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Abstract The past decade has resulted in multiple new findings
of potential proteomic biomarkers of diabetic kidney disease
(DKD). Many of these biomarkers reflect an important role in
the (patho)physiology and biological processes of DKD.
Situations in which proteomics could be applied in clinical prac-
tice include the identification of individuals at risk of progressive
kidney disease and those who would respond well to treatment,
in order to tailor therapy for those at highest risk. However, while
many proteomic biomarkers have been discovered, and even
found to be predictive, most lack rigorous external validation
in sufficiently powered studies with renal endpoints. Moreover,
studies assessing short-term changes in the proteome for therapy-
monitoring purposes are lacking. Collaborations between acade-
mia and industry and enhanced interactions with regulatory
agencies are needed to design new, sufficiently powered studies
to implement proteomics in clinical practice.
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Abbreviations
CE-MS Capillary electrophoresis–mass spectrometry
CKD Chronic kidney disease

DKD Diabetic kidney disease
eGFR Estimated glomerular filtration rate
ESRD End-stage renal disease
FGF Fibroblast growth factor
IRMA-2 Irbesartan Microalbuminuria Study-2
LC-MS Liquid chromatography–mass spectrometry
MRM Multiple reaction monitoring
MS Mass spectrometry
PRIORITY
trial

Proteomic Prediction and Renin–Angiotensin–
Aldosterone System Inhibition Prevention of
Early Diabetic Nephropathy in Type 2 Diabetic
Patients With Normoalbuminuria trial

RAAS Renin–angiotensin–aldosterone system
RRT Renal replacement therapy
SELDI Surface-enhanced laser desorption ionisation
TNFR Tumour necrosis factor receptor
UAE Urinary albumin excretion
VEGF Vascular endothelial growth factor

Introduction

Diabetic kidney disease (DKD), or diabetic nephropathy, is
associated with a high risk of cardiovascular disease and pro-
gressive loss of renal function. The presence of reduced kidney
function in patients with type 2 diabetes predominantly ac-
counts for the observed increase in mortality [1]. The increase
in the prevalence of diabetes mellitus is projected to lead to an
increase in the prevalence of DKD and the incidence of renal
replacement therapy (RRT). Indeed, diabetes is the leading
cause of end-stage renal disease (ESRD), and the number of
prevalent cases of ESRD in the USA continues to rise by about
21,000 per year [2]. Moreover, the incidence of RRT because
of type 2 diabetes is about sixfold higher than that because of
glomerulonephritis, and approximately 20-fold higher than that
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because of cystic kidney disease [2]. In Europe, the prevalence
rate of RRT in most countries has also grown in the past decade
[3]. It has been forecast that by 2030 the worldwide number of
patients undergoing RRTwill have doubled [4].

Diagnosis of DKD is based on the detection of albuminuria
and a progressive decline in estimated glomerular filtration
rate (eGFR) [5]. Reduced eGFR is the consequence of com-
promised kidney function and the substantial loss and destruc-
tion of the glomeruli. Increased albuminuria is often the first
clinical indicator of the presence of DKD and is the strongest
tool for prognosis and monitoring response to therapy [6–8].
The terms microalbuminuria (urinary albumin excretion
[UAE] 30–300 mg/day, or 20–200 μg/min, or 30–300 mg/g
creatinine) and macroalbuminuria (UAE >300 mg/day, or
>200 μg/min, or >300 mg/g creatinine) are clinically used to
indicate the severity of albuminuria [9, 10]. Clinical practice
guidelines today advocate regular assessment of albuminuria
and eGFR to monitor an individual’s risk of cardiovascular
disease and ESRD.

