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Abstract This article describes phenotypes observed in a
prediabetic population (i.e. a population with increased risk
for type 2 diabetes) from data collected at the University
hospital of Tübingen. We discuss the impact of genetic
variation on insulin secretion, in particular the effect on
compensatory hypersecretion, and the incretin-resistant
phenotype of carriers of the gene variant TCF7L2 is described.
Imaging studies used to characterise subphenotypes of fat
distribution, metabolically healthy obesity and metabolically
unhealthy obesity are described. Also discussed are ectopic fat
stores in liver and pancreas that determine the phenotype of
metabolically healthy and unhealthy fatty liver and the
recently recognised phenotype of fatty pancreas. The
metabolic impact of perivascular adipose tissue and pancreatic
fat is discussed. The role of hepatokines, particularly that of
fetuin-A, in the crosstalk between these organs is described.
Finally, the role of brain insulin resistance in the development
of the different prediabetes phenotypes is discussed.
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Abbreviations
GI Glycaemic index
GLP-1 Glucagon-like peptide-1
HSAT High saturated fat
IGT Impaired glucose tolerance
LSAT Restricted saturated fat
MCP-1 Monocyte chemoattractant protein-1
MEG Magneto-encephalography
MHO Metabolically healthy obesity
MUHO Metabolically unhealthy obesity
NAFLD Non-alcoholic fatty liver disease
NGT Normal glucose tolerance
SNP Single-nucleotide polymorphism
TÜF Tübingen Family Study
TULIP Tübingen lifestyle intervention program

Introduction

The global increase in type 2 diabetes prevalence over recent
decades puts a heavy health and socioeconomic burden on
society. Lifestyle intervention with increased physical activ-
ity and a healthy diet is considered to be generally effective
in preventing the development of diabetes [1–4].
Unfortunately, the prevention studies carried out so far have
shown that a substantial number of prediabetic individuals
(that is, those with increased risk for type 2 diabetes) seem
to be non-responders to lifestyle interventions; the number
needed to treat amounted to 7 in the Finnish Diabetes
Prevention Study (DPS) and the US Diabetes Prevention
Program (DPP) [1, 2]. Based on these studies and on
pathophysiology-based studies in our population [5–7], it
appears that even those individuals who are able to reduce
their body fat mass adequately show a lack of improvement
in hyperglycaemia and insulin resistance. To improve the
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efficacy of lifestyle intervention programmes, a precise
understanding of the pathophysiology and the different
phenotypes of the prediabetic population is needed.

There are several prediabetes cohorts throughout the world
[8–13] that provide extensive information about the natural
history of disease progression from a prediabetic state to overt
type 2 diabetes. Eighteen years ago at the University Hospital
of Tübingen we started to build up a similar cohort, which we
named the Tübingen Family Study (TÜF). Currently, the
cohort comprises more than 3000 individuals from whom
we have obtained values for insulin sensitivity and insulin
secretion. The distribution of insulin sensitivity and insulin
secretion in our cohort (Fig. 1) largely reflects the results from
other groups worldwide [8–13]. It is evident that people with
high insulin sensitivity very seldom display disturbed glucose
tolerance. At higher values of insulin resistance individuals
remain glucose tolerant only if their pancreas is able to react
with a compensatory hypersecretion of insulin. Partial
compensatory hypersecretion characterises individuals within
the range of impaired glucose tolerance, while people with the
lowest values of insulin secretion often show overt type 2
diabetes. In about 400 participants of the TÜF study, we are
now studying the acute and long-term effects on insulin
resistance and secretion of a lifestyle intervention programme.
We found that there was a significant improvement in insulin
resistance after 1 year. However, in follow-up studies after
2 years and 8 years this benefit was not only lost but also, in
contrast, increased insulin resistance developed over the years
(H-U Häring, unpublished data). These findings are in
agreement with those of other earlier studies [8–13]. The
stepwise progression towards type 2 diabetes involves
increasing insulin resistance, although it is well established
that only when combined with a simultaneous loss of

compensatory hypersecretion of insulin does this lead to
diabetes [8–13]. The major questions are therefore: what
pushes people from an insulin-sensitive status to one of insulin
resistance and what underlies the ability of an individual to
respond with compensatory insulin hypersecretion?

