, it is
likely that different F-BAR domains possess oligomerization
interactions that are tailored for distinct functional contexts.
When F-BARs are organized by cellular functions, some
trends emerge: many endocytic F-BAR domains possess
oligomerization interactions that confer binding to or may
induce curved membranes (such as FBP17, CIP4, and PAC-
SINs), while F-BARs involved in cytokinesis or cell migra-
tion are tuned to bind a relatively “flat” plasma membrane
(including Fer, Fes, RhoGAP4, and S. pombe Cdc15)
(Fig. 2).

Additional domains

F-BAR domain membrane binding and oligomerization are
only part of an F-BAR protein’s job. Once an F-BAR is bound
and oligomerized upon a membrane, it utilizes additional
domains to perform scaffolding and signaling functions.
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Scaffolding functions

The majority of F-BAR proteins contain either a SH3 or mHD
domain that they use to connect with other proteins (Fig. 1). In
the cases of F-BAR proteins involved in endocytosis, they
recruit partners that in turn have scaffolding and protein
recruitment functions. For example, FCHO1/2 F-BAR proteins
are two of the first components to localize at incipient sites of
endocytosis.5 FCHO2 uses a mHD domain to directly recruit
Eps15 and Intersectin,5 and an unstructured middle region to
bind and allosterically activate AP2.43,44 In yeast, Syp1 acts

similarly; it is present early at sites of endocytosis and recruits
Ede1, an Eps15 homolog.14,45

The tubulating activity of FCHO1/2 F-BAR domains3 led to
the idea that they might induce the initial membrane curvature
early at an endocytic site.5 However, single-molecule imaging
experiments suggest that FCHO1/2 “stabilize” the growing bud
but do not initiate curvature.46 Efficient recruitment of binding
partners and activation of AP2,43,44 aided by clustering from
oligomerization,5 may instead explain how FCHO2 acts as a
nucleator of clathrin-mediated endocytosis. Indeed, multiple
other proteins at endocytic sites are likely responsible for curva-
ture generation, including the FCHO2 binding partner
Eps15,47,48 multiple classical BAR domain proteins,33 and the
triskelion clathrin coat.49

Slightly later in endocytosis, FBP17 and CIP4 F-BAR pro-
teins bind the budding vesicle.50 FBP17 and CIP4 may contrib-
ute to branched actin network formation at the endocytic site
through SH3 domain-mediated recruitment of Arp2/3 activa-
tors WASP6,51,52 and, for CIP4, WAVE.53 Both FBP17 and
CIP4’s SH3 domains also recruit the GTPase Dynamin,6,21,28,50

a critical component for vesicle scission54 (Fig. 2). The PACSIN
group of F-BAR proteins similarly scaffold WASP and Dyna-
min and are present in clathrin-mediated endocytosis in certain
cells,55 as well as caveolar endocytic sites.26,56 Nostrin also func-
tions at caveolae by recruiting WASP, Dynamin, and a specific
substrate, nitric oxide synthase, to regulate its internaliza-
tion.57,58 Drosophila Nwk proteins correspondingly recruit
WASP,59 Dynamin,60 and sorting nexin Snx1661 in neurons to
regulate synaptic growth receptor signaling at presynaptic neu-
romuscular junctions.61,62 Therefore, multiple F-BAR proteins
at endocytic sites in different cell types build branched actin
networks through recruitment of WASP or WAVE, and assist
in vesicle scission through recruitment of Dynamin.

In other cellular processes, F-BAR proteins perform similar
scaffolding functions to bridge the membrane to the actin cyto-
skeleton. As examples, CIP4’s binding and recruitment of
WASP is also important in regulating lamellipodia during cell
migration,63,64 and seems to be a critical component inducing
invadopodia in cancer cells.65 In neurons, PACSIN2 interacts
with ProSAP1 to form stable membrane-bound structures in
neural spines (presumably through oligomerization) which reg-
ulate spine organization.27 Furthermore, the PSTPIP1 F-BAR
protein scaffolds PTP-PEST phosphatases together with sub-
strates such as WASP66,67 and Abl68 to modulate the actin
cytoskeleton.

Model organism studies have also contributed to our under-
standing of scaffolding F-BAR proteins. In fission yeast, the
Cdc15 and Imp2 F-BAR proteins are membrane-bound compo-
nents of the contractile ring.69,70 Using redundant SH3 domains,
these proteins recruit crucial contractile ring proteins including
Fic1, Spa2, Rgf3, and Pxl1.41,42 Oligomerization by Cdc15 is criti-
cal to localize its partners; oligomerization mutants recruit »50%
less SH3 binding partners, compromising cytokinesis.9 In S. cere-
visiae, the homologous Hof1 F-BAR protein is also important
for cytokinesis, recruiting Inn1 through its SH3 domain which
activates the chitin synthase necessary for division.71 Hof1’s SH3
domain also binds the cytokinetic formin Bnr1,72 which “tunes”
the formin’s activities.73

Figure 2. Diverse modes of F-BAR oligomerization in endocytosis, cytokinesis, and
cell migration. Schematics of possible modes of F-BAR protein oligomerization,
protein recruitment, and signaling in endocytosis, cytokinesis, and cell migration.
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While many F-BAR proteins use mHD and SH3 domains for
scaffolding functions, in certain cases F-BAR domains also inter-
act directly with other proteins. For example, the S. pombe
Cdc15 F-BAR domain directly binds and recruits the formin
Cdc12,74,75 which is responsible for F-actin formation in the con-
tractile ring.76 Human PSTPIP1’s F-BAR domain interacts with
Pyrin77; this interaction activates Pyrin to initiate pyroptosome
formation and an inflammatory response.78 It is possible that
these two interactions occur simultaneously with membrane
binding; the F-BAR domain could bind the membrane on its
concave face and a partner on its opposite, cytoplasmic face. In
contrast, the PACSIN2 F-BAR domain can interact directly with
F-actin filaments in vitro through its concave face79; this interac-
tion excludes simultaneous membrane binding. The cytoplasmic
face of F-BAR domains may represent a more generally utilized
surface for F-BAR proteins to form linkages with other proteins
upon the membrane than currently appreciated.