The cornerstone of treatment for DKD consists of tight
control of blood glucose and blood pressure, preferably with
drugs that target the renin–angiotensin–aldosterone system
(RAAS). Currently, the available therapies are usually initiat-
ed at more advanced stages of DKD, characterised by clini-
cally evident manifestations of elevated arterial blood pres-
sure, increased albuminuria and/or low eGFR [11]. A recently
published simulation study combining clinical trials of pa-
tients with type 2 diabetes at early, mid- and advanced stages
of DKD demonstrated that RAAS intervention in the earliest
stages of disease was most beneficial in delaying ESRD, and
that this treatment effect was even more pronounced among
younger patients [12]. The simulation showed that ESRD was
markedly delayed among patients with an initial response in
albuminuria, whereas non-responders showed only a small
benefit compared with placebo [12]. These results highlight
the importance of early treatment initiation in diabetes.
Furthermore, novel strategies are needed to identify which
patients at risk of kidney disease would benefit most from
early treatment. It is a clinical challenge to identify patients
at high risk while their eGFR and albuminuria are still in the
normal range.

The data currently available indicate that early intervention,
prior to organ damage detectable by albuminuria and/or re-
duced eGFR, would be the best preventative treatment
(Fig. 1). However, evidence from randomised placebo-
controlled trials addressing the relevant hard endpoints—
ESRD, doubling of serum creatinine or halving of kidney
function—to support these results is lacking, since such a trial
would require a very large population and a very long follow-
up. To study the efficacy of early intervention, a change in
endpoint is required. Current endpoints to determine drug ef-
ficacy are ESRD or doubling of serum creatinine. These end-
points by definition are late events in the progression of DKD.

Alternative endpoints that take a shorter time tomanifest, such
as a 30% decline in eGFR or a transition in albuminuria stage,
have been proposed [13, 14]. A new European Medicines
Agency guideline is currently under consideration in which
alternative endpoints are proposed such as the occurrence of
stage 3 chronic kidney disease (CKD) or prevention or reduc-
tion of albuminuria [15]. General acceptance of these end-
points would open a path towards early intervention in DKD.

Novel biomarkers are one strategy to improve identifica-
tion of kidney disease at its early stages and to tailor therapy
for those at highest risk. In addition, they can help the under-
standing of the aetiology of kidney disease progression and
provide insight into novel therapeutic targets. In the last de-
cade, many biomarkers have been discovered to be associated
with DKD. Many of these biomarkers are proteins, reflecting
the important role of this group of molecules in the
(patho)physiology of DKD. Proteins in blood could represent
peripheral pathophysiological processes such as inflamma-
tion, e.g. tumour necrosis factor receptor (TNFR) 1 and
TNFR2 [16, 17]. Proteins in urine could reflect local processes
in the kidneys that may be sensitive to alternations in kidney
physiology. Since several pathways are probably involved in
DKD progression, no single biomarker has yet replaced albu-
minuria to predict renal risk. Instead, a panel of multiple pro-
tein biomarkers capturing the different pathophysiological
pathways of DKD may be more likely to reliably and accu-
rately predict kidney disease progression or ESRD [18]. These
panels may consist of proteins or peptides identified through
hypothesis-driven studies of known proteins involved in the
pathophysiology of DKD or developed through hypothesis-
free high-throughput approaches.

In this review we describe the recent literature on biomarker
panels in DKD, both with respect to disease progression and to
response to treatment. We also discuss individual biomarkers
and place them in the context of their (patho)physiological role
in DKD.

Multiple protein biomarkers for prediction of disease
progression

Hypothesis-driven protein panels Many biomarker studies
in patients with DKD have been performed and many differ-
ent clinical and novel proteins have been proposed as valuable
indicators or predictors of kidney disease [16, 17, 19–30].
These studies often focus on one specific mechanism of dis-
ease, such as inflammation, fibrosis or tubular damage,
highlighting the relevance of single disease mechanisms and
providing important insight into the disease aetiology. The
heterogeneity of diabetes and DKD is well recognised [31],
and simultaneous measurement of several biomarkers has
been shown to improve risk stratification [32]. However, only
a few studies have been conducted that assessed the predictive
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performance of hypothesis-driven protein biomarker panels.
Recent studies on multiple biomarkers for prediction of
kidney disease progression in diabetes are summarised in
Table 1.