Compensatory hypersecretion of insulin: influence
of genetic variation

Using our database, we assessed the extent to which genetic
variation determines the ability to produce compensatory
hypersecretion of insulin. A large number of type 2 diabetes
loci are known today [14–16] and we studied genotype–
phenotype associations for the strongest type 2 diabetes genes
[17–41].

We indeed found associations between many of the genetic
variants and different features of insulin secretion [17–39].
Several of the gene variants showed interaction with other
gene variants, and the degree of the effects was dependent
on ligands that induce insulin secretion, such as incretins or
fatty acids [17–25]. However, after quantifying the effect of
these gene variants and testing for additive effects between
variants and genotype–ligand interaction, it appears that the
effects on insulin secretion are very small and often non-
significant in insulin-sensitive individuals [30, 31]. In
insulin-resistant individuals, who have higher insulin levels
due to the compensatory effort of the pancreatic beta cell,
the reduction in insulin secretion in association with these
gene variants is more pronounced and significant [30, 31].
The quantitative effect, however, remains quite small,
reaching only 15–20% of the compensatory response
observed in individuals with normal glucose tolerance
(NGT) vs impaired glucose tolerance (IGT) vs diabetes. This
suggests that the type 2 diabetes genes known so far have only
minor effects on insulin secretion and that variation in these
genes does not contribute much to the large difference in
compensatory hypersecretion of insulin that is seen when
NGT, IGT and diabetic individuals are compared (Fig. 1).

TCF7L2 variants An exception to this picture emerges with
genetic variants in TCF7L2, a diabetes risk gene associated
with incretin resistance [20]. Glucagon-like peptide-1
(GLP-1) infusion strongly induces insulin secretion in the
experimental setting of a hyperglycaemic–euglycaemic clamp
and this effect is clearly reduced in carriers of the TCF7L2 risk
allele (Fig. 2a). When the glucose level increases, this gene
variant seems to affect the ability of an individual to respond
with a compensatory secretion of insulin [23] (Fig. 2b).
Figure 2b shows that individuals with the wild-type C allele
of the rs7903146 single-nucleotide polymorphism (SNP) and
individuals who are heterozygous for this SNP adequately
respond to increasing glucose with increasing insulin
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Fig. 1 Insulin sensitivity and insulin secretion of participants of the
Tübingen Family Study. Insulin sensitivity is estimated from the OGTT
(Matsuda–deFronzo index). Insulin secretion is estimated from the OGTT
(AUC for C-peptide/glucose). Green circles, NGT; yellow circles, IGT;
red circles, type 2 diabetes. AU, arbitrary units
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secretion. In contrast, homozygous carriers of the Tallele even
show decreased insulin secretion at increasing glucose
concentrations. This finding can be explained by reduced
incretin signalling in these individuals [42].

This phenomenon has also been described by other groups
[43–45]. A recent pharmacogenetic study showed that
homozygous T allele carriers of the rs7903146 SNP of
TCF7L2 are partially resistant to therapy with dipeptidyl
peptidase-4 (DPP-4) inhibitors, which are known to increase
GLP-1 availability [46]. Approximately 10% of individuals in
our database are homozygous carriers of this T allele, and the

gene variant probably contributes to an inability to upregulate
insulin secretion. It is important to note that a reduction in
glucose levels through lifestyle intervention can reverse the
reduced insulin secretion [23, 47]. Therefore, attempts to
lower glucose levels both by lifestyle intervention and by
pharmacotherapy might be able to slow down the disease
progression in this subgroup of prediabetic individuals.
Clinical studies to test this hypothesis are on the way. The role
of this gene variant in glucose-induced insulin secretion and
glucose metabolism has been addressed in many studies
[48–51], some of which suggest that the gene variant affects
glucose-induced insulin secretion and the conversion of
proinsulin to insulin [38] as well as affecting glucose
metabolism [50].

