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Abstract Within land vertebrate species, snakes display extreme variations in their body plan,

characterized by the absence of limbs and an elongated morphology. Such a particular

interpretation of the basic vertebrate body architecture has often been associated with changes in

the function or regulation of Hox genes. Here, we use an interspecies comparative approach to

investigate different regulatory aspects at the snake HoxD locus. We report that, unlike in other

vertebrates, snake mesoderm-specific enhancers are mostly located within the HoxD cluster itself

rather than outside. In addition, despite both the absence of limbs and an altered Hoxd gene

regulation in external genitalia, the limb-associated bimodal HoxD chromatin structure is

maintained at the snake locus. Finally, we show that snake and mouse orthologous enhancer

sequences can display distinct expression specificities. These results show that vertebrate

morphological evolution likely involved extensive reorganisation at Hox loci, yet within a generally

conserved regulatory framework.

DOI: 10.7554/eLife.16087.001

Introduction
Even though vertebrate species can display different morphologies, they all contain a strikingly simi-

lar repertoire of transcription factors and signalling molecules. In particular, genes with critical func-

tions during embryonic development are often largely pleiotropic and highly conserved across

species (for references, see Kirschner et al., 2005; Duboule and Wilkins, 1998). This universality of

genetic and genomic principles has changed the evolutionary paradigm from the question of the

nature of similarities to that of how distinct traits could evolve using such related developmental

pathways (Carroll, 2008; De Robertis, 2008). Initially, Hox genes, as well as their structural and

functional organization into genomic clusters were found well conserved across bilateria

(Duboule and Dolle, 1989; Akam, 1989; Garcia-Fernandez and Holland, 1994; Graham et al.,

1989; McGinnis et al., 1984). In addition, their mis-expression led to changes in the identity of both

insect and vertebrate segments, illustrating their crucial role in the patterning of animal structures,

even though the structures they specify are of very different nature in various taxa (e.g.

(Maeda, 2006; Lewis, 1978; Krumlauf, 1994).

Tetrapods generally have four clusters of Hox genes (HoxA, HoxB, HoxC and HoxD), originating

from genome duplications early in the vertebrate lineage (see e.g. Lemons and McGinnis, 2006)

and located on different chromosomes, unlike fishes or some jawless vertebrates, which have more

(Prince et al., 1998; Mehta et al., 2013; Amores et al., 1998). In addition, all vertebrate Hox clus-

ters described thus far implement a particular type of regulatory process referred to as collinearity,
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whereby Hox genes are expressed sequentially in both time and space following their topological

organization within each genomic cluster (Gaunt et al., 1988; Izpisua-Belmonte et al., 1991). This

regulatory property is first observed during axial extension and, subsequently, in some structures

such as the limbs (see (Deschamps, 2007; Deschamps and van Nes, 2005). In this latter case, and

while the detailed underlying mechanism may be distinct from that at work in the major body axis

(Kmita and Duboule, 2003), the general principle remains the same and was likely co-opted in the

course of tetrapod evolution (Spitz et al., 2001), through the emergence of global enhancers

located at remote positions on both sides of the cluster (Lonfat et al., 2014).

These complex regulations were extensively studied in the mouse, in particular at the HoxD locus,

by using various targeted approaches in vivo. The HoxD cluster is surrounded by two gene deserts

of approximately 1 Mb (megabase) in size, each one containing distinct sets of enhancers capable of

activating specific sub-groups of target Hoxd genes depending on their location within the cluster.

Each of these two gene deserts can be superimposed to a Topologically Associating Domain (TAD),

i.e. a chromatin domain where DNA-DNA interactions in cis are privileged, for example between

promoters and enhancers, and determined through chromosome conformation capture technologies

(Dixon et al., 2012; Nora et al., 2012). The centromeric gene desert can activate the transcription

of the Hoxd9 to Hoxd13 genes, whereas the telomeric gene desert, which is further subdivided into

two sub-TADs (Andrey et al., 2013) controls the expression of Hoxd1 to Hoxd11 (see [Lonfat and

Duboule, 2015]).

This bimodal regulation allows for the selected expression of Hoxd gene sub-groups in a series of

secondary embryonic structures. During limb development, for instance, the telomeric TAD initially

controls all genes from Hoxd3 to Hoxd11 in the proximal part of the limb bud, whereas more

eLife digest Animals with a backbone can look remarkably different from one another, like fish

and birds, for example. Nevertheless, these animals – which are also known as vertebrates – have

many genes in common that shape their bodies during development. These genes include a family

called the Hox genes, which control how an animal’s body parts develop from its head to its tail and

are needed to shape the animal’s limbs. Hox genes are found clustered in groups within a

vertebrate’s DNA, and large regions of DNA on either side of a Hox cluster can, in some cases,

physically interact with the Hox genes to regulate their expression.

So how do the same genes produce different body shapes? Different vertebrates regulate where

and when their Hox genes are switched off and on in different ways. As such, it is likely that

differences in gene regulation, rather than in the genes themselves, lead embryos to develop into

the distinct shapes seen across the animal kingdom.

Snakes – for example – evolved from a lizard-like ancestor into elongated limbless animals as they

have adapted to a burrowing lifestyle. However, it was not known if changes in how Hox genes are

regulated have played a role in shaping the distinct body plan of snakes.

Guerreiro et al. have now compared how Hox genes are regulated in snakes, mice and other

vertebrates, focusing on corn snakes and one particular cluster of Hox genes called the HoxD

cluster. The comparison revealed that these Hox genes are regulated differently in developing

snakes than in other vertebrate embryos. This is particularly the case for tissues that show the most

differences when compared with other animals (such as the torso and genitals) or that are absent

(such as the limbs). Although Hoxd genes are activated at different times and places in snakes than

in other vertebrates, snake Hox genes appear to be regulated using the same general mechanisms

as mouse Hox genes.

Guerreiro et al. suggest that changes to Hoxd gene regulation have contributed to the evolution

of the snake’s shape and have most likely influenced the body shapes of other vertebrates as well.

However, the findings also suggest that these gene regulatory changes have been constrained by an

existing regulatory mechanism that has been maintained throughout evolution. It remains for future

work to address whether these changes in Hox gene regulation are a cause or a consequence of the

snake’s extreme body shape, or indeed a combination of the two.

DOI: 10.7554/eLife.16087.002
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posterior genes such as Hoxd13 or Hoxd12 are controlled subsequently in the most distal aspect of

the incipient limb by enhancers located within the centromeric TAD (Andrey et al., 2013). This latter

regulatory landscape also controls transcription of the same posterior genes during the outgrowth

of external genitalia (Lonfat et al., 2014). Since snakes are limbless animals and they display highly

specialized and divergent external genitals (Tschopp et al., 2014), the existence of such a bimodal

type of regulation at the snake HoxD locus was uncertain. Therefore, we set out to investigate Hox

gene regulation in snakes. While these animals cannot yet be considered as genuine model systems

(Guerreiro and Duboule, 2014; Milinkovitch and Tzika, 2007), recent advances in their genomic

analyses make their study increasingly interesting in an Evo-Devo context (Castoe et al., 2013;

Gilbert et al., 2014; Ullate-Agote et al., 2014; Vonk et al., 2013). These analyses revealed that

snakes, regardless of their extreme morphologies, have a tetrapod-like complement of Hox genes

with only a few exceptions (Vonk et al., 2013; Di-Poı̈ et al., 2010). Consequently, the serpentiform

body plan may have evolved either along with changes in time and space of Hox gene expression or

with a different interpretation of Hox protein functions (see [Di-Poı̈ et al., 2010; Woltering et al.,

2009]).

The analysis of Hox gene expression in the developing corn snake (Pantherophis guttatus)

revealed a surprisingly well conserved collinear mRNA distribution along the anterior-posterior axis.

However, the rather strict correlation between morphological landmarks and the anterior borders of

Hox transcript domains, usually seen in mammals and birds, was not always present in snakes

(Burke et al., 1995; Woltering et al., 2009) (see also Head and Polly [2015]). It was thus concluded

that some Hox proteins had likely changed (part of) their functionality. In addition, the fact that the

most posterior Hox genes were poorly expressed in the extending tailbud was tentatively associated

to the unusually large number of segments (Di-Poı̈ et al., 2010), together with an increased pace in

segmentation (Gomez et al., 2008).