In a post hoc analysis from the Irbesartan Microalbuminuria
Study-2 (IRMA-2), it was shown that a panel of biomarkers
reflecting endothelial dysfunction and inflammation predicted
progression to diabetic nephropathy over 2 years in 269 patients
with type 2 diabetes and microalbuminuria. The predictive ca-
pacity of these endothelial biomarkers was independent of tradi-
tional riskmarkers [33]. Another study conducted in 199 patients
with type 1 diabetes and diabetic nephropathy showed that
markers of endothelial dysfunction and inflammation could pre-
dict all-cause mortality and cardiovascular disease after 10 years
of follow-up [34]. Further support for the role of inflammation in
early kidney disease progression comes from an observational
cohort of 81 patients with type 1 or type 2 diabetes, followed for
a median of 2.1 years, which demonstrated that a panel of mul-
tiple urinary cytokines predicted rapid renal functional decline in
diabetic nephropathy [35]. In an observational study of 67 US
veterans with CKD and 20 age-matched healthy controls follow-
ed for 2–6 years, fibroblast growth factor (FGF)-23 and vascular
endothelial growth factor (VEGF)-A predicted disease progres-
sion independently of albuminuria [36]. The importance of mul-
tiple proteins representing multiple pathways of kidney disease
progression was corroborated by a multiple biomarker study. In
an observational study of 82 patients with type 2 diabetes

followed for 4 years, a panel of 13 novel proteins was associated
with accelerated renal functional decline beyond established risk
markers [37]. Markers of inflammation, fibrosis, angiogenesis
and endothelial function were identified.

One common denominator in the above-mentioned studies
is the presence of proteins related to endothelial dysfunction in
all biomarker panels. Endothelial dysfunction is considered an
initial step of the atherosclerotic process, because diabetes
substantially impairs vasodilating properties of the endotheli-
um, leading to impaired vasodilation and ultimately endothe-
lial dysfunction [38]. In addition, the glomerular endothelium
represents the first part of the glomerular barrier that interacts
with the flowing blood. Endothelial dysfunction may thus be
considered an early sign of glomerular damage. The endothe-
lium is covered by a polysaccharide protein gel-like structure
called the glycocalyx. Through its negative charge the glyco-
calyx prevents leakage of albumin, which is also negatively
charged, through the vessel wall [39]. In addition, the glyco-
calyx plays an important role in vascular remodelling by bind-
ing local growth factors such as VEGF and FGF. Loss of the
glycocalyx has been described in patients with diabetes [40],
where exposure to high glucose and lipids activates
glycocalyx-degrading enzymes such as heparanase [41].
This facilitates the development of vessel wall injury, albumin
leakage and recruitment of inflammatory initiators, which ul-
timately culminates in renal damage. This pathophysiological
frameworkmay explain the clinical association of albuminuria
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Fig. 1 Early identification with proteomics of patients at risk of kidney disease, prior to organ damage, and initiation of appropriate treatment is a
strategy to interrupt disease progression to ESRD and death
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with kidney disease and, possibly also more generally, with
vascular disease progression [39].

Proteomics of disease progression

Hypothesis-free proteomic panels The past decade has
yielded a number of hypothesis-free biomarker studies using
proteomic approaches. High-throughput profiling of the
proteome permits the assessment of components of pro-
teins within a biological sample. The proteome consists
of all the protein products derived from an individual’s full
genetic code. It is estimated that more than 500,000 pro-
teins comprise the human proteome, derived from ∼35,000
genes in the human genome [42, 43]. Biological samples
such as urine, plasma, serum or tissue can be systematical-
ly analysed, with the goal of identifying, quantifying and
discerning the function of all observable proteins in health
and disease.

Theoretically, proteomics appears an ideal tool to study
molecular mechanisms, as it bridges the gap between what is
encoded in the genome and its translation into proteins. Early
proteomic studies using surface-enhanced laser desorption
ionisation (SELDI)-based approaches have led to some inter-
esting discoveries [44, 45], and the past 10 years of proteomic
studies in diabetic nephropathy have increased our knowledge
of the molecular mechanisms involved in its pathogenesis
[46]. However, proteomics still faces multiple challenges,
among them the wide dynamic range of the proteome (span-
ning over ten orders of magnitude), protein modifications in-
terfering with analysis, a substantial error rate in the experi-
mental data, and the inability to amplify proteins (in contrast
to nucleic acids). In addition, the proteome is highly variable,
which further increases the need to analyse a large number of
samples to obtain significant results [47]. Proteomics typically
relies on the use of mass spectrometers to assess proteins and
peptides [48]. A specialised discipline within proteomics, the
so-called peptidomic approach, studies protein fragments/
peptides that are generated in vivo [49–51]. Peptidomics is a
feature-based method, where mass spectrometry (MS) data on
large numbers of clinical samples are collected and compared.
These discriminatory MS features can be tabulated, used as a
diagnostic tool, and, for purposes of understanding molecular
mechanisms, undergo tandem MS experiments to gain infor-
mation on biological identity. These peptides represent the
functional output of a cell or organ, and thus reflect the ‘bio-
logical status’ of an organism.