Body fat composition

Metabolically healthy and unhealthy obesity Studies using
whole-body MRI not only allow identification of established
metabolically relevant fat compartments [52] but also show
new fat compartments like neck fat [53] and perivascular fat
[54]. Furthermore, magnetic resonance spectroscopy
technology allows determination of ectopic fat storage in the
liver and the skeletal muscle [52]. A key observation made
in such studies has been the description of subphenotypes
of obesity: metabolically healthy obesity (MHO) and
metabolically unhealthy obesity (MUHO) (Fig. 3).

We found that approximately 25% of the obese individuals
in our cohort displayed a metabolically healthy phenotype
[55–57]. These individuals predominantly accumulate less
fat in the liver and store less fat in the visceral compartment,
while fat storage in the subcutaneous compartment is high.
Furthermore, they display high insulin sensitivity despite
having a high BMI [58]. However, most of the obese
individuals in our cohort had a metabolically unhealthy
phenotype of fat distribution, characterised by decreased
subcutaneous fat storage and increased fat storage in the
visceral compartment and by non-alcoholic fatty liver disease
(NAFLD) (Fig. 3). The insulin resistance of these individuals
is associated with the amount of liver fat (Fig. 4a). However, it
is evident that at each level of liver fat content a more-insulin-
resistant group can be distinguished from a less-insulin-
resistant group [57, 58] (Fig. 4a). We saw these data as
evidence for distinct liver phenotypes—metabolically benign
and metabolically malignant fatty liver [58].

Genetic predisposition A genetic predisposition seems to
contribute to these phenotypes. Genome-wide association
studies have identified a number of genetic variants for
NAFLD [59]. The I148M variant of PNPLA3, the gene
encoding patatin-like phospholipase domain-containing
protein 3, is most strongly associated with increased liver fat
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Fig. 2 (a) Associations between the genotypes of rs7903146 polymor-
phism in TCF7L2 with insulin secretion during a hyperglycaemic clamp
in 73 German individuals. White circles, CC; black circles, CT and TT.
AIR, acute insulin response. The p values are for comparison between the
genotypes for the first and second phases of glucose-induced insulin
secretion, first and second phases of GLP-1-induced insulin secretion
and acute insulin secretory response to arginine; figure reproduced with
permission from [20]. (b) Association between C-peptide levels at 30min
of the OGTT and glucose levels at 30 min during the OGTT by TCF7L2
SNP rs7903146. Regression lines are shown. Dotted line, CC; dashed
line, CT; solid line TT genotype of TCF7L2 SNP rs7903146; figure
reproduced with permission from [23]. To convert glucose values from
from mg/dl to mmol/l, please multiply by 0.0555
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content (Fig. 4b) [59]. Surprisingly, however, no insulin
resistance is observed in individuals possessing this variant
(Fig. 4c) [60]. We found that this genotype appears to cause
a different fatty-acid composition in the lipid stores of the
hepatocytes—decreased levels of stearate and increased levels
of polyunsaturated fatty acids (Fig. 4d) [61, 62].

Role of hepatokines The different fatty-acid pattern might be
responsible for an alteration in the interaction between
hepatocytes and the cells of the immune system in the liver.
In contrast to the metabolically benign fatty liver, the
metabolically malignant fatty liver secretes an altered pattern
of hepatokines [63]. The hepatokine fetuin-A is associated
with insulin resistance, diabetes and cardiovascular outcomes
[63–67]. Saturated fatty acids, such as palmitate, stearate and
myristate, have been found to increase hepatic fetuin-A
mRNA and protein expression in the human liver cell line
HepG2 by increasing NFkB binding to its promoter [68].
Palmitate dose- and time-dependently increases the secretion
of fetuin-A from HepG2 cells [68]. Also, high glucose levels
dose-dependently increase fetuin-A mRNA and protein
expression in HepG2 cells via activation of the extracellular
signal-regulated kinase-1/2 (ERK-1–ERK-2) signalling
pathway [69]. Finally, preliminary data suggests that
exendin-4 may attenuate the expression of fetuin-A in
HepG2 cells by improving palmitate-induced endoplasmic

