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Mitotic phosphorylation of SOX2 mediated by Aurora kinase A is critical for the
stem-cell like cell maintenance in PA-1 cells
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ABSTRACT
Transcription factor SOX2 is multiple phosphorylated. However, the kinase and the timing regulating SOX2
phosphorylation remains poorly understood. Here we reported mitotic phosphorylation of SOX2 by
Aurora kinase A (AURKA). AURKA inhibitors (VX680, Aurora kinase Inhibitor I) but not PLK1 inhibitors
(BI2536, CBB2001) eliminate the mitotic phosphorylation of SOX2. Consistently, siRNA inhibition of AURKA
can eliminate mitotic SOX2 phosphorylation. Ser220 and Ser251 are two sites that identified for mitotic
phosphorylation on SOX2. Moreover, SOX2 mutants (S220A and S251A) can promote SOX2 induced OCT4
re-expression in differentiated cells. These findings reveal a novel regulation mechanism of SOX2
phosphorylation mediated by AURKA in mitosis and its function in stem cell pluripotency maintenance in
cancer cells.
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Introduction

Transcription factor SOX2 plays critical role in the central reg-
ulatory hub of stem cell pluripotency and self-renewal. Expres-
sion of SOX2 in self-renewing progenitor cells can inhibit
neuronal differentiations.1 SOX2, combining with other factors
OCT4, KLF4 and c-Myc, is sufficient to reprogram differenti-
ated cells to induced pluripotency stem cells (iPS).2,3 The bal-
ance of SOX2 expression is strictly regulated, small increases
(two fold or less) in SOX2 protein can trigger the differentiation
of embryonic stem cell (ESC) into neuroectoderm, mesoderm,
and trophectoderm but not endoderm,4 while knocking down
of SOX2 in ESC promotes their differentiation into trophecto-
derm-like cells.5 But engineered ESC (i-OSKM-ESC), which
express OCT4, SOX2, KLF4 and c-Myc from an inducible
transgene, do not differentiate when each of these four factors
is elevated »2-fold for at least 5 passages.6 Thus the expression
changes of the proteins do not appear to be the main contribu-
tor.6 Comparing interactomes of SOX2 in ESC and ESC begin-
ning to differentiate, it indicates that the SOX2-interactomes
changes dramatically within 24 hours.7 It is unclear why the
SOX2-interactome changes so rapidly. The attractive changes
are the post-translational modifications of interacting proteins.
For example, one hour after human ESC initiate differentiation,
their phosphoproteome changes by »50%.8

SOX2 activity and expression is regulated by multiple post-
translational modifications, including ubiquitination, methyla-
tion, phosphorylation and SUMOylation (SUMO, small

ubiquitin-related modifier 1, an ubiquitin-like protein that can
covalently bind to target proteins as monomer or a lysine-
linked polymer as a kind of post-transcriptional modification).
Mouse SOX2 is SUMOylated at lysine 247.9 Sumoylation of
SOX2 inhibits nanog expression and SUMOylation of SOX2 by
Pias3 impairs its interaction with OCT4.10 CARM1 methylates
SOX2 at Arg113, enhances SOX2 self-association and facilitates
SOX2-mediated transactivation.11 SETD7 monomethylates
SOX2 at Lys119, which induces SOX2 ubiquitination and deg-
radation.12 PKCi-mediated SOX2 phosphorylation at Thr118 is
required for HHAT promoter occupancy and maintenance of a
stem cell like phenotype in lung squamous cell carcinoma.13

AKT1 also phosphorylates SOX2 at Thr118, but this phosphor-
ylation antagonizes K119me by SETD7 to stabilize SOX2.12

SOX2 is also phosphorylated by Cyclin-dependent kinase
(CDK), CDK-mediated SOX2 phosphorylation at S39 and S253
is required for establishing the pluripotent state during reprog-
ramming but is dispensable for ESC maintenance.14 Although
it is reported that SOX2 is phosphorylated in human ESCs, lit-
tle is known about the biological significance of SOX2 phos-
phorylation in mitosis, which contains a series of events
concerning chromatin organization, condensation and separa-
tion. In addition, mitosis normally accompanies with rich mod-
ifications of cellular proteins and most of their functions
remain unknown.