The use of high-throughput profiling techniques allows the
generation of a single score that integrates multiple peptides.
Untargeted proteomics aims to simultaneously assess hun-
dreds of peptides, and thus strongly supports the generation
of such multidimensional scores. Recent years have seen the
development of both plasma and urine proteomic scores.

Urinary proteomics The measurement of proteins in urine
has been used for many centuries to diagnose kidney disease
[52]. Often referred to as a ‘liquid biopsy’ [53], under physi-
ological conditions urine is generated in the kidney and about
70% of urinary proteins and peptides are derived from the
kidney [54]. Urine has been a preferred target for peptidomic
approaches, since it contains large quantities of multiple pep-
tides. In addition, it is conceivable that many of the urinary
peptides are associated with kidney pathophysiology and can
provide information about the onset and progression of DKD.
Urinary peptidomics is therefore viewed as a platform to dis-
cover biomarkers of kidney disease. Additionally, urine has
the advantage of being easy to collect, though analysis does
require normalisation to account for differences in urinary
output. Urinary proteomics and peptidomics have gained
much attention as a tool for the identification of diagnostic
and prognostic biomarkers of kidney diseases [55], and may
represent an important step forwards in the non-invasive di-
agnosis of kidney disease. Indeed, studies on urinary proteo-
mics and DKD have been widely published and reviewed [18,
32, 56, 57].

A number of candidate urinary proteomic biomarkers have
been identified that can predict kidney disease progression in
diabetes (Table 2). In an early study of urinary proteomics in
Pima Indians, proteomic profiles were able to predict
macroalbuminuria 10 years prior to the development of ne-
phropathy [58]. Merchant et al identified three peptides that
decreased (fragments of type IVand type V α1 collagens and
tenascin-X) and three peptides that increased (fragments of
inositol-pentakisphosphate 2-kinase, zona occludens 3 and
FAT tumour suppressor 2) in the urine of patients with type
1 diabetes and early renal functional decline [49]. In a study in
type 1 diabetes (n=465), a panel of four protein biomarkers
(Tamm–Horsfall glycoprotein,α1-acid glycoprotein, clusterin
and progranulin) predicted early renal damage [59]. When
coupled with data from kidney biopsies, the results indicated
that urinary peptide fragments reflect changes in expression of
intact proteins in the kidney [59]. Additional evidence of uri-
nary proteomics’ ability to predict renal functional decline
was recently provided, when urinary haptoglobin was shown
to be able to predict early renal functional decline in patients
with type 2 diabetes [60]. In a cross-sectional study comparing
CKD patients with varying underlying aetiologies of disease
with healthy controls, 273 peptides (later known as the
CKD273 score) were identified as being associated with
CKD [50].

The CKD273 score, a capillary electrophoresis–mass spec-
trometry (CE-MS)-based urinary peptide classifier, has been
subsequently validated in several cohorts, many of them in-
cluding patients with diabetes (Fig. 2). In a prospective study
of 35 patients with type 1 or type 2 diabetes, the CKD273
score predicted subsequent progression to macroalbuminuria
on average 5 years prior to its onset (Fig. 2a) [61].
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Additionally, in a case–control study of 88 patients with
type 2 diabetes, the CKD273 score predicted develop-
ment of micro- or macroalbuminuria independently of
any other renal risk marker (Fig. 2b) [62]. The discrim-
inative ability of the CKD273 score for diabetic ne-
phropathy was confirmed in a large, longitudinal
multicentre study in which the CKD273 score improved
prediction of accelerated eGFR decline on top of albu-
minuria and baseline eGFR [63]. Furthermore, analyses
of both the Effect of Candesartan on Progression of
Retinopathy in Type 1 Diabetes (DIRECT-Protect 1)
and in Type 2 Diabetes (DIRECT-Protect 2) studies in-
dicated that the CKD273 score improved risk prediction
of the development of microalbuminuria independently
of treatment and other physical or biochemical markers
[64].