In this work, we used a combination of experimental approaches to try and elucidate the nature

of the differences in Hoxd gene regulation between snakes and mice at comparable stages of their

early development. We find that, even though the structural organization of the corn snake HoxD

cluster resembles that of tetrapods, the extreme body plan observed in snakes is associated with an

extensive regulatory restructuring. In snakes, mesodermal enhancers are mostly located inside the

cluster itself, whereas other vertebrates make use of long-range regulations located at remote posi-

tions. In addition, we show that despite the loss of limbs, the bimodal chromatin organisation at the

Hoxd locus found in tetrapods is conserved in the snake lineage. However, we find that the regula-

tion of snake Hoxd genes during the development of the external genitalia is different from that of

other tetrapods, even though the general logic is conserved. In this latter case, the change in

enhancer activity from a limb to an external genital specificity seems to have occurred. Altogether,

we conclude that Hoxd gene regulation in the snake is in many ways distinct from the situation in

mammals. We discuss the possible causative nature of these changes in the evolutionary transforma-

tion towards a serpentiform body plan.

Results
To analyse the regulation of the snake HoxD cluster, we initially had to complement the available

genomic information (Ullate-Agote et al., 2014) with high coverage sequencing of the gene cluster

itself, along with the two flanking gene deserts. We screened a corn snake custom-made BAC library

using as probes DNA sequences conserved from mammals to the anole lizard, present within this

large DNA interval. A scaffold was built out of 13 overlapping BACs, which were selected for

sequencing and from which a 1.3 Mb large DNA sequence of high quality was obtained (Figure 1—

figure supplement 1A). The structural analysis of the corn snake HoxD cluster revealed that, as for

other species of snakes whose genomes were recently released (Vonk et al., 2013; Castoe et al.,

2013), all Hoxd genes but Hoxd12 are present and share the same transcriptional orientation within

the cluster. When compared to the mouse, the corn snake cluster is about 1.5 fold larger

(Figure 1A) (Vonk et al., 2013), likely due to a higher repeat content (Di-Poı̈ et al., 2009) and con-

sistent with the structures of the HoxD clusters of both the king cobra and the python

(Castoe et al., 2013; Vonk et al., 2013).

We plotted the sizes of the mammalian, reptile, bird and fish HoxD clusters against the size of

their respective genome. When reptiles were excluded from the linear regression analysis, an R2
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value of 0.43 was scored, indicating significant correlation. However, when the corn snake, king

cobra and Burmese python cluster sizes were added to the analysis, the R2 value was reduced to

0.027 (Figure 1—figure supplement 1B). Even though snake Hox clusters show a size larger than

what would be expected based on their genome size, the green anole lizard cluster is, from the ver-

tebrate species analysed, the one with the lowest level of correlation with genome size (R2=0.0012).

When we performed the same correlation analysis for the regulatory gene deserts that surround the

HoxD cluster, high values of R2 were scored both by excluding and including squamate values. How-

ever, the size of the squamate 3’ gene desert clearly showed a better correlation with genome size

than the 5’ gene desert (Figure 1—figure supplement 1B).

Because the increased size of the cluster in Squamata correlated with the presence of a high num-

ber of transposable elements (Di-Poı̈ et al., 2009, 2010), we investigated the number and type of

repeats present in the HoxD locus. We found that the corn snake cluster contains more than twice as

many repeats as the mouse counterpart. In addition, while the mouse HoxD cluster is mainly com-

posed of SINEs (short interspersed elements), the corn snake cluster is composed of different types

of transposable elements including LINEs (long interspersed elements) and DNA transposons (Fig-

ure 1—figure supplement 1C). The 5’ and 3’ gene deserts that surround the cluster contain a similar

amount of repeats in the two species. Both gene deserts in mice include a wider range of repeat ele-

ment types than in the cluster itself, yet SINEs remain the most represented transposable elements,

whereas snake gene deserts mostly included LINEs (Figure 1—figure supplement 1C). Our deep

DNA sequence of the entire corn snake HoxD locus, including both flanking gene deserts, allowed a

Figure 1. The snake HoxD cluster. (A) Schematic representation at the same scale of the mouse (top) and corn snake (bottom) HoxD clusters. Exons are

represented by black rectangles. (B) Whole-mount in situ hybridization of corn snake embryos at 8.5 dpo (days post oviposition) showing expression of

Hoxd4, Hoxd9, Hoxd11 and Hoxd13. Numbers define the somite number where the most anterior levels of expression are detected. The black

arrowhead points to the neural tube whereas the white arrowhead shows mesoderm. A single black arrowhead indicates that the neural and

mesodermal boundaries coincided. (C) Detection of both H3K9me3 and H3K27me3 histone modifications by ChIP-seq in corn snake brain (top and

middle tracks) and of H3K27me3 marks in the posterior trunk of 0.5–2.5 dpo snake embryos (bottom track). Blue is for brain and orange for posterior

trunk, as schematized on the left. The black peaks in the top track represent artifactual signals also present in the input chromatin mapping.

DOI: 10.7554/eLife.16087.003

The following figure supplements are available for figure 1:

Figure supplement 1. Corn snake HoxD cluster and surrounding regulatory landscapes.

DOI: 10.7554/eLife.16087.004

Figure supplement 2. Sequence conservation at the HoxD locus.

DOI: 10.7554/eLife.16087.005
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global conservation analysis to be performed between non-coding regions amongst different verte-

brate species. Surprisingly, we found that the pattern of conservation of the snake HoxD genomic

landscape is almost identical to that of the chicken, when compared to the mouse sequence (Fig-

ure 1—figure supplement 2).

The snake HoxD cluster
Because the silencing of transposable elements is often paralleled by the modification of histone H3

at lysine 9 (H3K9me3 (Kidwell and Lisch, 1997; Martens et al., 2005; Friedli and Trono, 2015),

heterochromatin-like islands within the snake Hox clusters may be associated with severe modifica-

tions in gene regulation (Di-Poı̈ et al., 2009; Woltering et al., 2009). H3K9me3 modifications are

normally not found at Hox loci in tetrapods, which like many other genomic loci containing genes of

importance for development, are also poor in transposons (Simons et al., 2007). Therefore, we per-

formed a ChIP-seq experiment with an antibody against this histone modification on micro-dissected

embryonic snake brain (Figure 1), a tissue that we routinely use as a negative control for Hox gene

expression (Figure 1B). No particular H3K9me3 enrichment was scored over the length of the HoxD

Figure 2. Location of Hoxd trunk mesodermal enhancers. (A) Schematic representation, at the same scale, of the mouse, human, chicken, corn snake

and zebrafish BAC clones used to generate the transgenic mouse lines. Exons are represented by black rectangles. (B) Lateral view of whole-mount in

situ hybridizations of Hoxd4 using E11.5 mouse embryos transgenic either for the mouse, the human, the chicken, the zebrafish or the corn snake BAC.

(C) Schemes illustrating the various deletion stocks (top) and whole-mount in situ hybridization of E12.5 mouse embryos with the Hoxd4 probe in

corresponding deleted mutant embryos (bottom). LoxP sites are indicated as red triangles, the HoxD cluster is represented by a black rectangle and

other genes are shown with grey rectangles. vm indicates expression in the ventral mesoderm and white asterisks represent the absence of expression

in this tissue. (D) ChIP-seq analysis over the mouse and snake HoxD loci of H3K27acetylation using anterior trunk mesodermal tissue of E11.5 mouse

embryos and 5.5 dpo corn snake embryos (left). Green boxes under each ChIP-seq mapping represent peaks called by the MACS algorithm

(Zhang et al., 2008). On the right, a graphical representation is shown of the percentage of conserved regions between the mouse and corn snake

HoxD loci, which are enriched for H3K27ac in each species.

DOI: 10.7554/eLife.16087.006

The following figure supplements are available for figure 2:

Figure supplement 1. Detailed analysis of the mesodermal enhancer activity in the 3’ gene desert.

DOI: 10.7554/eLife.16087.007

Figure supplement 2. Regulatory potential of the mouse 3’-located, telomeric gene desert in trunk mesoderm.

DOI: 10.7554/eLife.16087.008

Figure supplement 3. Regulatory potential of a mesodermal enhancer sequence (MSS) located in the telomeric gene desert.