Among cell cycle regulatory kinases, Aurora kinase A is a
key regulator of centrosome duplication and spindle assembly.
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It is a cell cycle oscillated kinase which presents activity mainly
in G2 and M phase, along with obvious centrosome and spindle
localization.15,16 AURKA regulates mitotic events through
phosphorylating the substrates to cause protein structure trans-
formation, activity switch on/off, as well as cellular transloca-
tion. AURKA wildly presents rich expression in kinds of
tumors and is considered as target for inhibitors development
and cancer therapy.17

In this study, we used human ovarian cancer PA-1 cells, a
rapid proliferating cell lines with rich SOX2 and OCT4 expres-
sion,18 to study the regulatory connection of cell cycle and
SOX2. Exactly, we discovered that SOX2 is heavily modified in
mitosis. The mitotic SOX2 were multiple phosphorylated and
AURKA is the kinase that responsible for mitotic SOX2 phos-
phorylation. Ser220 and Ser251 are the two sites showed to be
phosphorylated on SOX2 in mitosis. Finally, we proved that
AURKA directly regulated the mitotic phosphorylation of
SOX2, which is important for cancer stem-cell like cell
maintenance.

Results

SOX2 is highly modified in M phase

Stemness factors SOX2, OCT4 and nanog are strictly regulated
and normally expressed in embryonic stage. However, the high
expression of SOX2 and OCT4 was frequently found in many

cancers and showed a significant association with poor progno-
sis and disease-free survival.13,18-21 Understanding the mecha-
nism of how stemness factors are regulated is of great
significance for cancer pathogenesis and clinical therapy. To
uncover the relationship between cell cycle oscillation and
stemness maintenance such as OCT4 and SOX2 expression, we
arrested PA-1 cells with nocodazole (50 ng/mL) and detected
SOX2 using specific antibody. We discovered that SOX2 was
highly modified and presented a slow shift band distinguish
from its main bands in SDS-PAGE gel (Fig. 1A). Moreover, the
slow shift band is mitotic specific and decayed completely
within one hour in the mitotic releasing cells (Fig. 1C). These
results are consistent with that observed in other SOX2 express-
ing cell lines F9, H520 and MCF7 (Fig. 1B).

AURKA regulates mitotic modifications of SOX2

To explore what modifications formed on SOX2 in mitosis, we
incubated the mitotic arrest PA-1 cells with small kinase inhibi-
tors separately. Surprisingly, we found that inhibition of
AURKA kinase with inhibitory chemical VX680 completely
abolished the shift band of SOX2. Consistently, the pan Aurora
kinase inhibitor ZM447439 also exerted partial inhibition on
mitotic SOX2 modifications. Besides, in the parallel experi-
ments using Aurora kinase Inhibitor I, a novel specific inhibitor
to AURKA, we confirmed that inhibition of AURKA activity is
capable of attenuating mitotic modification of SOX2. However,

Figure 1. SOX2 is specific modified in mitosis. (A) SOX2 was obviously modified in mitosis. In nocodazole (Noc., 50 ng/mL for 12 hours) treated human ovarian PA-1 cells,
SOX2 exerts a slow-migration band observed by western blotting. Histone H3 was blotted as loading control. (B) Mitotic specific modifications of SOX2 can similarly
observed in F9, H520 and MCF7 cell lines. (C) The modified SOX2 decayed along with the exit of mitosis. Mitotic PA-1 cells (arrested by nocodazole for 12 hours) were
released for 0, 20, 30, 45, 60, 75, 90, 105 minutes. Cell cycle regulation and mitotic modified proteins CDT1 and geminin were examined for cell phase control and
unchanged cullin-1 was blotted as loading control.
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inhibition of PLK1, an interrelated kinase at the same period,
with specific inhibitors BI2536 or CBB2001 did not alter the
mitotic modifications of SOX2. Similarly, pan CDKs inhibitor
roscovitine also did not exert obvious effect on mitotic SOX2
modification (Fig. 2A). Thus, AURKA is the most likely kinase
that regulates the mitotic modifications of SOX2.

To further confirm the regulatory role of AURKA kinase on
SOX2, we designed small interference RNA to knock down
AURKA expression in PA-1 cells. As expected, siRNA disrup-
tion of AURKA expression inhibited the mitotic modifications
of SOX2 (Fig. 2B). On this basis, we further performed protein
co-immunoprecipitation using specific antibodies to detect the
interaction between SOX2 with AURKA. Both normal and
mitotic arrested PA-1 cells were harvested and lysis for the
experiments. Consistently, AURKA interacts with SOX2 and
their interactions were enhanced in mitosis (Fig. 2C).