Although the above-mentioned studies validated the
CKD273 score in external cohorts, these studies did not in-
volve hard renal outcomes. In addition to external validation,
one should also determine whether the predictive ability of a
novel protein marker is sufficient to warrant a change in ther-
apy.Whether starting treatment in a high-risk population iden-
tified by the CKD273 score will prevent microalbuminuria in
type 2 diabetes is currently being investigated in the
Proteomic Prediction and Renin–Angiotensin–Aldosterone
System Inhibition Prevention of Early Diabetic Nephropathy
in Type 2 Diabetic Patients With Normoalbuminuria trial
(PRIORITY; ClinicalTrials.gov NCT02040441) [65]. This
study does not involve hard renal outcomes (which would
require extending the observation period for approximately
10 years) but specifically focuses on early detection of kidney

disease using a surrogate endpoint of transition in albuminuria
stage from normo- to microalbuminuria. The primary objec-
tive of the PRIORITY trial is to confirm that urinary proteo-
mics can predict development of microalbuminuria. The
PRIORITY trial will also assess whether high-risk patients
identified by the CKD273 score will benefit from
spironolactone therapy.

Results from these urinary proteomic studies have expand-
ed our pathophysiological knowledge of DKD. Collagen frag-
ments, especially those of the α1 type I collagen chain, have
been shown to be significantly altered in urine 3–5 years be-
fore the onset of macroalbuminuria [61]. Several fragments of
type I and type III collagen have been found in lower concen-
trations in patients with increased albuminuria levels, and pos-
itively correlate with a decline in eGFR [62]. Type I and type
III α1 collagen and α2-HS-glycoprotein, among other pep-
tides, were found to be prominent markers in a large cross-
sectional multicentre study [65]. It is speculated that collagen
fragments most likely originate from the kidney [61], and a
decrease in collagen fragments in the urine of diabetic patients
has been associated with the accumulation of extracellular
matrix and increased fibrosis [66]. Distinguishing whether or
not these peptides are specific to DKD or are reflective of age-
related progression of renal functional decline in the non-
diabetic population is important, as identifying specific
DKD-related processes can lead to new therapeutic targets.
Interestingly, in a study conducted in healthy individuals rang-
ing in age from 2 to 73 years (n=324), 49 age-related modi-
fications of secretion in a number of peptides were observed.
Of note, the downregulation of collagen fragments was espe-
cially evident [51]. Furthermore, these results were recently
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verified in a study involving 11,660 individuals [67]. Many of
these peptides were previously described as biomarkers of
CKD, likely indicating the well-known association between
ageing and renal functional decline.

Blood-derived proteomics Proteomics in blood products is
difficult to perform due to post-sampling variability and many
high-abundance proteins (e.g. immunoglobulin, albumin) that
can mask the low-abundant, potential biomarkers [68].
Additionally, the choice of anticoagulant agent used for plasma
preparations, or the lack of an anticoagulant agent for serum
collection, as well as the presence or absence of protease inhib-
itors, affects the activity of proteolytic enzymes in these sam-
ples [69]. Accordingly, early serum and plasma proteomic stud-
ies did not showmuch promise for biomarker discovery. On the
one hand, one could argue that plasma proteomics offers an
advantage over urine, as the number of substances is higher,
and so there is a higher likelihood of detecting yet unknown
biomarkers of kidney disease. On the other hand, circulating
peptides could reflect general processes that are not specifically
confined to the kidney. However, advancements in proteomics
are pushing the field forward. Recent plasma proteomic studies
have revealed new findings on the role of certain proteins in
predicting kidney disease progression.

