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Abstract

The Big Data era in Biomedical research has resulted in large-cohort data repositories such as The 

Cancer Genome Atlas (TCGA). These repositories routinely contain hundreds of matched patient 

samples for genomic, proteomic, imaging, and clinical data modalities, enabling holistic and 

multi-modal integrative analysis of human disease. Using TCGA renal and ovarian cancer data, we 

conducted a novel investigation of multi-modal data integration by combining histopathological 

image and RNA-seq data. We compared the performances of two integrative prediction methods: 

majority vote and stacked generalization. Results indicate that integration of multiple data 

modalities improves prediction of cancer grade and outcome. Specifically, stacked generalization, 

a method that integrates multiple data modalities to produce a single prediction result, outperforms 

both single-data-modality prediction and majority vote. Moreover, stacked generalization reveals 

the contribution of each data modality (and specific features within each data modality) to the final 

prediction result and may provide biological insights to explain prediction performance.
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I. Introduction

Rapid advances in biomedical research alongside the dawn of the Bid Data era have resulted 

in large biomedical data repositories such as the Cancer Genome Atlas (TCGA). These 

repositories have emerged in response to a critical need for improved prediction of cancer 

patient prognosis and response to treatment, which remain difficult due to the heterogeneity 

and molecular complexity of cancer [1]. Despite a large body of research investigating 

biomarkers for cancer endpoints such as grading and patient survival, it is unclear which 

data modalities (e.g., histopathological imaging, genomic, or clinical) are most valuable or 

useful. Though evidence suggests that the choice of data modality affects prediction 

performance, few studies have directly compared the performance of prediction models 

derived from different data modalities. Despite cross-platform and cross-batch variance, the 

combination of multiple datasets of similar modality can improve biomarker detection and 

prediction of cancer endpoints, suggesting that information in these datasets are 

complementary [2].

Among available integrative data research, few studies have focused on prediction modeling, 

much less combination of prediction models. Furthermore, few studies have highlighted the 

importance of combining comprehensive histopathological image features with –omics data 

[3]. Existing integrative imaging and genomic studies focus primarily on radiology [4, 5] or 

imaging meta-data [6]. We use TCGA renal (KIRC) and ovarian (OV) cancer that includes 

histopathological whole-slide imaging and RNA-seq (i.e., gene, isoform, exon, and junction 

expression) modalities. We then use two methods, majority voting and stacked 

generalization, to assess the effect of combining multiple data modalities on prediction of 

cancer grade and patient survival. Although stacked generalization was initially developed as 

a generalized variant of cross validation for classifier model selection, it has not been 

documented as a method for combining multiple data modalities [7, 8] and has rarely been 

used for biomedical applications [9].

We aim to address the following questions: (1) How does the choice of biomedical data 

modality affect the prediction of cancer endpoints? (2) Does the combination of multiple 

data modalities improve prediction performance? (3) In terms of biology, how can we 

interpret a prediction model that includes multiple data modalities?

II. Methods

A. Datasets

We use large-cohort KIRC and OV datasets from The Cancer Genome Atlas (TCGA) to 

predict two cancer endpoints: grade and patient survival. We use four genomic data 

modalities, all derived from RNA-seq, and one imaging data modality from 

histopathological whole-slide imaging (WSI). Clinical information pertaining to cancer 

grade and patient survival is only available for a subset of samples. Table 1 lists the total 

number of samples available for prediction modeling for each cancer and prediction 

endpoint. Samples are divided into training and validation sets in order to evaluate prediction 

modeling.
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B. RNA-Seq Data Preparation

RNA-seq expression data obtained from TCGA were processed using the SeqWare engine 

[10]. Briefly, MapSplice was used to align RNA-seq reads to the human genome (hg19, 

GRCh37) [11]. Subsequently, RSEM was used to quantify all genes and isoforms with 

respect to the genome annotation file, also obtained from TCGA [12]. Genome alignments 

were used to quantify exon and junction reads. Table 2 lists the total number of features for 

each modality.

We apply the Trimmed Mean of M-values (TMM) method to normalize all modalities of 

RNA-seq genomic data [13]. We estimate TMM scaling factors using the edgeR package in 

R [14]. The TMM method requires a reference sample, so we preselect a set of reference 

samples for normalization that are not used for prediction modeling. The reference samples 

are not usable for a particular cancer and endpoint. Table 3 lists the total number of 

reference samples used for each cancer and endpoint. The TMM method trims extreme M-

values and A-values (upper and lower 30% for M-values and upper and lower 5% for A-

values), and then computes the weighted average of M-values as the scaling factor. The 

normalized expression estimates for genes, isoforms, exons, and junctions are the raw read 

count, divided by the product of total read count and TMM scaling factor, multiplied by the 

average total read count across all sequencing samples. We add one to the normalized 

expression estimates and then log2 transform the data to yield the final expression estimates.