reticulum stress through AMP-activated protein kinase [70].
The exact mode of action of fetuin-A is still not fully
understood.

George Grunberger’s group was the first to show that
fetuin-A inhibits signalling through the insulin receptor [71])
and we and others have confirmed fetuin-A’s inhibitory effect
on the insulin receptor tyrosine kinase [reviewed in 63, 64,
72]. Downstream effects on stress kinases and NFkB were
observed [72].

Another signalling pathway that is modulated by fetuin-A
is the fatty-acid signalling pathway, through the Toll-like
receptor. Based on mouse data, it has been proposed that
fetuin-A acts as an endogenous ligand of Toll-like receptor 4
to promote lipid-induced insulin resistance [73]. This concept
seems to be relevant in humans, as we were able to show that,
indeed, circulating fetuin-A levels and NEFA interacted to
predict insulin resistance in participants of the TÜF study
[64]. These data support the concept that organ crosstalk
through hepatokines plays a key role in the pathophysiology
of prediabetes.

Perivascular adipose tissue

Perivascular fat cells seem to be a particularly important target
of hepatokines, which might function as transducers of organ

MHO MUHO

High level of pVATLow level of pVAT

Pancreas fat 3–10%

a b

pVAT pVAT

Fig. 3 Subphenotypes of obesity.
Whole-body MRI measurements
are used to quantify fat
compartments [52–58].
(a) Yellow, subcutaneous adipose
tissue; red, visceral adipose tissue.
(b) pVAT, perivascular visceral
adipose tissue
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crosstalk [54, 74–78]. The whole-body MRI data led us to
study another interesting fat compartment—perivascular adi-
pose tissue (Fig. 3). Perivascular adipose tissue is a specific fat
depot with impact on organ functions [54, 74–78]. The adi-
pose tissue surrounding arteries seems to have an influence on
whole-body insulin sensitivity. This effect is independent of
other fat compartments like hepatic fat and visceral fat [54].
Due to the strong effect on whole-body insulin sensitivity, we

hypothesised that perivascular adipocytes would have specific
characteristics that distinguish them from visceral or
subcutaneous fat cells. This is indeed the case, as perivascular
fat cells produce and secrete higher quantities of angiogenic
factors, cytokines and chemoattractants like monocyte
chemoattractant protein-1 (MCP-1) [76]. Furthermore, these
fat cells seem to be particularly susceptible to organ crosstalk
signals from the fatty liver [72]. The hepatokine fetuin-A
stimulates, together with fatty acids, cytokine release and
MCP-1 expression in these cells [72].

Fat cells are also found around the renal artery in the hilus
of the kidney. As the amount of kidney fat in the hilus
correlates with hypertension-inducible albuminuria in
individuals with prediabetes [77, 78], we speculate that this
fat compartment might be relevant in the pathogenesis of
diabetic kidney disease. We further observed that these renal
fat cells are particularly responsive to crosstalk signals from
the fatty liver (i. e. fetuin-A). Thus, the fatty kidney might be a
subphenotype of prediabetes that defines a higher risk of
developing kidney disease in the context of MUHO and
NAFLD. This is of course at the moment a pure speculation
that has to be tested in prospective studies.