Based upon much work in the field since their original
description, it is clear that many F-BAR family proteins
serve as membrane bound scaffolds for a variety of binding
partners (Fig. 1). Oligomerization through their F-BAR
domains aids scaffolding by locally concentrating the pro-
teins upon membranes. SH3 domains have relatively low
affinity (»1–100 mM) for substrates80; F-BAR oligomeriza-
tion may therefore help to build a high density network of
SH3 or mHDs to strongly link with actin cytoskeletal part-
ners (Fig. 2).

Signaling functions

Other F-BAR proteins contain protein kinase or GAP domains
(Fig. 1) and act as signal transducers to the cytoskeleton. Fer and
Fes are unique non-receptor tyrosine kinases whose F-BAR
domains localize the proteins to the leading edges of migrating
cells22 or focal adhesions,81 respectively. Fer and Fes F-BAR
domain oligomerization impacts activation of their tyrosine
kinase domains through trans-phosphorylation,38,39 similar con-
ceptually to how receptor tyrosine kinase clustering promotes
trans-activation. When activated, Fer and Fes phosphorylate sev-
eral substrates including FAK,82 b- and g-catenin,83 and cortac-
tin84 to modulate cell-cell and cell-matrix contacts.85

The last class of F-BAR proteins contain GTPase activating
domains (GAPs) that promote GTP to GDP catalysis by small
GTPases. The most well studied of these in humans is the
srGAP group. srGAP1/2/2b-c/3 participate in neural morpho-
genesis and migration.18,86 srGAP1 is a critical effector of repul-
sive Slit-Robo signaling; ROBO1 bound to extracellular SLIT2
activates srGAP1s GAP domain at the membrane to specifically
inactivate the Cdc42 GTPase, leading to actin cytoskeletal
changes that decrease migration toward the SLIT2-displaying
cells.86 srGAP2 is important for the biogenesis of neurites,10,87

as well as regulation of Slit-Robo mediated contact inhibition
during cell migration through its GAP domain’s inactivation of
Rac1.88 Additional F-BAR GAP proteins in humans include
PARG1, Gmip, and RhoGAP4. PARG1 and Gmip’s GAP
domains target RhoA,89-91 while RhoGAP4’s substrates are
unknown. RhoGAP4 functions in inhibiting cell migration,92

but little is known about PARG1 and Gmip cellular function.

Significant future study is required to understand the sub-
strates of signaling F-BARs and integrate this functionally with
their F-BAR domain activities.

Future directions

We have discussed the various activities of F-BAR domains
(membrane binding, oligomerization, partner binding, signaling);
however, these activities are not constitutive in cells, but instead
are dynamically regulated. In fact, the membrane and partner
binding capacity of many F-BAR domain proteins are autoinhib-
ited and specific activation is required to allow these proteins to
carry out their functions (reviewed in Roberts-Galbraith and
Gould93). Phosphoregulation is one mechanism that allows for
dynamic regulation in line with the short time windows of
F-BAR protein activity in dynamic processes. Detailed analyses
of phosphoregulation have been carried out for only a few F-
BAR proteins such as S. pombe Cdc1540,94 and S. cerevisiae
Hof1,12,95 and thus there is the opportunity to learn more about
how F-BAR protein function is integrated in signaling networks,
particularly in human cells. In other cases, it is argued that a
binding partner pries apart an intramolecular interaction to
release the F-BAR domain for membrane binding.96,97 Further
investigation is necessary to identify the molecular mechanisms
of human F-BAR protein spatial and temporal activation.

In certain processes we have described such as endocytosis
and cell motility, multiple F-BAR proteins participate simulta-
neously. In these cases, it is not clear to what extent F-BAR pro-
teins have overlapping or distinct functions. It is possible that
multiple F-BAR proteins, through different oligomerization,
membrane binding, or partner binding properties, act together
or sequentially to coordinate these processes. One approach
that could begin to tease this complexity apart is F-BAR
domain swapping experiments. These types of experiments will
clarify the importance of specific functionalities within different
F-BARs such as unique modes of oligomerization or selective
membrane binding preferences, and determine whether there is
plasticity between different F-BAR domains.8 As discussed
above, this will also require elucidation of each F-BAR
domains’mechanism of oligomerization.

Finally, most studies of F-BAR proteins to date (and studies of
proteins in cultured cells in general) rely upon exogenous expres-
sion and overexpression in cultured cells. With the advent of effi-
cient genome editing methods such as CRISPR,98 it is becoming
simpler to study endogenous proteins and make mutations of
genes at the endogenous locus in human cells. Endogenous muta-
tions and fluorescent tags will refine our knowledge of F-BAR pro-
tein localization and functionality in different circumstances.
Working in the absence of wildtype protein and with correct
endogenous expression levels will further remove many confound-
ing effects of exogenous expression studies, including artificial
membrane tubulation by highly concentrated F-BAR proteins.

Abbreviations

BAR Bin/Amphiphysin/Rvs domain
FCH Fer/CIP4 homology
F-BAR FCH-BAR domain
SH3 SRC homology 3 domain
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mHD muniscin homology domain
GAP GTPase activating domain
FAK focal adhesion kinase
PIP phosphorylated phosphatidylinositol
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