C. Image Data Preparation

TCGA contains hematoxylin and eosin (H&E) stained whole-slide image (WSI) tissue 

samples. We begin with WSIs of 1,092 tumor samples from 563 OV patients and 906 tumor 

samples from 451 KIRC patients. We reduce this initial set to the matched set of patients 

indicated in Table 1.

We identify and remove WSI regions that are not informative for cancer diagnosis but may 

influence analysis. As described by Kothari et al. in [15], a typical TCGA WSI contains non-

tissue regions such as large white regions representing blank, tissue-less portions of the slide 

and bluish-green regions representing pen marks used by pathologists to annotate the slide. 

We remove these non-tissue regions using HSV-color space thresholding and morphological 

analysis. Tissue fold artifacts are then detected as described by Kothari et al [15]. Finally, we 

crop the WSI into a matrix of 512×512-pixel non-overlapping tiles. Finally, we select tiles 

with greater than 50% tissue and less than 10% tissue fold artifacts for feature extraction.

We extract 461 image features from each tile. These features capture color, texture, and 

morphological properties [16]. We combine the features extracted from all tiles for a patient 

into a single feature vector. To do this, we represent each feature of a patient as a histogram 

with a fixed number of bins. In other words, we quantize each feature into B bins. For each 

WSI, we then estimate the percent of its tiles that fall into each bin. Finally, all B 
percentages for all features represent a single patient profile. Quantization values for a 

feature are estimated using the number of bins B=10, and a feature-dependent dynamic 

range: lower limit Li and upper limit Ui, calculated based on the distribution Di of the feature 
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i across all tiles of all patients in the reference set. The number of reference images available 

for each cancer and endpoint is listed in Table 3. Mathematically, the limits are:

where the function Qp(D) returns the pth percentile of distribution D, and IQD is the 

interquartile distance.

D. Single Data Modality Prediction Modeling

We use nested cross validation for prediction modeling of each individual data modality, as 

described by Parry et al. [17] and based on the guidelines for prediction modeling developed 

by MAQC-II [18]. We perform 5-fold nested cross validation using the training dataset to 

optimize the feature size and classifier. Using the minimum redundancy, maximum 

relevance (mRMR) feature selection, we choose an optimal feature size between 1 to 100 

features [19]. We select the optimal classifier from four: Bayesian (i.e., nearest centroid, 

LDA, diagonal LDA), K-nearest neighbors, logistic regression, and SVM. The optimal 

prediction model is then applied to the validation set to obtain the final prediction 

performance, measured as AUC.

E. Integrating Data Modalities with Stacked Generalization and Majority Voting

Stacked generalization was originally formulated as a method for combining multiple 

prediction models to obtain a single prediction result [7]. We expand the definition of 

stacked generalization to combine multiple prediction models derived from different data 

modalities. As described in Table 1, each cancer endpoint dataset is partitioned into a 

training set and an independent validation, or testing, set. Using 5-fold cross validation, as 

described for the single data modality prediction modeling, we identify optimal prediction 

models for each data modality. Modality decision values are then used to derive the 

prediction model by solving using linear regression. Level-1 testing data are derived from 

the prediction models by training using the entire set of Level-0 training data and calculating 

decision values using the Level-0 testing data. The Level-1 testing data are then used to 

calculate the final decision values for stacked generalization.

The majority voting method can be viewed as a simplification of stacked generalization that 

equally weights all constituent prediction models, calculating an average decision value 

across all modalities for each sample.

III. Results

A. Single Data Modality Prediction Performance is Dependent on Clinical Endpoint and 
Data Modality

Using only a single data modality, prediction performance of KIRC and OV grade and 

patient survival is highly dependent on the cancer type and data modality. The dependence 

on cancer type is concordant with results observed in the MAQC-II study [18]. Cancer type 
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contributes 57.3% of the variance in prediction performance. For most data modalities, we 

can observe in, that prediction performance of KIRC endpoints (AUC around 0.70) is much 

higher than that of ovarian cancer endpoints. However, prediction performance for each 

individual data modality varies for each cancer type and endpoint. The accuracy of renal 

cancer grading varies from 0.6 to over 0.7 AUC, with RNA-seq junction expression resulting 

in the lowest external validation performance (cyan ‘x’). Variance in prediction of renal 

cancer patient survival is higher due to the very low performance of the image data modality. 

Similarly, prediction of ovarian cancer grade varies from as low as 0.35 to 0.7 AUC, with 

RNA-seq junction expression resulting in the lowest external validation performance and 

image data modality resulting in the highest performance. Prediction of ovarian cancer 

patient survival is low (around 0.5 AUC) regardless of data modality. Analysis of variance 

shows that data modality is a statistically significant (p=6e-5) source of variance in 

prediction performance. Although it only contributes 4.1% to total variance, in combination 

with cancer type or prediction endpoint, it contributes 10.7% and 18.1%, respectively, both 

statistically significant.