The fatty pancreas: non-alcoholic fatty pancreas
disease

Ectopic fat storage is also observed in the pancreas. In MRI
studies, about 3–10% of fat is detected in the pancreas (Fig. 3).
The pancreatic fat content does not correlate with insulin
secretion in individuals with NGT, although it does correlate
strongly with insulin secretion in individuals with IGT [79].
We recently demonstrated that these magnetic resonance-
derived fat signals reflect clusters of fat cells in the pancreas,
found in close vicinity to islets and sometimes even within
islets (Fig. 5a). Macrophages were also detectable. We
speculate that fat cells, islets and macrophages are engaged
in a cell-to-cell crosstalk (Fig. 5e), which alters the expression
of chemoattractants and cytokines. It is likely that this process
modifies lipolysis of fat cells and, thereby, fatty-acid
signalling. This cell crosstalk is probably silent in the situation
of normal glycaemia, while in IGT additional stimulators are
present, most likely glucose, cytokines, adipokines and
hepatokines. In this respect, we could show that insulin
secretion is correlated to the level of circulating fetuin-A in
individuals with IGT [80]. Based on this data, we favour the
following concept of organ crosstalk in prediabetes: MUHO
might induce the development of fatty liver and organ
crosstalk, which involves fetuin-A; in the presence of a fatty
pancreas, this hepatokine could amplify the cellular crosstalk
described in Fig. 5 and this might finally affect islet function
and survival and therefore the capacity for compensatory
insulin hypersecretion.

Fig. 4 (a) Association of insulin resistance with the amount of liver fat.
Individuals were divided into seven groups: quartiles of liver fat in
individuals without fatty liver (liver fat <5.56%, n=225) and tertiles of
liver fat in individuals with fatty liver (liver fat ≥5.56%, n= 112). Each
group was then divided by the median insulin sensitivity into an
insulin-sensitive (IS, white circles) and an insulin-resistant (IR, black
circles) subgroup. Diamonds indicate mean and the 95% CI. Within each
of the seven groups, the subgroups did not differ in liver fat. However,
insulin sensitivity was lower in each group; figure reproduced with
permission from [58]. (b, c) Liver fat content (b) and insulin sensitivity
(c) associated with the I148M variant of PNPLA3,; figure reproduced
with permission from [60]. (d) Fatty-acid profiles of hepatic
triacylglycerol stores are dependent on the I148M variant of PNPLA3.
White bars, wild-type individuals; black bars, PNPLA3I148M individuals;
figure reproduced with permission from [61]. TAG, triacylglycerol; TAT,
total adipose tissue; VAT, visceral adipose tissue
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Response to lifestyle intervention

All these observations support a key role for NAFLD in the
pathogenesis of insulin resistance and the progression from
NGT to IGT and finally to type 2 diabetes. Furthermore, our
lifestyle intervention study has clearly shown that lifestyle
intervention has limited success in improving glycaemia in
prediabetic individuals who have NAFLD [7]. Therefore,
other approaches to reduce liver fat content are extremely
important.

Dietary intervention is a powerful tool with which to
reduce liver fat [81–86]. However, there is evidence that the
susceptibility to carbohydrate-dependent induction of liver fat
shows a large inter-individual variation [81], suggesting the
existence of diet non-responders. A study in patients with
biopsy-proven NAFLD showed that a 2 week administration

of a very-low-carbohydrate diet (20 g/day) vs energy restric-
tion (5000–6300 kJ/day) reduced hepatic triacylglycerol
levels by a greater amount (−55% vs −28%, respectively),
while weight loss was similar in both groups (−4.0 kg vs
−4.6 kg) [82].

In another study carried out over 16 weeks in 52
individuals with obesity, insulin resistance and suspected
NAFLD, a normal carbohydrate (60% carbohydrate, 25%
fat, 15% protein) or moderately restricted carbohydrate (40%
carbohydrate, 45% fat, 15% protein) diet again resulted in a
similar decrease in body weight, daily insulin requirement and
plasma liver enzymes levels. However, the moderately
restricted carbohydrate intervention was associated with a
larger decrease in insulin resistance and liver enzymes [83].