DOI: 10.7554/eLife.16087.009
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cluster and the closest located peak was identified in an intron of the Lunapark gene, i.e. at a posi-

tion unlikely to have any critical impact on Hoxd gene expression (Figure 1C).

In tetrapods, the proper collinear regulation of Hox gene transcription was associated with the

progressive removal of H3K27me3 coverage (Soshnikova and Duboule, 2009), a histone modifica-

tion deposited by the Polycomb complex PRC2 (Margueron and Reinberg, 2011). We checked if

this repressive system would operate similarly during the elongation of the snake body axis by per-

forming an H3K27me3 ChIP-seq, either in the embryonic brain, or in a part of the posterior trunk

excluding the post-cloacal region (Figure 1C). In the absence of Hox gene transcription (brain), the

entire cluster was decorated with H3K27me3 marks, forming a dense domain of Polycomb repres-

sion as seen previously in other species. In contrast, the posterior trunk tissue displayed an

H3K27me3 coverage specifically over the 5’ part of the gene cluster, containing the most ‘posterior’

Hoxd genes (Figure 1C). In parallel, whole-mount in situ hybridization (WISH) to assess Hoxd gene

expression revealed a clear correlation between the domain of active Hoxd genes and the absence

of the H3K27me3 mark (Figure 1B). From these experiments, we concluded that both spatial collin-

earity and the associated dynamics of chromatin structure accompanying progressive gene activation

are implemented in snakes as in any other vertebrate species studied thus far.

Regulatory potential of the HoxD cluster in vertebrates
In tetrapods, regulatory elements controlling Hox gene expression are found at various positions.

The mouse HoxD cluster for instance contains regulatory elements, which are mainly involved in driv-

ing Hox gene expression along the anterior-posterior body axis during gastrulation, whereas remote

enhancers located outside of the cluster itself regulate transcription in other organs or structures

(Spitz et al., 2001; Lonfat and Duboule, 2015). Therefore, to try and identify snake-specific differ-

ences in the modes of regulations, we compared the regulatory potential of the snake HoxD cluster

with that of other vertebrates by using a BAC transgenic approach in mice, whereby BACs contain-

ing HoxD clusters of either human, mouse, chicken, snake and zebrafish were randomly integrated in

the mouse genome (Figure 2A). The expression of Hoxd4 was monitored by in situ hybridization

with species-specific probes and, under these experimental conditions, all mammalian transgenic

BACs showed transcript patterns restricted to the dorsal part of the main embryonic body axis

(Figure 2B), resembling the pattern obtained when a single copy Hoxd4/LacZ transgene was used

(Tschopp et al., 2012). Interestingly, however, this pattern represented only a subset of the full

Hoxd4 expression pattern as seen either by WISH on control embryos (Figure 2B), or on previous

reporter Hoxd4/lacZ transgenes likely integrated as tandem repeats (Zhang et al., 1997). Indeed,

expression was scored mostly in the neural tube, yet not in the ventral mesodermal tissues of the

upper trunk, i.e. above the level of hindlimbs. To better determine which mesodermal components

had their Hox gene expression affected in the isolated human BAC line, we performed a Hoxd4

WISH in a sectioned embryo. We found that, at least at this stage of development, the human

Hoxd4 gene was expressed only in the neural tube (Figure 2—figure supplement 1A).

We then investigated the expression of Hoxd4 from either the chicken or the zebrafish BAC trans-

genic lines and found a similar expression pattern, again mostly limited to the neural tube as well as

the dorsal-most part of the somites (Figure 2B). Altogether, these results suggested that enhancers

controlling the robust expression of Hoxd genes in various mesodermal derivatives are, for the most

part, located outside of the cluster itself. Alternatively, some mesodermal enhancers could be

located inside the HoxD cluster, yet they may require additional sequences located at remote posi-

tions to properly impact upon the transcription of target genes in physiological conditions. Conse-

quently, we searched for the location(s) of such enhancers outside the HoxD cluster by using a set of

targeted deletions flanking the locus on either side of it.

Reshuffling mesodermal enhancers
We first analysed the expression of Hoxd4 in mouse embryos lacking the centromeric TAD, which

contains strong enhancers with digit and genital specificities (Lonfat et al., 2014). Mutant embryos

carrying this HoxDDel(Atf2-Nsi) deletion (Montavon et al., 2011) showed a domain of Hoxd4 expres-

sion comparable to control embryos (Figure 2C; Del(Atf2-Nsi). In contrast, embryos carrying the

HoxDDel(Attp-Sb3) deletion of the opposite TAD, located telomeric to the HoxD cluster, which contains

various enhancer sequences (Andrey et al., 2013; Delpretti et al., 2012), displayed reduced
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amounts of mRNA steady state levels in the ventral mesoderm (Figure 2C; Del(Attp-Sb3). Consis-

tently, the repositioning of potential telomeric enhancers several megabases far from the target

genes, through the HoxDInv(Attp-CD44) inversion, displayed no clear expression in the ventral meso-

derm of the thoraco-lumbar region (Figure 2—figure supplement 2). These results indicate that the

telomeric gene desert contains most of the enhancers necessary for Hox gene expression in ventral

mesoderm. However, unlike what was observed in the Human BAC line, Hoxd4 expression in the

HoxDDel(Attp-Sb3) and HoxDInv(Attp-CD44) mutant lines was also scored in the dorsal-most part of the

somites and not exclusively in the neural tube (Figure 2—figure supplement 1A and 2).

To more precisely localize potential mesodermal enhancers within the deleted DNA interval, we

used four additional mutant stocks carrying smaller deletions. Both the HoxDDel(Sb2-Sb3) and the

HoxDDel(Sb2-65) mutant alleles (Andrey et al., 2013) resulted in expression patterns for Hoxd4 similar

to that obtained with the Del(Attp-Sb3) deletion of the entire gene desert (Figure 2C; Del(Sb2-Sb3),

Del(Sb2-65), i.e. lacking any detectable expression in ventral mesoderm. In contrast, such meso-

dermal expression was scored in the smaller HoxDDel(65-Sb3) and HoxDDel(Attp-Sb2) deletion alleles

(Figure 2—figure supplement 2; Del(65-Sb3), Del(Attp-Sb2). This set of analyses indicated the pres-

ence of mesodermal enhancer(s) within a segment of the telomeric gene desert. In addition, the dis-

tribution of H3K27ac modifications in the mouse trunk mesodermal tissue, a histone mark associated

with putative active enhancers and promoters, was clearly enriched in the telomeric gene desert

when compared to the centromeric counterpart (Figure 2D, top) with 18 significant peaks telomeric

to the cluster versus only 7 located in the centromeric gene desert. We thus concluded that most

trunk mesodermal enhancers acting over Hoxd4 and presumably affecting other Hoxd genes, are

located in the telomeric gene desert.

Because the regulatory sequences located in the telomeric TAD were described to globally drive

concomitant expression of several genes located in the central part of the gene cluster rather than

individual Hoxd genes (Delpretti et al., 2013; Andrey et al., 2013), we also analysed the expression

of both Hoxd3 and Hoxd8 in the absence of the telomeric gene desert. Similar to Hoxd4, the

expression of these two other Hoxd genes was lost in the ventral mesoderm (Figure 2—figure sup-

plement 1B) thus suggesting that the telomeric gene desert contains sequences necessary for the

expression of multiple Hoxd genes in the ventral mesoderm of the upper trunk.

Reorganization of mesodermal enhancers in the snake HoxD locus
Next, we analysed the transgenic line carrying the snake HoxD cluster and found that, in this case,

expression of Hoxd4 in the trunk was not dorsally restricted as observed in all other vertebrate BACs

assayed thus far. The expression pattern in the main body axis was in fact reminiscent of the endoge-

nous mouse Hoxd4 expression, with equally strong signals in both the neural tube and mesodermal

derivatives (Figure 2B). Therefore, in contrast to other vertebrate species, enhancers located within

the snake cluster appear sufficient to drive Hoxd gene expression in the ventral mesoderm. In order

to assess if this increase in regulatory potential within the cluster was correlated with a reduction of

long-range regulatory elements in the surrounding gene deserts we performed a comparative analy-

sis of H3K27ac profiles between snake and mouse trunk tissues dissected from similar body parts. A

global assessment of the profiles suggested that there were relatively less enriched sequences out-

side of the snake HoxD cluster than outside its mouse counterpart (Figure 2D, bottom). In order to

be able to directly compare the ChIP-seq datasets in mouse and snake, we identified 27 DNA

regions conserved between the two species and located within the telomeric desert and scored their

enrichments with acetylation of H3K27. While 40% of these conserved sequences were acetylated in

the mouse sample, only 22% of them were significantly decorated by this chromatin mark in the

snake tissue (Figure 2D, right). Overall, these results indicate that the enhancers required to control

snake Hoxd gene expression in the trunk mesoderm are, at least for the most part positioned within

the cluster rather than in the telomeric gene desert.