B. Stacked Generalization Improves Prediction

Compared to most individual data modalities, stacked generalization improves prediction 

performance (Figure 2a). For KIRC grade, stacked generalization performs better than the 

image, isoform, and junction data modalities, statistically similar to exon data modality. 

However, stacked generalization significantly underperforms compared to the individual 

gene expression modality. For KIRC survival, stacked generalization significantly 

outperforms the gene expression and image data modalities while performing statistically 

similar to the junction and isoform modalities. The exon data modality individually 

outperforms stacked generalization for renal cancer survival. For OV grade, stacked 

generalization significantly outperforms all data modalities except for the image data 

modality, which outperforms stacked generalization. For the OV survival endpoint, stacked 

generalization significantly outperforms all data modalities except for the isoform data 

modality, which performs statistically similar to stacked generalization.

Stacked generalization significantly outperforms majority voting for the KIRC and OV 

grading endpoints (Figure 2b). Stacked generalization and majority voting perform 

statistically similar for the renal cancer survival endpoint. However, majority voting 

outperforms stacked generalization for the ovarian cancer survival endpoint (p=0.0026).

C. Stacked Generalization Prediction Models May Reveal Biological Insight

Level-1 prediction models, derived from linear regression, can be interpreted as weights for 

each data modality. Gene expression is the dominant data modality for the renal cancer 

grade, renal cancer patient survival, and ovarian cancer grade endpoints, contributing 56%, 

48%, and 41%, respectively. For renal cancer survival, imaging is the dominant data 

modality, contributing 40%. A close inspection of the dominant features and data modalities 

for each endpoint may lead to biological or experimental insights for renal and ovarian 

cancer. For example, the specific image features contributing to the ovarian cancer survival 

prediction model may be concordant with morphological cellular properties interpretable by 

pathologists [20]. Furthermore, the overall low contribution of exon, junction, and isoform 
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data modalities to the final prediction models may be a result of data quality, as we discuss 

in the following sections.

IV. Discussion

Although we have used five TCGA data modalities (histopathological whole-slide images 

and four levels of RNA-seq expression [gene, exon, isoform, and junction]), inclusion or 

exclusion of some modalities or improving the quality of data may improve prediction 

performance. Some data modalities, such as gene and isoform expression, may be highly 

correlated, limiting the benefit of combination. TCGA histopathological WSI data is difficult 

to handle because of data artifacts and biological heterogeneity [21].

In addition, potential limiting factors for individual data modality prediction modeling and 

level-1 prediction modeling in stacked generalization warrant further investigation. We have 

used a mixture of linear and non-linear classifiers for level-0 (i.e., individual data modality) 

prediction modeling as well as a sophisticated feature selection method (e.g. mRMR) that 

identifies optimal groups of features. More sophisticated feature selection methods may be 

better able to identify optimal features and produce better single-modality-data prediction 

models.

V. Conclusions

The emergence of large-cohort data repositories, such as TCGA, that host multiple 

biomedical data modalities have enabled integrative analysis that can potentially lead to 

improved diagnosis or prognosis of cancer endpoints. Our results indicate that a simple data 

integration method, stacked generalization, can improve prediction performance and provide 

biological insights. However, the results of this study must be considered in light of some 

limiting factors in terms of data and prediction modeling methods.

We have used histopathological image data with minimal processing to remove artifacts; 

further processing of the images to select biological regions-of-interest may improve 

performance. Finally, we have used linear regression for the level-1 model of stacked 

generalization, which simply computes a weighted combination of prediction decision 

values from each data modality. In future work, it may be beneficial to investigate non-linear 

prediction modeling for stacked generalization.
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Figure 1. Multi-Modal Integrative Prediction Modeling with Stacked Generalization
Classifiers from all modalities produce a single prediction model.
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Figure 2. Stacked Generalization Improves Prediction Performance
(A) Comparisons of stacked generalization to single data modalities for each cancer 

endpoint. Box plots indicate differences in prediction performance. Green/red-highlighted p-

values indicate that the change in performance is positive/negative and statistically 

significant. (B) Stacked generalization out-performs the majority vote method of prediction 

modeling for the OV grade and KIRC grade endpoints. Both methods perform similarly for 

the KIRC survival endpoint. However, majority vote out-performs stacked generalization for 

the OV survival endpoint.
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Table 2
Dimensionality of Data Modalities

Data Modality # of Features

RNA-Seq Gene 20531

RNA-Seq Isoform 73599

RNA-Seq Exon 239322

RNA-Seq Junction 249567

Histopathological WSIs 4610
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Table 3
Reference Samples Used for Normalization

Cancer Endpoint Data Modality # of Normalization Reference Samples

Renal Cancer

Cancer Grade
Genomic 51

Imaging 33

Patient Survival
Genomic 249

Imaging 231

Ovarian Cancer

Cancer Grade
Genomic 12

Imaging 313

Patient Survival
Genomic 102

Imaging 403
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