In a series of cross-sectional studies conducted in
Denmark, plasma proteomic studies in patients with type 1
diabetes and nephropathy revealed several candidate proteins,
including C3f and apolipoprotein C-I, apolipoprotein A-I,
transthyretin and cystatin C [70–72]. In a recent cross-
sectional study, untargeted plasma proteome analysis revealed
significant differences in more than 300 proteins in patients
with early-stage CKD compared with patients receiving
haemodialysis [73]. Preliminary validation experiments dem-
onstrated that one of these proteins, leucine-rich α2-glycopro-
tein, was significantly associated with higher mortality in
CKD stage 5 [73]. Investigation of the predictive value of
several of the identified potential biomarkers in a larger cohort
is currently ongoing, using targeted MS.

Small, prospective studies have yielded further insights in
the use of plasma proteomics in studying DKD (Table 2) [74,
75]. A large study combining hypothesis-driven (ELISA,
Luminex [Austin, TX, USA]) and hypothesis-free (liquid
chromatography–mass spectrometry [LC-MS] platforms) ap-
proaches in a nested case–control design (n=307) was recent-
ly performed [76]. This study measured 207 serum bio-
markers and identified 35 that were significantly associated
with rapid progression of eGFR decline. Furthermore, a spars-
er set of 14 biomarkers contained most of the predictive infor-
mation beyond clinical covariates. Novel biomarkers identi-
fied included FGF-21, the symmetric to asymmetric
dimethylarginine ratio (SDMA/ADMA), β2-microglobulin,
C16-acylcarnitine, kidney injury molecule-1 and uracil [76].
In another large study, targeted MS was performed to predict

progression of DKD in 279 patients (healthy controls, patients
with mild diabetic nephropathy and patients with severe dia-
betic nephropathy) during discovery and validation phases
[77]. During the discovery phase, 150–200 proteins were
identified from over 155,000 MS/MS spectra. A total of 275
proteins were identified and quantified. Of these, >50 proteins
showed statistically significant differences between disease
states. Eventually, a panel of 13 biomarkers was developed
into the targeted MS assay PromarkerD (Proteomics
International, Perth, WA, Australia) [78]. Proteins involved
in inflammation, metabolism and oxidative stress are included
in the panel. The two aforementioned studies examined spars-
er protein panels based on the strongest protein predictors
instead of all proteins showing a statistically significant asso-
ciation. Future studies will help determine the clinical utility
of smaller, well-defined panels of predictive biomarkers iden-
tified through proteomics and developed into easy-to-use as-
says or point-of-care analysers for use in clinical practice.

Furthermore, to overcome issues of blood-based proteo-
mics, a novel targeted proteomic technique based on aptamer
technology has been introduced (SOMAscan assay;
SomaLogic, Boulder, CO, USA) [79]. This proteomic assay
can currently measure 1310 protein analytes in serum, plasma
or cerebrospinal fluid. This assay measures native proteins in
complex matrices by transforming each individual protein
concentration into a corresponding SOMAmer reagent con-
centration, which is then quantified by standard techniques
such as microarrays or quantitative real-time PCR. The
approach has been used to identify 58 potential CKD bio-
markers [80]. Unfortunately, however, validation of the results
presented 5 years ago is still pending. Work assessing asso-
ciations of plasma proteins measured with this technology is
currently ongoing in patients with type 1 diabetes [81].

Proteomics and response to therapy

At least as important as risk prediction is the quest to find
proteins predicting how an individual responds to treatment.
Many of the studies predicting disease progression do not
provide any information on how an individual would respond
to a drug, or identify patients who are prone to side effects [82,
83]. Yet, individual patients show a wide variability in the way
they respond to drugs [84]. From a clinical decision perspec-
tive, being able to predict a good response to a specific inter-
vention would be time and cost saving and would be ultimate-
ly beneficial for the individual patient. Currently in clinical
practice, there is no way to predict a patient’s response to
renoprotective therapy. A physician’s best tool is to tailor
medication with respect to a patient’s specific clinical presen-
tation [85]. Proteomics could offer a solution to improve tai-
loring of medication to those more likely to respond or less
likely to experience side effects. First, the individual proteome
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can be used to phenotype a patient with a good or poor therapy
response before treatment is initiated: a so-called ‘baseline risk
prediction’. Another strategy is to monitor changes in the pro-
teome after a few weeks’ therapy to select individuals more
likely to benefit from subsequent clinical outcomes, a so-
called ‘dynamic response prediction’. Studies evaluating the
predictive value of baseline proteins or changes in proteins
during the first week of therapy are therefore an area of interest
for the future. Such studies would also generate information
about novel drug targets, as changes in the proteome during
medication exposure will provide insight into molecular
mechanisms and processes of drug effects [86].