SOX2 is multiple phosphorylated in mitosis

In order to verify the types and sites of mitotic SOX2 modifica-
tions, we performed mass spectrometry analysis to identify the
modifications of mitotic SOX2. Firstly, PA-1 cells were arrested
in mitosis upon nocodazole incubation, and then cell lysate was
subjected to affinity purification of SOX2 protein using anti-
bodies. Immunoprecipitated SOX2 proteins complex were

separated by SDS-PAGE and viewed by coomassie blue G250
staining (Fig. 3A). In order to precisely locate the SOX2 con-
taining bands, we matched the gel with the parallel performed
western blotting using SOX2 specific antibodies. Therefore, we
obtained two protein bands (band 1 and band 2, Fig. 3A). Then
protein bands containing SOX2 were subjected to mass spec-
trometry analysis according to the protocol (refer to Materials
and Methods for mass spectrometry sample preparation, pep-
tide spectrum mapping, database searching and phosphoryla-
tion sites analysis). We successfully identified SOX2 protein in
both band 1 and 2, along with multiple phosphorylation sites.
In addition, we performed in vitro kinase reaction on SOX2
using active AURKA kinase (Fig. 3B). The reaction products
were SDS-PAGE separated, coomassie blue stained, SOX2-con-
taining band located and collected for mass spectrometry anal-
ysis as indicated previously. Consistently, we also identified
SOX2 protein as well as the phosphorylation sites (Fig. 3C).
From these results, we successfully identified multiple phos-
phorylation sites on SOX2 (Fig. 3C and D).

Ser220 and Ser251 are the two sites required for mitotic
SOX2 phosphorylation

With successfully identify of multiple phospho-sites of SOX2, we
intended to functional validating the key sites responding for

Figure 2. AURKA regulates the mitotic modification of SOX2. (A) Mitotic modification of SOX2 was sensitive to AURKA inhibition. PA-1 cells were treated with nocodazole
for 12 hours and further incubated with chemical inhibitors for 30 minutes as indicated. ON01910, BI2536 and CBB2001 are PLK1 inhibitors, VX680 and Aurora kinase
inhibitor I are AURKA inhibitors, ZM447439 is a pan Aurora kinase inhibitor. Roscovitine is a pan CDKs inhibitor. (B) siRNA knockdown of AURKA abolished the mitotic
modification of SOX2. PA-1 cells were transfected with siRNAs specific to Luciferase (Luc, as negative control) and AURKA for 48 hours, and then incubated with DMSO or
nocodazole (Noc.) for 12 hours. Both short and long exposure results were showed. (C) AURKA interacts with SOX2 directly in M phase. PA-1 cells were treated with noco-
dazole (Noc.) or DMSO for 12 hours, and the protein complexes in the lysates were co-immunoprecipitated (co-IP) with antibodies.
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mitotic SOX2 phosphorylation. Site directed mutations were
obtained on plasmid containing wild type SOX2 open reading
frame and transiently expressed in PA-1 cells as exogenous
SOX2 (HA-SOX2). Similarly, mitotic PA-1 cells were harvested
and protein gel blotting for SOX2. Both endogenous and exoge-
nous expressed wild type SOX2 showed mitotic phosphoryla-
tions. While for the mutants, only S220A and S251A but not
others (including S37A, T116A, S228A, S246A, S249A, and
S250A) can completely abolished the mitotic phosphorylation of
SOX2 (Fig. 4). Moreover, we also confirmed the results in HA-
SOX2 stably expressed PA-1 cells, which were selected by

puromycin. The above results suggested that Ser220 and Ser251
are the two sites requiring for mitotic phosphorylations of SOX2.