These DNA segments acetylated in snakes were found clustered in two regions of the gene des-

ert as demonstrated by peak calling, whereas the mouse acetylated DNA regions span a larger por-

tion of the gene desert (Figure 2D). Of note, one of the acetylated peaks in the mouse was scored

over a region conserved in mammals, birds and amphibians, but not in snakes (Figure 2—figure

supplement 3A and B). To confirm the enhancer activity of this sequence (MSS), we cloned the

mouse version upstream of a LacZ reporter gene. As expected, MSS was able to drive expression in
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the trunk mesoderm from the forelimb to more posterior parts of the embryo (Figure 2—figure sup-

plement 3C).

Bimodal regulation in the snake HoxD regulatory locus
At the mouse HoxD locus, a bimodal regulatory strategy associated with particular chromatin confor-

mations was reported to control Hox gene expression in a variety of organs and structures. Such

global controls involve separate sets of target Hoxd genes, which are thus re-activated after the

major body axis is laid down (Andrey et al., 2013; Spitz et al., 2001). Most of these structures,

however, are either missing in snakes, such as the limbs or the intestinal cecum or whenever present,

they are nevertheless substantially different from their mammalian counterparts. Because mouse

Hoxd genes contact such remote enhancer sequences via long-range interactions included within

two opposite TADs (Montavon et al., 2011), we set out to see whether such a bimodal type of reg-

ulatory topology would also exist in snakes, even in the absence of many of the related functionali-

ties. We thus used whole mouse and snake embryos of similar size to characterize the interaction

profile of Hoxd genes with their surrounding regulatory landscapes.

We used the 4C-seq version of chromosome conformation capture (Dekker et al., 2002; de Laat

and Dekker, 2012) with four different Hoxd genes as viewpoints to assess their potential interaction

tropism with either one of the flanking gene deserts. As observed in the mouse, significant interac-

tions between the snake viewpoints and the centromeric TAD were observed, mostly when the

Hoxd13 bait was used and, to a lower extent, with Hoxd11 (Figure 3A,B, compare tracks 1 and 2).

In both cases however, substantial contacts were also observed with the opposite, telomeric TAD.

These latter interactions increased when the snake Hoxd9 and Hoxd4 baits were used, whereas at

the same time, interactions with the centromeric landscape almost disappeared (Figure 3A,B, tracks

Figure 3. 4C-seq bimodal interaction profiles for Hoxd genes in mouse and snake embryos. (A) The four tracks show the interaction profiles established

by either the Hoxd13, Hoxd11, Hoxd9 or the Hoxd4 viewpoints in E11.5 total mouse embryo. While Hoxd13 mostly interacts with the centromeric

landscape (left), Hoxd4 contacts preferentially the telomeric landscape. Both Hoxd11 and Hoxd9 show intermediate profiles. The centromeric (C-DOM)

and telomeric (T-DOM) TADs are represented as black boxes on top of the profiles. (B) The four tracks show the snake orthologous series of genes

used as baits on 2.5 dpo corn snake whole embryos. The same general interaction profiles are observed. Brackets indicate the location of the two

telomeric sub-TADs:’ a’ and ‘b’. Under the profiles the HoxD locus is represented. The black rectangle is the HoxD cluster, grey boxes are

neighbouring genes and red boxes represent known constitutive contacts in the mouse that are conserved in snakes. (C) Graphical representation of

the percentage of interactions either in 5’ or in 3’ of the gene clusters, calculated for the different viewpoints for the mouse (blue) or the snake (green).

DOI: 10.7554/eLife.16087.010

The following figure supplement is available for figure 3:

Figure supplement 1. 4C-seq in the telomeric gene desert of mouse and snake tissue.

DOI: 10.7554/eLife.16087.011
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3 and 4). Therefore, as previously reported in the case of mouse tissues and ES cells, genes located

at different relative positions within the HoxD gene cluster show distinct interaction tropisms. 5’-

located genes such as Hoxd13 interact primarily with the 5’-located gene desert, whereas genes

located in a more 3’ part of the cluster, such as Hoxd4, interact mostly with the 3’-located gene des-

ert (Figure 3C).

Figure 4. Regulation of mouse and corn snake Hoxd genes in developing genitals. (A) Endogenous Hoxd4

expression both in a E12.5 control mouse embryo and in a 8.5 dpo corn snake embryo. Higher magnifications of

the cloacal regions are shown on the right, with the positions of the GT and HP delineated in white. Below are in

situ hybridization of either control or E11.5 embryos transgenic for the human and snake BAC clones using

species-specific probes. (B) Quantifications of Hoxd13, Hoxd11, Hoxd10, Hoxd9, Hoxd4, Hoxd3 and Hoxd1

transcript levels either in mouse E12.5 GT (n=2) or in snake 4.5 dpo HP (n=2) by RT-qPCR. The log2 ratios were

calculated between genital and control trunk tissue expression values. Hoxd13 (P = 0.0378), Hoxd9 (P = 0.0375),

Hoxd4 (P = 0.0298) and Hoxd3 (P = 0.0342) log2 ratios are significantly different between mouse and corn snake

while Hoxd11 (P = 0.8303) and Hoxd10 (P = 0.8539) values are not (*P < 0.05; unpaired two-tailed t-test). Bars

indicate the average. (C) Smoothed 4C-seq mapping using mouse and snake Hoxd13 and Hoxd11 as viewpoints

and GT (mouse) and HP (snake) as samples along with a control sample (left). The BamCompare subtract function

was used for each viewpoint to compare sequence coverage in GT/HP versus control tissues. Genes are

represented by grey rectangles and previously characterized mouse limb or GT enhancers are represented by red

boxes below. The vertical shaded zones in pink represent sequences that displayed increased read coverage in

GT versus control tissue, whereas the grey zones point to sequences showing increased contact in mouse but not

in snake genitals. The percentages show the relative amount of interactions over this particular landscape,

calculated as in Figure 3. The centromeric TAD C-DOM is represented by a black rectangle above the mouse 4C

profile. An asterisk highlights strong contacts of Hoxd13 with Island I in the snake.

DOI: 10.7554/eLife.16087.012

The following figure supplement is available for figure 4:

Figure supplement 1. Interspecies comparison of the regulatory potential associated with the HoxD cluster.

DOI: 10.7554/eLife.16087.013
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Interestingly, while the general tendency in the bimodal distribution of interactions was thus com-

parable between mouse and snake full embryos, the pattern of contacts presented important differ-

ences between the two species. In the mouse developing proximal limb for instance, Hoxd11 and

Hoxd9 preferentially interact with the telomeric sub-TAD referred to as region ‘b’ rather than the

sub-TAD ‘a’ (Figure 3—figure supplement 1A and C) (Andrey et al., 2013). Mouse region ‘b’ thus

likely contains important proximal limb regulatory sequences. In whole embryo tissue, we found that

the contacts were rather equally distributed between the two regions ‘a’ and ‘b’ (Figure 3—figure

supplement 1A and C). In contrast, Hoxd4 preferentially interacted with the sub-TAD ’a’

(Figure 3A; brackets), similar to Hoxd1 in proximal limbs (Andrey et al., 2013). In snake embryonic

cells, however, Hoxd9 and to a much lesser extent Hoxd11, displayed an interaction pattern related

to that of Hoxd4 with contacts enriched within the sub-TAD ’a’, suggesting the absence of strong

regulatory controls located in region ‘b’ of the snake gene desert (Figure 3—figure supplement 1B

and D).