The effect of an isoenergetic diet with restricted fat,
restricted saturated fat (LSAT) and restricted glycaemic index
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Fig. 5 The fatty pancreas. (a) Histochemistry of pancreas sections. (b, c)
Association of pancreatic fat and insulin secretion in people with NGT
(b) and IGT (c); figure reproduced with permission from [79].

(d) Association of increased fetuin-A from fatty liver with impaired
insulin secretion; figure reproduced from [80]. (e) Cell-to-cell crosstalk
between intrapancreatic fat cells, islets and macrophages
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(GI) (LSAT: 23% fat [7% saturated fat], GI < 55) on liver fat
content was compared with the effect of a high-fat, high-
saturated fat (HSAT) and high-GI (HSAT: 43% fat [24%
saturated fat] GI > 70) diet in an elderly population. In the
LSAT group, but not in the HSAT group, liver fat content
decreased significantly [84].

In most studies intake of n-3 polyunsaturated fatty-acid
supplements is associated with a reduction in liver fat content,
with the doses ranging from 0.83 to 6 g/day, and duration of
therapy ranging from 8 weeks to 18 months [85, 86].

The microbiome is probably important as well, although
targeted interventions are not feasible as yet.

The phenotype of non-response to exercise

From our own experience in the Tübingen lifestyle
intervention program (TULIP) study, we suggest that effective
reduction of liver fat content during lifestyle intervention is
very much related to physical fitness and to variants in the
genes for the adiponectin receptor ADIPOR1 [87] and the
transcription factor PPARδ (also known as PPARD) [6, 88]
(Fig. 6).

Exercise is a key factor in influencing metabolism [89, 90]
and reducing liver fat content [91]. However, response to
exercise is highly variable. Studies by different groups
[90–98; for review see 92] have shown that a certain
proportion of prediabetic individuals does not adequately
respond to exercise, with respect to fitness variables, like
V̇O2max and lactate threshold, and insulin sensitivity. We have
made the same observation in our lifestyle intervention study
(Fig. 7). Understanding the cause of exercise non-response is
crucial for improving the success of a lifestyle intervention.
We have performed controlled exercise studies in responders
and non-responders and have used muscle biopsies to study
the underlying molecular mechanisms. It appears that

differences in the transcriptional response of muscle cells of
the responders and non-responders might explain the different
phenotypes as well as differences in the exercise-induced
release of myokines [96–98].

As a consequence, differences in the adaptation of fuel
oxidation are potentially responsible for these phenotypes.

Insulin action in the human brain: the phenotype
of brain insulin resistance

For a long time the brain was not considered to be a classical
target organ of insulin action. However, as early as 1978, Roth
and colleagues showed that mouse and rat brain express high
levels of insulin receptors [99, 100]. Later, around 2000,
several groups showed that alteration of the insulin signalling
chain in the brain by knockdown of the insulin receptor or
docking proteins causes brain insulin resistance, leading to a
diabetes-like phenotype in mice [101–103].
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For technical reasons it is difficult to demonstrate brain
i n su l i n a c t i on i n humans . We u sed magne t o -
encephalography (MEG) to examine insulin effects under
the condition of a euglycaemic–hyperinsulinaemic clamp
and showed that insulin infusion induces a strongMEG signal
in lean individuals but not in obese individuals [104]. We
interpreted this as a sign of brain insulin resistance in obese
people. In many subsequent studies using functional MRI
(fMRI) we further characterised insulin action in the human
brain and identified the major insulin-sensitive areas. We have
recently reviewed these studies and therein discussed the
causes and consequences of brain insulin resistance [105].
Brain insulin signals are detected in the hypothalamus, frontal
areas, hippocampus and fusiform gyrus and modulate
behavioural functions. We have shown that brain insulin
resistance affects very specifically the interaction of the
hypothalamus with frontal areas and is associated with insulin
sensitivity and amount of visceral fat (Fig. 8) [106]. Very
recently, we also showed that brain insulin signalling affects
peripheral glucose metabolism [107]. In clamp studies using
submaximally active peripheral insulin concentrations, the
application of nasal insulin produced an additional increase
of glucose uptake in the periphery. Nasal insulin is an efficient
tool with which to directly stimulate the human brain
[107–111]. This effect of intranasal insulin is closely
associated with insulin-dependent activation of the

hypothalamus and seems to be transmitted through the
autonomous nervous system.