SOX2 mutants (S220A and S251A) are capable of cell
reprogramming and induced OCT4 re-expression in
differentiated cells

To further explore the role of phosphorylated SOX2, we
performed clone formation experiments using somatic 293
cells. Wild type SOX2 and S220A and S251A mutants of

Figure 3. SOX2 was multiple phosphorylated in M phase. (A) SOX2 protein was separated from mitotic PA-1 cells using SOX2 specific antibody. SDS-PAGE separated pro-
teins were stained and extracted for mass spectrometry analysis. (B) Coomassie brilliant blue staining of SOX2 protein in AURKA kinase assay. PA-1 cells were incubated
with VX680 (0.5 mM) for 5 hours and then immunoprecipitated using SOX2 specific antibody. SOX2 proteins were subjected to in vitro kinase reaction with AURKA. Reac-
tion products were SDS-PAGE separated and analyzed by mass spectrometry. (C) Confirmed phosphorylation sites in SOX2 proteins from band 1, band 2 in (A), and band
3 in (B). (D) Two representative spectrums of SOX2 phosphorylations on sites Ser220 and Ser251.
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SOX2 were respectively expressed in 293 cells. Positive cells
were selected under puromycin and diluted into single cell
for clone formation. Clones were imaged on day 6. Cells
expressing wild type SOX2 showed larger clones and rapid
proliferation. In contrast, cells expressing SOX2 mutants
(S220A and S251A) presented much smaller clones (Fig. 5A
and B). More interestingly, we found OCT4 re-expression
in forced SOX2 expressing cells. Both mutants showed
higher expression of OCT4 than that of wild type SOX2. It
should be noted that the control cells with vector transfec-
tion did not show any expression of OCT4 (Fig. 5C and
D). In order to elucidate whether SOX2 expression altered
the cell cycle state, we detected cell cycle regulator as well
as c-Myc in SOX2 expressing cells. C-Myc is a transcription
factor that non-specifically binds to DNA and activates the
transcription of growth related genes. Thus down regulation
of c-Myc is relating to reduced cell proliferation.22 We
found that c-Myc and cyclin-E are both obviously down
regulated in SOX2 S220A and S251A mutants expressing-
clones, while cyclin-A2, cyclin-B1 and cyclin-D1 are slightly
changed (Fig. 5E). FACS analysis also confirmed a slight
cell cycle arrest in S220A and S251A clones (Fig. 5F). Inter-
estingly, the established clones did not express SOX2 in all
cells, only partial of them expressed both SOX2 and OCT4,
or even only expressed SOX2 but not OCT4 (Fig. 5G). EdU
incorporation experiments also suggest that clones express-
ing SOX2 mutants (especially S220A) showed decelerated
cell proliferation (Fig. 5H). These phenotypes are consistent
with the characters of stem cells of slow proliferation rate

and asymmetrical division. These results indicated that
phosphorylation at Ser220 and Ser251 on SOX2 mediated
by AURKA may be the key event involving in stem cell
reprogramming and pluripotency maintenance.

Discussion

SOX2 is a key component of the transcriptional network that
maintains stem cell self-renew and differentiation. Over-expres-
sion of SOX2 in C3H10T1/2 cells inhibited osteoblast differentia-
tion.23 SOX2 also confers cancer cells with pluripotency property
that more sensitive to LSD1 inhibition and this could be a promis-
ing strategy for cancer therapy.24 Moreover, differentiated cells
can be reprogrammed by combinations of SOX2with small mole-
cules or even merely with small compounds.24-26 However, the
underlying mechanisms by which SOX2 contributes to self-
renewal or reprogramming processes remain unknown. The
post-translational modifications are considered as important
events during ESCs early differentiation.8 AKT phosphorylated
SOX2 at Thr118, which enhances the transcriptional activity of
SOX2 in ESCs and enables more efficient induction of iPSCs.27

Additional phosphor-sites were identified on SOX2 mediated by
CDK at Ser39 and Ser253, which is required for establishing the
pluripotent state during reprogramming.14 In this study, we
examined the mitotic SOX2 protein and identified rich phospho-
sites which contain potential regulatory information. We found
SOX2 is highly phosphorylated in mitosis. The phosphorylation
of SOX2 in mitosis is regulated by AURKA kinase, but not other

Figure 4. Ser220 and Ser251 are the critical sites for M phase specific modifications of SOX2. PA-1 cells expressing HA tagged wild type or mutants SOX2 (HA-SOX2) were
incubated with DMSO or nocodazole for 12 hours to arrest cells at mitosis. VX680 were added (for 30 minutes) for AURKA inhibition. AURKA inhibition can inhibit the
mitotic phosphorylation of SOX2. Consistently, mutations on Ser220 and Ser251 can also completely abolish the mitotic phosphorylation of SOX2. For other mutants,
including S37A, T116A, S228A, S246A, S249A, and S250A, they did not show any effect on the mitotic phosphorylation of SOX2.
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cell cycle regulators such as PLK1 or CDKs. AURKA directly
interacted with SOX2 and phosphorylated SOX2. Indeed, Ser220
and Ser251 are the two key sites for mitotic SOX2 phosphoryla-
tion and present sensitivity to the kinase activity of AURKA.
Either inhibition of AURKA kinase activity using specific inhibi-
tors or knockdown of AURKA by siRNA can abolish the mitotic
phosphorylation of SOX2. Both solid tumor and cultured cells