Divergent evolution of genital bud-specific regulatory sequences
In the mouse, strong contacts between Hoxd13 and its flanking regulatory landscape were associ-

ated with its function during the development of both digits and external genitals (Lonfat et al.,

2014; Montavon et al., 2011). As snakes lack digits, we investigated whether the conservation of

this particular chromatin domain was related to the existence of external genital organs. Male snakes

display hemipenes (HP), resulting from symmetrical genital buds during development. As it was pro-

posed that the genitals of mammals have a different embryonic origin than those of other amniotes

such as squamates (Tschopp et al., 2014), the existence of the same global regulation in snakes was

unclear.

In situ hybridization revealed that 3’-located genes such as Hoxd4 are expressed in the snake HP

(Figure 4A, top), in contrast to the mouse where neither Hoxd3 nor Hoxd4 are transcribed in this

structure (Lonfat et al., 2014). This difference was also scored when Hox gene expression was ana-

lysed in the various BAC transgenic lines. While the human, mouse, chicken and zebrafish Hoxd

genes were expressed mostly along the main body axis and transcribed neither in the limbs, nor in

the external genitals, in agreement with previous results (see above and (Lonfat and Duboule,

2015) (Figure 4A, bottom and Figure 4—figure supplement 1), the snake BAC expressed the

Hoxd11 to Hoxd4 genes in the developing limbs and genital bud (Figure 4A and Figure 4—figure

supplement 1). This likely reflects a lack of repression of these genes into such structures, rather

than the presence of limb and genital enhancers located inside the cluster. We investigated this issue

by RT-qPCR in the incipient genitals of both mouse and snake, using as a control a region of the

trunk located at the exact same anterior-posterior level. In such conditions, while the mouse Hoxd9

to Hoxd3 genes were expressed at much higher levels in the trunk when compared to the genitals,

the steady state levels of snake mRNAs were nearly the same in both tissues (Figure 4B). Therefore,

these results suggested that the snake HoxD cluster lacks the sequences necessary to prevent Hox

gene expression from the trunk lateral mesoderm, a critical factor to properly develop limbs and

genitals in mouse (see discussion).

Enhancer evolution
To further explore this difference in Hox gene regulation between murine and snake external genita-

lia, we assessed whether Hoxd gene regulation in the developing genitals also relied upon enhancer

sequences located in the regulatory landscape upstream of Hoxd13. We performed 4C-seq analyses

using embryonic mouse GT and snake HP tissues at comparable stages, as well as control trunk tis-

sues. As expected, both the mouse Hoxd11 and Hoxd13 genes showed more interactions with the

centromeric gene desert in the GT material than in control trunk material (Figure 4C). In contrast,

the snake Hoxd13 and Hoxd11 interaction profiles were not significantly different, when either HP or

the control samples were used. We searched the snake gene desert for the presence of the GT1 and

GT2 sequences, two DNA segments described in the mouse counterpart to specifically interact with

Hoxd13 in the developing GT (Lonfat et al., 2014) (Figure 4C, bottom left) and could identify them

(Figure 4C, bottom right). However, even though these sequences are well conserved in the snake,

they did not significantly increase their interactions with Hoxd13 during the development of the

snake genitals (Figure 4C, right). In fact, the comparative analysis of the snake 4C-seq data revealed
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that, if anything, only the Prox sequence, a known mouse GT and limb enhancer (Gonzalez et al.,

2007) appeared to gain interactions in the snake HP sample, when compared to control tissue.

Therefore, in addition to the fact that snakes are limbless and that their external genitalia may

derive from a different embryonic origin (Tschopp et al., 2014), our results pointed to distinct

Figure 5. Enhancer activity of mouse limb and GT enhancers. (A) Conservation plot over the 5’ gene desert (centromeric in the mouse) using mouse as

reference sequence. Peaks represent a conservation higher than 50%. The alignment was made with the mVista program using sequences from mouse,

chicken, corn snake and zebrafish. Genes are represented by grey boxes. The various mouse limb and/or GT enhancers conserved from mammals to

chicken are represented by red boxes, whereas mouse limb enhancers either poorly or not conserved at all in chicken are in blue. (B) Conservation

plots of selected mouse limb and GT enhancers using the mouse sequence as a reference. Coloured peaks represent a conservation of above 75%. (C)

Enhancer activities of the mouse, chicken, lizard and snake Island I (E12.5) (top), and mouse and snake enhancer activities of the GT2 (E14.5) and Prox

(E12.5) sequences (bottom), in transgenic mouse foetuses. Magnifications of the genital region are included.

DOI: 10.7554/eLife.16087.014
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modalities in the implementation of global gene regulation at the HoxD locus. Consequently, we

searched for the presence within the snake centromeric TAD of the digit- and genital bud-specific

enhancers previously identified in mammals (Lonfat et al., 2014; Montavon et al., 2011). Surpris-

ingly, all these murine enhancers conserved within mammals and up to birds showed some level of

conservation in snakes (Figure 5A). To try and assess the functional potential of these sequences,

we isolated the snake sequences Prox, GT2 and Island I (Figure 5A,B) and used them separately in a

mouse transgenic enhancer assay. The mouse counterpart of the Prox sequence displayed activity in

both the developing digits and GT. The mouse GT2 sequence is a genital only-specific enhancer and

the mouse Island I sequence displays limb-only enhancer specificity when placed upstream of a lacZ

reporter in a transgenic assay (Montavon et al., 2011; Gonzalez et al., 2007; Lonfat et al.,

2014) (Figure 5C, top).

The snake Prox element elicited a robust lacZ staining in the developing mouse GT. Interestingly

however, and in contrast to the mouse sequence, staining was not detected in the growing limb

buds, indicating that the snake Prox sequence had lost its potential to drive transcription in digits

(Figure 5C, bottom). Likewise, the snake GT2 sequence was able to drive reporter gene expression

in the mouse GT. However, the level of lacZ staining obtained was consistently weaker than with the

mouse GT2 sequence (Figure 5C, bottom), perhaps related to the weak (if any) contact observed by

4C between the snake Hoxd13 gene and this sequence (Figure 4C). Therefore, in the two cases

where a mouse sequence displayed an enhancer potential for the developing GT, the cognate snake

sequence appeared to share part or all of this potential (Figure 5C, bottom).

We then turned to the snake Island I, a mouse limb-specific enhancer sequence and, noteworthy,

the snake version was able to drive reporter gene expression in the mouse GT while unable to elicit

any staining in the developing limb buds (Figure 5C, top). Therefore, in this case, the same regula-

tory sequence conserved between the mouse and the snake was interpreted either as a limb- or as a

genital-specific enhancer by the mouse, when introduced as transgenes. To further evaluate this

striking change in enhancer potential, we cloned and investigated the regulatory capacity of both

the chicken and the green anole lizard Island I sequences. The chicken construct elicited staining in

limbs but not in the GT, i.e. in a pattern reminiscent of the mouse rather than the snake Island I

(Figure 5C, top). Noteworthy, while the lizard Island I also drove reporter gene expression in limbs,

weak staining was scored in the GT, somehow displaying an intermediate enhancer specificity

between the snakes and the other amniotes assayed (Figure 5C, top).

Discussion
Proper sequential Hox gene activation in time and space during the elongation of the main body

axis is critical for the correct patterning of the axial skeleton (Deschamps and van Nes, 2005). While

the underlying regulatory mechanisms remain to be fully understood (see e.g. (Gaunt, 2015), they

likely involve control sequences located both inside and outside of the Hox gene clusters

(Tschopp et al., 2009; Tschopp and Duboule, 2011) as well as concurrent epigenetic modifications

(Soshnikova and Duboule, 2009).

Transgenic approaches have identified several cis-regulatory elements, which could reproduce,

for the most part, a Hox-like expression pattern in the main body axis and which mapped close to

their target gene(s) (for examples, see (Bel-Vialar et al., 2002; Brend et al., 2003; Charité et al.,

1995; Kwan et al., 2001; Oosterveen et al., 2003; Sharpe et al., 1998). However, our various

transgenic mouse lines containing HoxD clusters from different vertebrate species showed that, in

most vertebrates, regulatory sequences located in the gene deserts flanking the HoxD cluster are

necessary for proper expression in the embryonic trunk mesoderm. Indeed, when using the expres-

sion of Hoxd4 as a read-out of the regulatory potential contained either in the mouse, the human,

the chicken or the zebrafish clusters, ventral mesodermal expression was not detected. This result is

at odds with previous reports describing the presence of mesodermal enhancers on a short mouse

transgene derived from this locus (Zhang et al., 1997; Morrison et al., 1997). Similarly, we found

Hoxd3 expression to be absent from the ventral mesoderm in mouse embryos that lack the telo-

meric gene desert while previous work has reported that a small single-copy construct containing

the Hoxd3 locus was able to drive reporter gene expression in this tissue (Tschopp et al., 2012).