Proteomic studies for baseline and dynamic drug response
prediction in diabetes are still in their infancy and only a few
studies have been conducted. One study investigated the abil-
ity of the aforementioned CKD273 score to predict the re-
sponse to spironolactone therapy in patients with type 2 dia-
betes and therapy-resistant hypertension. The study suggested
that patients in the upper tertile of the CKD273 score were
more likely to show an albuminuria-lowering response (−64%
[95% CI −84%, −20%] placebo-corrected reduction) to
spironolactone compared with patients in the lower tertile of
the CKD score (−13% [95% CI −52%, +59%] albuminuria
reduction relative to placebo) (M. Lindhardt, F. Persson,
C. Oxlund, I. A. Jacobsen, P. Zürbig, H. Mischak, P. Rossing,
H. J. L. Heerspink, unpublished observations). With respect to
baseline response prediction in other omics platforms, a serum
metabolomics study for prediction of therapeutic response to
spironolactone therapy in diabetes has been conducted. A panel
of 21 metabolites improved prediction of albuminuria response
on top of clinical variables [87]. These studies are a first
attempt to use omics-based approaches for development of
drug response classifiers. Further studies in large datasets are
required to validate and implement these studies in clinical
practice.

Assessing drug response by investigating proteomic chang-
es may also give further insights into the mechanisms of drug
response. The change in the proteome may be used as an
indicator of subsequent drug efficacy on clinical outcomes.
Changes in urinary peptides were observed after treatment
with varying doses of candesartan in a randomised double-
blind crossover trial. Fifteen of 113 polypeptides in patients
with macroalbuminuria were significantly changed after treat-
ment, towards levels of patients with normoalbuminuria [66].
Furthermore, changes in the urinary proteome were observed
in a nested case–control study of a clinical trial in hypertensive
type 2 diabetic patients withmicroalbuminuria randomised for
treatment with irbesartan or placebo. Significant changes in
the urinary CKD273 score were observed after 2 years’
follow-up in the irbesartan group, but not in the placebo group
(Fig. 2c) [88]. However, it should be noted that in the latter
study, changes in the proteome were only measured 2 years
after follow-up. In clinical practice, drug efficacy is usually

monitored after a few weeks of therapy. It is currently un-
known whether changes in the proteome are already present
during the first weeks of treatment with RAAS intervention.
In this respect, it is of interest to note that changes in the urine
proteome after short-term dietary intervention with olive oil
[89] and in the plasma proteome after short-term treatment
with a low-energy diet have been observed [90], implying that
proteomics can indeed be used as a therapy-monitoring tool.

Recommendations for the future

Before a biomarker or panel of biomarkers can be used in
clinical practice, it needs to be extensively validated in order
to assess its effect on patient management and outcomes. The
translation of a proteomic panel from discovery to clinical
practice is a process full of pitfalls and limitations. A frame-
work for the development of biomarkers has been proposed
[91].While a number of candidate proteomic biomarkers have
been identified that can predict progression of DKD, many
biomarker studies are limited by small sample sizes, hetero-
geneity of results, and a lack of large validation studies. As a
result, novel biomarkers do not proceed past the initial discov-
ery phase and do not progress further down the biomarker
pipeline into validation and clinical utility stages [92]. To date,
no MS-based in vitro diagnostic device for the measurement
of proteins and peptides has been cleared or approved by the
Food and Drug Administration for marketing or use in clinical
trials in DKD [93]. More awareness and investments need to
be made to perform well-powered studies appropriately ad-
dressing the clinical utility and clinical outcome phases in
order to start implementing proteomic biomarkers in clinical
practice. To conduct such large validation studies, collabora-
tions between academia and industry may be a strategy to
share expertise from different areas and to promote effective
dissemination of results.