were heterogeneous, the number of cells, which are named stem-
cell like cell and capable of differentiated into kinds of other cells,
is limited (Fig. 6). We presumed that the population of stem cell
is regulated through phosphorylated SOX2mediated by AURKA.
When disrupt the mitotic modification of SOX2, either by mutat-
ing SOX2 or inactivating AURKA, the ratio of stem-cell like cells
was increased (Fig. 6). Indeed, we discovered that SOX2 mutants

Figure 5. SOX2 mutants S220A and S251A promote SOX2 induced differentiated cells reprogramming and OCT4 expression. (A) Single-cell clones of 293 cells expressing
wild type (WT) SOX2 and point mutated (S220A or S251A) SOX2. 293 cells were infected by lentivirus expressing SOX2, and selected under 2 mg/mL puromycin treatment.
SOX2-expressing 293 cells were distributed by serial dilution into single cells. Clones were expanded and imaged at day 6. (B) Diameter of the clones in (A) were mea-
sured and calculated. Data presented as mean §SD of 10 clones each. (C) Lysates of the clones in (A) were analyzed by protein gel blotting to detect the expression of
OCT4. (D) The expressions of OCT4 in (C) were measured and quantified by GeL-Pro Analyzer. Mean §SD of three independent experiments. (E) Cell cycle regulators were
examined. Cyclin-E and c-Myc showed remarkably down regulation in S220A or S251A clones. (F) Cell cycle analyses of the SOX2 expressing clones. (G) Immunofluores-
cence imaging of SOX2 expressing clones showed regional expression of SOX2 and OCT4. Some cells expressed both SOX2 and OCT4 (arrow head in yellow); while more
cells only expressed SOX2 (arrow head in white). (H) EdU incorporation experiments assayed by FACS suggested the decelerated cell proliferation in S220A clones.
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S220A and S251A remarkably changed the cell state and reprog-
rammed differentiated cells, evoked the re-expression of OCT4
(Fig. 5). This may partially explain why AURKA kinase inhibitors
developed as anti-tumor drugs were failed in clinical trial. Thus
our discoveries will contribute to elucidating the features of stem-
cell like cells in cancer and cancer therapy.

Materials and methods

Cell culture

Human ovarian carcinoma PA-1, breast adenocarcinoma MCF7,
lung carcinoma H520, embryonic kidney fibroblast 293 and
mouse teratocarcinoma F9 cells were obtained from American
Type Cell Collection (ATCC). F9, MCF7 and 293 were cultured
with Dulbecco’s Modified Eagle Medium (DMEM); PA-1 cul-
tured with Minimum Essential Medium (MEM), H520 cultured
with Roswell Park Memorial Institute (RPMI) 1640 medium. All
medium was supplemented with 10% fetal bovine serum and
MCF7 with additional 0.01 mg/mL human recombinant insulin
(#I3536, Sigma-Aldrich Co. LLC, http://www.sigmaaldrich.com/
catalog/product/sigma/i3536?langDzhandregionDCN).

Chemicals and small interference RNA

AURKA inhibitor I (http://www.selleck.cn/products/AURKA-
Inhibitor-I.html,28 VX680 (also know as Tozasertib or MK-
0457; http://www.selleck.cn/products/VX-680(MK-0457).html)
and BI2536 (http://www.selleck.cn/products/BI-2536.html)
were from Selleck Chemicals,17 nocodazole (https://www.sigma
aldrich.com/catalog/product/sigma/m1404?langDzhandregion
DCN) and roscovitine (http://www.sigmaaldrich.com/catalog/
product/sigma/r7772?langDzhandregionDCN) were obtained
from Sigma-Aldrich Inc., ON01910 (also know as Rigosertib)
was from Selleck Chemicals; http://www.selleck.cn/products/
ON-01910.html), ZM447439 was from Santa Cruz (http://
www.scbt.com/datasheet-200696-zm-447439.html). CBB2001
was synthesized and used as described.29 The concentration of
chemical inhibitors used for treatment of the cells is: AURKA