These discrepancies may derive from a qualitative aspect whereby a short transgene may reveal

the potentialities absent from a more complex BAC environment, such as in the case of Hoxd3. They
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may also reflect quantitative differences, for example when comparing (close to) single copy BAC

integrations with a large number of head to tail integrations of a shorter transgene, as for Hoxd4. In

any case, a different result was obtained when the snake HoxD BAC was used since, unlike the other

vertebrate clusters tested, the snake transgene appeared to contain the regulatory elements neces-

sary for expression in the trunk mesoderm. The H3K27 acetylation profiles in mouse and corn snake

trunks supported this result for only few acetylation peaks were scored outside of the snake cluster

compared to the mouse. In an evolutionary context, it is possible that in snakes, long-range meso-

dermal enhancers were progressively complemented by local enhancers to regulate Hoxd gene

expression in the developing body axis, perhaps to provide an increased fine-tuned control in the

expression balance between single Hoxd genes during embryonic development.

In the absence of any genetic approach to study snake development, it is difficult to evaluate the

functional relevance of this difference in regulation. It is however worth noting that the snake HoxD

cluster BAC was the only transgenic configuration where expression was strong in the limbs and

external genitals, whereas BACs derived from animals with limbs did not elicit an expression of

Hoxd genes into the transgenic limbs, even though the endogenous genes were strongly expressed

there. Also, isolated mouse mesodermal enhancers were often described to activate reporter gene

expression in secondary structures such as limbs (Charité et al., 1995; Kwan et al., 2001;

Sharpe et al., 1998; Renucci et al., 1992). In tetrapods, this apparent paradox may reflect the

necessity for a highly specific type of regulation to control both Hoxa and Hoxd genes in specific

domains of the growing limb buds (Andrey et al., 2013; Berlivet et al., 2013; Woltering et al.,

2014). Implementing such global limb regulations may require previous regulatory inputs to be ter-

minated. Our results using the corn snake BAC suggest that, in the absence of limbs, this negative

control may have been lost in the course of evolution, leading to the maintenance of transcription in

all mesoderm derivatives. Whether or not this increased ‘mesoderm potential’ present in the snake

HoxD cluster may somehow relate to the presence of ventral mesodermal enhancer remains to be

clarified.

Hox clusters of jawed vertebrates show high levels of chromatin compaction

(Noordermeer et al., 2011; Fabre et al., 2015), a feature associated with the unusual level of gene

packaging and organization, which occurred at the roots of the vertebrate lineage (Duboule, 2007)

together with the emergence and generalisation of long-range regulations at these loci

(Darbellay and Duboule, 2016). Squamate Hox clusters however seem to slightly deviate from this

rule by having accumulated a large number of transposable elements (Di-Poı̈ et al., 2009), a situa-

tion rarely found around genetic loci of developmental importance (Simons et al., 2007) due to the

potential effects of such sequences to elicit genetic and morphological variations (Kidwell and Lisch,

1997; Friedli and Trono, 2015). While the presence of such repeated elements within and around

the snake HoxD cluster may have been associated with differences in the location of enhancer

sequences, the distribution of chromatin modifications did not point to any drastic regulatory re-

organization of this gene cluster in snakes. Indeed, the H3K9me3 histone mark, which in some cases

is associated with TEs such as LTRs, LINEs and SINEs (Friedli and Trono, 2015; Mikkelsen et al.,

2007) was not found within the HoxD cluster itself. In addition, the analysis of other chromatin marks

present in trunk tissue during the sequential activation of the gene cluster displayed distributions

similar to those found in the mouse cluster.

These global similarities between mouse and snake in the structure of the HoxD cluster were also

noticed when interaction profiles were considered. There again, the snake embryonic material dis-

played the bimodal distribution of contacts on both sides of the gene cluster, as expected either

from several studies using specific mouse samples (Lonfat et al., 2014; Andrey et al., 2013), or

from the full embryonic material used in this work. In all cases, most Hoxd genes tend to naturally

interact within the ‘telomeric’ (3’-located) TAD, whereas Hoxd13 was strongly associated with the

‘centromeric’ (5’-located) TAD. However, a significant difference was scored in the interaction pro-

files of Hoxd9, which displayed more contacts further away of region CNS39 in the mouse than in

the snake sample. As this regulatory region is particularly active in proximal limbs, the lower fre-

quency of contacts observed in snake embryos was not unexpected. This observation indicates that,

while the general bimodal TAD regulatory structure is conserved at the HoxD locus, differences

between vertebrate species may exist either in the extent, or in the internal organization of interac-

tions within the TADs.
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This latter point was of particular interest as the mouse centromeric TAD was initially defined due

the presence of many limb and genital-specific enhancers (Montavon et al., 2011; Lonfat et al.,

2014), which were not necessarily expected to be conserved in the snake orthologous landscape

due to both the absence of limbs and the presumably distinct origin of snake external genitalia fol-

lowing the relative shift of the cloaca over the course of evolution (Tschopp et al., 2014). However,

tetrapod limb-specific enhancers are often conserved in snakes and a significant overlap between

limb and genital cis-regulatory mechanisms was recently reported (Infante et al., 2015), in agree-

ment with the similarities between the molecular mechanisms employed to generate the two struc-

tures (Kondo et al., 1997; Cohn, 2011; Yamada et al., 2006). Indeed when a mouse limb- and

genital-specific Tbx4 enhancer sequence was isolated from snake, it could only recapitulate genital

expression, thus having lost the limb-specific regulatory potential (Infante et al., 2015).

Consistent with this observation, we find that the snake counterpart of the mouse limb and geni-

tal enhancer Prox (Gonzalez et al., 2007) has lost its limb regulatory potential, while keeping a

strong capacity to drive expression in the developing genitalia. This suggests that the mouse Prox

consists of two regulatory modules, while the snake Prox has kept the genital specificity only. More

strikingly however, Island I, which in the mouse is a limb-only specific enhancer (Montavon et al.,

2011), switched its regulatory capacity in the snake to become a genital-only specific enhancer,

accompanied by elevated enhancer-promoter interactions as assayed by 4C (Figure 4C – asterisk).

On the other hand, the chicken Island I revealed enhancer specificities almost identical to those of

the mouse sequence despite the fact that birds are more closely related to squamates than to mam-

mals, suggesting that Island I had a limb-only activity at the time of divergence between mammals

and reptiles/birds. Interestingly, the lizard sequence displayed a weak activity in the genital bud, in

addition to the limb, indicating that the co-option to a genital function likely occurred in the squa-

mate clade and thus preceded limb loss in snakes.

External genitalia of squamates, unlike that of mammals, were proposed to have the same embry-

onic origin as limbs (Tschopp et al., 2014). Although, this could bias our mouse-based transgenic

analysis, the snake Prox sequence could drive reporter gene expression specifically in the mouse GT

and not in the limb, making it unlikely that differences in embryonic origin could interfere with this

particular analysis. While the generation of the same transgenics in snakes would be necessary to

fully rule out this bias, such experiments are not feasible for the moment.

Altogether our results show that, while the general bimodal regulatory strategy is conserved,

some profound differences in the regulation are scored at the HoxD locus between two species dis-

playing strikingly distinct morphologies. It is as yet unclear if such changes were causative of the

extensive morphological changes that snakes experienced over the course of evolution, or whether

they are merely consequential. It nevertheless indicates that vertebrates with extreme variations in

those systems known to be under the control of Hox genes (vertebral number and identities, limbs,

genitals) rely upon the same general regulatory architecture and principles at Hox loci. In this view,

vertebrate morphological evolution was accompanied by changes in Hox gene regulation, yet such

variations were constrained within the general regulatory framework found at these loci. This may

reflect selective pressures that impose essential basic properties to vertebrate body plans, while

other more subtle morphological specificities, less likely to result in adverse effects, may arise in the

course of evolution.