A review of the literature clearly indicates that multiple
biomarker candidates are available, and the data demonstrat-
ing significant association with DKD are well developed.
However, the clinical utility of these biomarker candidates
has generally not been addressed. To enable true advancement
(and implementation of the biomarkers), appropriate study
designs need to be developed, ideally jointly with the regula-
tory agency. As pointed out previously: as long as a hard
endpoint is a mandatory requirement, implementation of
biomarkers will be blocked. Furthermore, the study of prote-
omics is only one aspect of the entire system. Concomitant
deep investigation and integration of complex datasets of the
genome, transcriptome, proteome and metabolome will give a
more detailed understanding of the pathophysiology of DKD
[94].

To enable progress, we also need to shift the focus from
discovery towards validation. Multiple biomarkers should be

Diabetologia (2016) 59:1819–1831 1827



assessed in a comparative way for their diagnostic or prognos-
tic value, ideally in the same samples. Similar approaches
have been advocated and are now implemented in other fields,
such as bladder cancer [95]. Such a combined approach would
also enable combining multiple biomarkers into a classifier fit
for any specific purpose and would enable a path forwards
towards personalised medicine.

From a technical point of view, we anticipate that, in the
future, immunological assays will be replaced by targetedMS,
employing multiple reaction monitoring (MRM) [96]. In sev-
eral recent publications, MRM-based assays were found to be
equal or superior to antibody-based approaches [97]. Also, the
ability for multiplexing renders this approach very promising.
In combination with higher sensitivity and better selectivity in
comparison with antibodies, we may see that MRM-based
assays will be used in the future for routine targeted proteome
analysis.

Another promising approach is the use of CE-MS in an
untargeted analysis to assess multiple diseases. This approach
could be used to assess the complete urinary peptidome (lim-
ited by the detection limit, but typically analysing several
thousand peptides), and then specifically address the risk of
developing CKD, chronic heart failure, cardiovascular dis-
ease, etc., based on specific biomarker signatures. Owing to
the high complexity and the aim to assess multiple diseases, a
targeted proteomic approach for this purpose (e.g. based on
MRM) does not seem possible.

Irrespective of the diagnostic value of proteomic bio-
markers, changes in the proteome also provide information
about disease pathophysiology, and will enable ways to iden-
tify more appropriate therapeutic targets. As outlined in detail
in recent reviews [86, 98], application of this strategy holds
the promise to identify the actual molecular cause of DKD,
and consequently enable targeted intervention.

Conclusions

Despite stringent blood glucose and blood pressure control
with RAAS inhibitors, the incidence of RRT continues to
grow. Early identification of individuals at risk of progressive
loss of renal function and administration of appropriate treat-
ment will delay progression to RRT. The measurement of the
proteome offers an opportunity for early identification of in-
dividuals at risk of further disease progression. However, to
assess efficacy early in the course of DKD, a change is re-
quired in the use of clinical efficacy endpoints. The current
endpoints—ESRD, doubling of serum creatinine or halving of
kidney function—typically take 10–20 years to develop.
Clinical trials in the early stages of disease using these end-
points are practically impossible. Alternative endpoints need
to be accepted in order to foster drug efficacy assessment in
the early stages of disease. The European Medicines Agency

proposed endpoint of CKD stage 3 in intervention trials [15] is
an encouraging sign that early intervention strategies can be
developed.

Given the large heterogeneity in the pathophysiology of
DKD, a panel of proteins/peptides capturing the various dis-
ease progression pathways is more likely to predict disease
progression or response to therapy than a single protein.
Predicting the risk of an individual and directing drugs to
those at highest risk is not sufficient to optimise therapy, as
it is unlikely that all high-risk individuals will also respond to
treatment. Therefore, additional studies are needed to validate
proteomic biomarkers in order to identify individuals more
likely to respond favourably to treatment. It will be a high
priority on research agendas to tailor therapy and minimise
side effects, thereby potentially reducing the burden of DKD.
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