inhibitor I, 25 nM, VX-680, 0.5 mM, BI2536 0.1 mM, roscovi-
tine 5 mM, ON10910, 5 mM, ZM447439, 5 mM, CBB2001,
1 mM, and nocodazole 50 ng/mL. Active AURKA kinase was
expressed and purified as described previously.29 Small interfer-
ence RNA targeting human AURKA is: CCACUGAAUAA-
CACCCAAA, and SOX2 30-UTR is: UGCCGAGAAUCC
AUGUAUA. DharmaFECT 1 Transfection Reagent (#T-2001-
03, Thermo Fisher Scientific Inc.) was used to knock down the
expression of target proteins, according to the protocol pro-
vided by the manufactures.

Site-directed mutation

Wild type plasmid pMSCVpuro-SOX2 (Clontech Laboratories,
Inc.) was used as a PCR template for site-directed mutation
using specific primers. Then PCR products were incubated
with DpnI (#1235B, Takara Biotechnology (Dalian) Co., Ltd.)
to remove the template from the mutated DNA, and trans-
fected into competent E.coli cell DH5a to obtain the clone. Pos-
itive clones were sequenced to confirm the success of mutation.

Flow cytometry analysis

About 500,000 cells were trypsin harvested and resuspended in
200 mL PBS, followed by propidium iodide staining (25 mg/
mL, 0.02% Triton-X100), incubation at 37 �C for 30 minutes.
Dilute the cells ten times in PBS and immediately analyzed by
BD FACSCalibur. Raw data were analyzed by FlowJo 7.6.1
(FlowJo, LLC; http://www.flowjo.com). For 5-ethynyl-20-deoxy-
uridine (EdU) incorporation assay, Click-iT EdU Alexa Fluor
488 Flow Cytometry Assay Kit were purchased (Thermo Fisher
Scientific Inc., https://www.thermofisher.com/order/catalog/
product/C10425) and performed according to the protocol.

Real-time quantitative PCR (RT-qPCR)

Total cellular RNA was extracted using RNAiso Plus (#9109,
Takara Biotechnology (Dalian) Co., Ltd., http://www.takara.
com.cn/ProductShow.aspx?mD20141220151857153056andpro

Figure 6. Schematic model displays the mitotic regulation of SOX2 by AURKA is critical for cancer stem-cell like cell maintenance. Both solid tumor and cultured cells were
heterogeneous and the number of stem-cell like cells is limited. It is proposed here that the ratio of stem-cell like cells is regulated through phosphorylation on SOX2
mediated by AURKA. AURKA phosphorylates SOX2 and induce the M phase specific modification of SOX2. Mitotic phosphorylation of SOX2 by AURKA restricts the ratio of
stem-cell like cells. When disrupt the mitotic modification of SOX2, either by mutating SOX2 or inactivating AURKA, the ratio of stem-cell like cells increased.
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ductIDD20141226160653343219), then reverse transcribed to
cDNA by Reverse Transcriptase M-MLV (RNase H-) (#2641A,
Takara Biotechnology (Dalian) Co., Ltd.). The relative mRNA
levels of the target genes were quantified by SYBR Fast qPCR
Mix (#RR430S, Takara Biotechnology (Dalian) Co., Ltd. http://
www.takara.com.cn/Product.aspx?mD20141215102926123157
#p) in a CFX Connect Real-Time PCR Detection System
(#1855200, Bio-Rad Laboratories, Inc.). b-actin was quantified
as control.

Immunofluorescence

Cells were seeded on cover slides in 35-mm dish for 5 d to allow
clones formation. After fixed with paraformaldehyde (4%) for
15 min at room temperature and permeabilized for 5 min on
ice, cells were rinsed with PBS and incubated with the primary
antibodies overnight at 4 �C. After rinsing in PBS to remove
the unbound antibodies, cells were incubated with FITC- or
TRITC- conjugated secondary antibodies for 1 h at room tem-
perature and mounted with mowiol (#81381, Sigma-Aldrich,
Co. LLC.) containing 1 mg/mL 40, 6-diamidino-2-phenylindole
dihydrochloride (DAPI) (#D8417, Sigma-Aldrich, Co. LLC.) to
stain the DNA. Microscopic images were captured on an
OLYMPUS IX73 fluorescence microscope.