Materials and methods

Animal maintenance
Maintenance of, and experiments on animals were approved by the Geneva Canton ethical regula-

tion authority (authorization 1008/3421/1R to M.C.M. and GE/81/14 to D.D.) and performed accord-

ing to Swiss law.

BAC library construction, screening and sequencing
A Pantherophis guttattus BAC library containing 55’296 clones was constructed from liver tissue of

one single individual (Amplicon Express). Degenerate primers were designed in DNA regions con-

served between mammallian and bird species within the DNA interval spanning from the Atf2 gene

to the CNS65 region (mouse chr2:73653618–75292344 in mm9). The amplified DNA fragments
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ranging from 400 bp to 1 kb (kilobases) were cloned into a PGEMTeasy vector and labelled with

DIG-High Prime (Roche, Switzerland) to screen filters provided by the company. The lengths and

positions of positive BACs were evaluated by PCR and BAC end sequencing. 13 BAC clones were

selected for sequencing at BGI (Beijing Genomics Institute). Sequencing was performed on 500 bp

and 2 kb-large insert libraries using the Illumina HiSeq2000 and assembly was done using SOAP

denovo. The resulting sequence is deposited in GenBank under accession number KU866087.

Sequence analysis and annotation
Exons of the corn snake Hox genes were identified using GENSCAN (http://genes.mit.edu/GEN-

SCAN.html) (Burge and Karlin, 1997) and sequence comparison against Hox coding sequences of

closely related species. Conservation of non-coding elements was assessed by the use of the mVista

software (http://genome.lbl.gov/vista/mvista/submit.shtml) with default parameters. Information

about different vertebrate Hox clusters and sizes of gene deserts were taken from the UCSC

genome browser (http://genome.ucsc.edu) and the ncbi genome database (http://www.ncbi.nlm.

nih.gov/genome/). Transposable elements were identified using RepeatMasker (http://www.repeat-

masker.org/) and the Repbase vertebrate repeat library combined with a de novo corn snake repeat

library described in Ullate-Agote et al. (2014).

ChIP-sequencing
Snake forebrain, anterior trunk and posterior trunk samples as well as mouse anterior trunk samples

were dissected and fixed in 1% formaldehyde for 10 min. For each ChIP-seq experiment approxi-

mately 100 ng of tissue were used and processed according to (Lee et al., 2006) or the ChIP-IT

High Sensitivity (Active motif) specifications. H3K27me3 antibody (Millipore, 17–622), H3K27ac anti-

body (Abcam ab4729) and H3K9me3 (Abcam ab8898) were used. Sequencing was performed using

100 bp single-end reads in the Illumina HiSeq system according to manufacturer’s instructions. The

reads obtained from the sequencing were mapped to ENSEMBL Mouse assembly NCBIM37 (mm9)

or to the corn snake scaffold using the HTSstation mapping pipeline (http://htsstation.epfl.

ch) (David et al., 2014). All ChIP-seq mappings were normalized to total input chromatin using the

bamCompare software from the deepTools Galaxy web server (http://deeptools.ie-freiburg.mpg.de)

(Ramirez et al., 2014). Peak calling was done using MACS (Zhang et al., 2008).

Mouse stocks
The HoxDDel(AttP-SB3) (aka Del(AttP-SB3), HoxDDel(AttP-SB2) (aka Del(AttP-SB2)) and HoxDDel(SB2-65)

(aka Del(SB2-65) mutant alleles were generated through TAMERE (Hérault et al., 1998) and have

been described elsewhere (Andrey et al., 2013). The HoxDDel(Atf2-Nsi)(aka Del(Atf2-Nsi) allele was

also produced by TAMERE and described in (Montavon et al., 2011). The HoxDDel(1–13)d11lacZ (aka

Del(1–13)d11lacZ allele, previously referred to as Del9 in Zákány et al. (2001) was obtained by loxP/

Cre mediated recombination in ES cells. The HoxDinv(AttP-CD44) (aka Inv(AttP-CD44) was generated

using STRING (Spitz et al., 2005). Telomeric desert deletions: The HoxDDel(SB2-SB3)(aka Del(SB2-SB3)

and Del(65-SB3) alleles were generated by TAMERE. All telomeric deletions analyzed were trans-het-

erozygotes over the HoxDDel(1–13)d11lacZ balancer allele. The mouse (RP23-400H17) BAC has been

previously described in (Spitz et al., 2001). The human (CTD-2086D13), chicken (CH261-92D10),

snake (Eg-32P1 custom library) and zebrafish (77g24) BACs were all recombined to introduce a PIS-

ceI site in the vector using EL250 cells (Lee et al., 2001). The snake and chicken BACs were further

shortened to remove all sequences flanking the HoxD cluster. The final genomic coordinates of the

chicken BAC used for transgenesis were chr7:17361344–17440245 (galGal3). The snake BAC, which

initially extended 74 kb downstream of Hoxd1 was reduced to contain only 300 bp 3’ of Hoxd1. Suc-

cessful recombination was confirmed by PCR, restriction digest and BAC end sequencing. Prior to

injection, BACs were isolated using the Nucleobond Maxiprep kit, linearized with PISceI, purified by

phenol/chloroform extraction and dialyzed against microinjection buffer. The linearized BACs were

then injected into fertilized mouse oocytes. After having obtained transgenic lines, BAC integrity

was confirmed by PCR using primers specific for Hox genes of the appropriate species.
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Table 1. List of primers used to clone the probes for in situ hybridization.

HsHoxd13 GGTCCAGGTTGGCCACAGAC

GTCACTCTACTGATTGCAGC

HsHoxd11 TTGAGAGCTCCAGGAAGCGC

TTCAGTTGCATGGGTTCTGG

HsHoxd9 CCAATTCCAAGAATGAAGGC

ACATTTACAACTGGTCCTCG

HsHoxd4 CAACTCAGAGGCGAGTTCAC

TCAAGTAGCTTGCTATGGCA

DrHoxd13 ATGATGGTTTCCAGATATGC

TGGTGACAGCTGCCCAATCA

DrHoxd11 GAGCCGCTGTTCTTTTCTTC

GTCCTATCCGCACGCATATG

DrHoxd10 CCACCTTTGCCTTCTCTGTG

TCCAAAATGTCCTTTCCCAAC

DrHoxd9 TTACTTGGGTCAAGTTGTTG

GTGAAGGCAGCAAAAATACT

PgHoxd13 GCGCTTCTGATCATGTTTGC

ATAGCTAAACATATAGGCAC

PgHoxd11 CCTAGAGGTTAATATGACTCC

CCCATTTAGGCTCCTAGG

PgHoxd10 CCGAGAACTGACTGCTAATC

CAGAATTTATTGCATTATAC

PgHoxd9 AGGAGAGTAACACTTTGAGG

CCTCTCTGACATGAGTCTTG

PgHoxd4 CGGATTTGACCACTTTATAG

AACAATATCACCAACACATG

DOI: 10.7554/eLife.16087.015

Table 2. List of primers used for 4C-seq amplifications with snake tissues.

PgHoxd13 DpnII AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTGGAAAAGGTTGTTAATCAGG

PgHoxd13
NlaIII

CAAGCAGAAGACGGCATACGACTGCCCTTCTTCAAAGAGAC

PgHoxd11
NlaIII

CAAGCAGAAGACGGCATACGAGCCGCAGTTGTCCAAGTTAC

PgHoxd11
DpnII

AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTTCCTCCTTGAGAGGGAATCC

PgHoxd9
NlaIII

CAAGCAGAAGACGGCATACGAAAGAATCCCCATCCTAGTCC

PgHoxd9
DpnII

AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTTGTAATCGTAATCAGCATAG

PgHoxd4
DpnII

AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTCACTTCATCCTTCGGTTCTG

PgHoxd4NlaIII CAAGCAGAAGACGGCATACGATAAACAATGAAGTGAAACGG

DOI: 10.7554/eLife.16087.016

Guerreiro et al. eLife 2016;5:e16087. DOI: 10.7554/eLife.16087 16 of 23

Research article Developmental Biology and Stem Cells Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.16087.015Table%201.List%20of%20primers%20used%20to%20clone%20the%20probes%20for%20in%20situ%20hybridization.%2010.7554/eLife.16087.015HsHoxd13GGTCCAGGTTGGCCACAGACGTCACTCTACTGATTGCAGCHsHoxd11TTGAGAGCTCCAGGAAGCGCTTCAGTTGCATGGGTTCTGGHsHoxd9CCAATTCCAAGAATGAAGGCACATTTACAACTGGTCCTCGHsHoxd4CAACTCAGAGGCGAGTTCACTCAAGTAGCTTGCTATGGCADrHoxd13ATGATGGTTTCCAGATATGCTGGTGACAGCTGCCCAATCADrHoxd11GAGCCGCTGTTCTTTTCTTCGTCCTATCCGCACGCATATGDrHoxd10CCACCTTTGCCTTCTCTGTGTCCAAAATGTCCTTTCCCAACDrHoxd9TTACTTGGGTCAAGTTGTTGGTGAAGGCAGCAAAAATACTPgHoxd13GCGCTTCTGATCATGTTTGCATAGCTAAACATATAGGCACPgHoxd11CCTAGAGGTTAATATGACTCCCCCATTTAGGCTCCTAGGPgHoxd10CCGAGAACTGACTGCTAATCCAGAATTTATTGCATTATACPgHoxd9AGGAGAGTAACACTTTGAGGCCTCTCTGACATGAGTCTTGPgHoxd4CGGATTTGACCACTTTATAGAACAATATCACCAACACATG
http://dx.doi.org/10.7554/eLife.16087.016Table%202.List%20of%20primers%20used%20for%204C-seq%20amplifications%20with%20snake%20tissues.%2010.7554/eLife.16087.016PgHoxd13%
http://dx.doi.org/10.7554/eLife.16087


In situ hybridization and probe design
In situ hybridization was performed as previously described (Woltering et al., 2009) with a hybrid-

ization temperature of 68˚C and 1.3x SSC concentration in the hybridization mix. Post-hybridization

washes were performed using 2x SSC concentration for four times 30 min. All probes designed for

in situ hybridization of BAC transgenic embryos were tested for cross-reactivity by conducting in situ

hybridization on control mouse embryos. To produce human, chicken, snake and zebrafish ribop-

robes, DNA fragments were amplified from BAC DNA that comprised either the first exon or the

3’UTR of the Hox genes (see Table 1). After ligation with the PGEMTEasy vector (Promega), probes

were synthetized using DIG RNA labeling mix (Roche) and purified with the QIAGEN RNeasy mini

kit. Hoxd11, Hoxd9 and Hoxd4 mouse probes were previously described (Gérard et al., 1996;

Zappavigna et al., 1991; Featherstone et al., 1988).

Table 3. List of snake and mouse primers used for qPCR.

PgHoxd13 ACGAGACCTACATCTCCATG

TTGGTGTAAGGCACTCGCTTC

PgHoxd11 TCCGAAAAGCCAGAGTTCAG

ATCTGGTACTTGGTGTAAGG

PgHoxd10 CGTCTCCAGCCCAGAAAGC

GGTTGGAGTATCAGACTTGG

PgHoxd9 AGGAAAAAGAGGAGCAGCAG

TGGAGCGAGCATGAATCCAG

PgHoxd4 GAAAGTCCACGTTAACTCTG

GACTTGCTGCCTGGTATAAG

PgHoxd3 AGGTATCCAGCTCGCTTACC

GCGGACTCTTGTCTTCACAG

PgHoxd1 AAAGTCAAGAGGAACGCACC

ACTGGAAGACCCACAAGCTG

PgHmbs ATTGGGACCAGCTCACTTCG

CCTCCTTCTCGTCCAGCTTC

MmHoxd13 GAAATCATCCTTTCCAGGAGATG

CGCCGCTTGTCCTTGTTAATG

MmHoxd11 AAGAGCGGCGGCACAGTG

TTGAGCATCCGAGAGAGTTGG

MmHoxd10 AGGAGCCCACTAAAGTCTCC

CAGACTTGATTTCCTCTTTGC

MmHoxd9 GACCCAAACAACCCTGCAG

TTCAGAATCCTGGCCACCTC

MmHoxd4 TGCACGTGAATTCGGTGAAC

GTGAGCGATTTCAATCCGACG

MmHoxd3 AAGCAGAAGAACAGCTGTGC

TAGCGGTTGAAGTGGAACTCC

MmHoxd1 GGCCCTTTCAGACTGTGTCC

CATATTCGGACAGTTTGCTTTTC

MmHmbs CGGCTTCTGCAGACACCAG

CCCTCATCTTTGAGCCGTTTTC

DOI: 10.7554/eLife.16087.017
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Enhancer transgenesis and lacZ staining
Prospective enhancer sequences were obtained by either PCR or restriction digest and cloned

upstream of a bglobin-lacZ construct into either PGEMTEasy, or SK Bluescript(-). Constructs were

injected into mouse oocytes and embryos were harvested at E12.5 and E14.5. Beta-galactosidase

staining was performed by fixing in 4% PFA for 30 min, washing in PBS/0.1% Tween and incubating

in staining solution (1 mg/mL Xgal) overnight at 37˚C. A minimum of three transgenics with consis-

tent staining was obtained per construct. Mouse embryos transgenic for either the Island I/LacZ, the

GT2/LacZ or the Prox/LacZ constructs had been obtained in previous studies (Lonfat et al., 2014;

Montavon et al., 2011; Gonzalez et al., 2007).

4C-sequencing
One E11.5 whole mouse embryo, one 2.5 dpo (days post oviposition) whole snake embryo, ca. 30

mouse E13.5 and corn snake 8.5 dpo genital buds as well as mouse and snake trunk tissue dissected

from comparable anterior-posterior levels were processed as previously described

(Noordermeer et al., 2011). Mouse libraries were constructed by using NlaIII as the first restriction

enzyme and DpnII (New England Biolabs) as the second restriction enzyme and the baits and inverse

primers used for the Hoxd4, Hoxd9, Hoxd11 and Hoxd13 viewpoints were described in

Noordermeer et al. (2011). Snake libraries were constructed using DpnII as primary enzyme and

NlaIII as secondary enzyme. For the Hoxd4, Hoxd9, Hoxd11 and Hoxd13 baits, the primers are listed

in Table 2. All libraries were sequenced in the Illumina HiSeq system to generate 100 bp read

length. The reads obtained were then demultiplexed, mapped and analysed using the HTSstation

pipeline (http://htsstation.epfl.ch) (David et al., 2014). The global quantification of telomeric versus

centromeric signals was calculated as in (Andrey et al., 2013). Signals mapping 5’ of the cluster sig-

nal were quantified from the Atf2 gene to 14 kb upstream of the Evx2 gene and 3’ signals were

quantified starting from 5 kb downstream of Hoxd1 to 46 kb downstream of the CNS65 enhancer

sequence. Quantifications of contacts within regions ‘a’ and ‘b’ were calculated using the same coor-

dinates as for the 3’ signal calculation and by excluding the region chr2: 74964245–75004987 (mm9)

in mouse and a comparable interval in snake so that the peak of interaction over the CNS39 region

would not be accounted for. Comparison of signals between genital tissue and trunk control tissue

was done by using bamCompare subtract function from the deepTools Galaxy web server (http://

deeptools.ie-freiburg.mpg.de) (Ramirez et al., 2014).

RT-qPCR
RNA from genitals and control trunk tissue was extracted from two E12.5 mouse embryos and from

two 4.5 dpo corn snake embryos using the microRNeasy kit (QIAGEN). Biological replicate number

was dependent on restricted availability of material and reduced variability of expression values

between samples. cDNA was generated using the Promega GoScript reverse transcriptase accord-

ing to manufacturer’s instructions. qPCR was performed using SYBR select master mix (Applied Bio-

systems) using two technical replicates per biological sample. Primers used are listed in Table 3. The

Hmbs gene expression was used for normalisation and log2 ratios were calculated between GT or

HP expression values and trunk control tissue expression.

Accession numbers
Raw and processed data of 4C-seq and ChIP-seq analysis are available in the Gene Expression Omni-

bus (GEO) repository under accession number GSE79048.
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Ramı́rez F, Dündar F, Diehl S, Grüning BA, Manke T. 2014. deepTools: a flexible platform for exploring deep-
sequencing data. Nucleic Acids Research 42:W187–191. doi: 10.1093/nar/gku365
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