Western blotting and antibodies

Proteins were separated by SDS-PAGE and transferred to
nitrocellular membrane, blocked one hour with 3% non-fat
milk and incubated with primary antibody overnight at 4 �C.
After rinsed three times in TBS (with 0.2% Tween-20) and
incubated with the HRP conjugated secondary antibody for
one hour at room temperature, the membrane was developed
onto the X-ray film. Antibodies anti SOX2 (A301-741,
http://www.bethyl.com/product/A301-741A/SOX2_Antibody?r
eferrerDsearch_default) was from Bethyl Laboratories.Inc.,
AURKA (#4718) from Cell Signaling Technology (http://www.
cellsignal.com/products/primary-antibodies/AURKA-aik-1g4-
rabbit-mab/4718?ND4294956287&NttDAuroraCAand fromPa
geDplp). OCT4 (#sc-5279) was from Santa Cruz Biotechnol-
ogy. Inc. (http://www.scbt.com/datasheet-5279-oct-3-4-c-10-
antibody.html). Anti-HA-tag (AB104-02) from TIANGEN Bio-
tech (Beijing) Co., Ltd, (http://www.tiangen.com/?product
Show/t1/8/id/197.html) and anti-cullin1 was laboratory made
using purified antigen as described.21,30 The intensity of protein
bands were measured by GeL-Pro Analyzer software (Media
Cybernetics, Inc.). Three independent experiments were ana-
lyzed to obtain the average values that were used to plot
histograms.

Co-Immunoprecipitation

Cells were lysed at 4 �C for 15 minutes in lysis buffer (0.5 %
NP-40, 50 mM Tris-HCl pH 7.5, 150 mM NaCl, protease and
phosphotase inhibitors), and centrifuged twice at 4 �C for
15 minutes. The supernatant was incubated with 1 mg primary
antibodies for 3 hours on rotator at 4 �C, and further incubated
with 25 mL protein-A sepharose beads for 1 hour to pull down

the protein complexes. Beads-protein complexes were rinsed in
lysis buffer for five times to remove unspecific bounds.

LC-MS/MS sample preparation and analysis

Proteins were separated by SDS-PAGE (Hoefer SE400 Vertical
Electrophoresis System, 18£16 cm), stained with coomassie
blue G250. The protein bands were cut, destained, and dehy-
drated by acetonitrile. Protein was digested by Trypsin Gold
(V5280, Promega Biotech Co., Ltd; http://www.promega.com/
resources/msds/msdss/v5000/v5111/?csDy) in gel at 37 �C for
14 hours. Peptides were extracted from the gel with 70% aceto-
nitrile (with 0.02% trifluoroacetic acid) and vacuum-dry con-
centrated. Peptides were dissolved in liquid chromatography
(LC) buffer (95% H2O, 5% acetonitrile, 0.1% formic acid) thor-
oughly and ready for mass spectrometry analyzing by AB
SCIEX TripleTOF 5600.

Phosphorylation sites identification

Raw data in .wiff files of mass spectrums generated from AB
SCIEX TripleTOF 5600 were processed to generating peaks
and searching Human uniprot-all.fasta database (Proteome
IDDUP000005640) by ProteinPilot 5.0 software (with Paragon
Algorithm 5.0.0.0, 4767) to create a project. “group” file,
which contain the annotated spectrums and proteins identified.
Phospho-peptides and phosphor-sites localization were
performed using the Mascot Server (Matrix Science. Ltd;
http://www.matrixscience.com/cgi/search_form.pl?FORMVER
D2&SEARCHDMIS). Briefly, the neutral loss of phosphate
(H3PO4, 98 Da, or HPO3, 80 Da) from the intact peptide can be
the characteristic indicator to the identity of the phosphory-
lated residue. During mass spectrum mapping, intact peptide is
observed in a full scan by mass spectrometry (MS or MS1).
Then intact peptides are fragmented by colliding them with an
inert gas. The fragmented ions are also detected (MS/MS, or
MS2). Phospho-site localization is realized through observation
of ions that can distinguish between possible phosphorylatable
residues. If a strong neutral loss of 98 Da is observed, the intact
peptide is expected phsophorylating on serine or theronine (pS
or pT). Mascot provides an algorithm for phosphorylation site
mapping, spectrum depicting and scoring. Normally, the neu-
tral losses of phosphate in corresponding fragmented ions are
clearly displayed in the spectrum.31,32
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