Brain insulin sensitivity: cause or consequence
of adipose tissue distribution?

In our lifestyle intervention study (TULIP) we investigated
whether the response to lifestyle intervention is related to brain
insulin sensitivity. We found that brain insulin sensitivity was
closely related to the change in visceral adipose tissue during
lifestyle intervention (Fig. 9) [112]. A potential explanation for
this observation might involve autonomous nervous signalling
induced by brain insulin action which controls visceral adipose
tissue storage. High hypothalamic brain insulin sensitivity as-
sociates with increased subcutaneous fat and decreased visceral
fat. Low hypothalamic brain insulin sensitivity correlates with
high visceral fat and low subcutaneous fat (Fig. 8). This sug-
gests that brain insulin resistance might contribute to the phe-
notype ofMUHO.MHOmight depend on strong hypothalamic
brain insulin signalling. However, this concept is still very
speculative and future studies need to discover whether this
hypothesis is valid. While proof from human data is still lack-
ing, several animal models suggest that there is an interaction
between brain insulin signalling and the described phenotypes,
in particular for fatty liver [113–116]. In accordance with these
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animal data it has recently been shown that nasal insulin alters
fuel flux in the liver in humans [117]. In as yet unpublished
studies (M. Heni and A. Fritsche) we recently showed, with the
use of stable isotopes, that nasal insulin affects substrate distri-
bution between liver and peripheral tissues. Thus, a crucial role
for brain insulin signalling in body fat distribution seems likely.

Effects of gestational diabetes on fetal brain: does
primary brain insulin resistance exist?

Brain insulin resistance can already be found in young
obese people [106–111]. This observation allows one to

speculate that brain insulin resistance might indeed
precede the development of obesity. To further test this
hypothesis we studied fetal brain development in preg-
nancies of insulin-sensitive mothers, insulin-resistant
mothers and mothers with gestational diabetes [118,
119]. Fetal brain functions were tested by fetal MEG
(fMEG) and the findings suggested that indeed the meta-
bolic situation of the mothers might influence fetal brain
insulin sensitivity. It seems therefore conceivable that
brain insulin resistance is induced already in utero.
Further studies are required to show whether this leads
to altered behaviour, altered eating habits and altered
weight gain in the postnatal life of these children.
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Brain insulin resistance: starting point for organ
crosstalk defining prediabetic phenotypes?

Major phenotypes of prediabetic individuals include brain
insulin resistance, subphenotypes of obesity (MHO and
MUHO), fatty liver, fatty pancreas and variations in perivascular
fat. At the level of the pancreas both compensatory insulin hy-
persecretion and beta cell dysfunction are observed. We specu-
late that the chronological development of the organ crosstalk is
a key feature of the progression from NGT to the prediabetic
situation and to type 2 diabetes. Figure 10 illustrates this specu-
lative concept. Brain insulin resistance might occur very early in
life andmay be the first event contributing to an unfavourable fat
distribution pattern (increased visceral fat). MUHO might then
be a stepping stone to the development of fatty liver.
Hepatokines provide the communication with other organs.
Fat cells from perivascular tissue, perihilar fat of the kidney
and fat cells in the pancreas seem to be particularly responsive
to combined signals of saturated fatty acids and fetuin. These fat
cells respond with a pattern of inflammation that probably acti-
vates macrophages. The fatty liver might, through these
mechanisms, influence both key pathomechanisms of
prediabetes, namely insulin resistance and inability to produce
compensatory insulin hypersecretion. This scenario is of course
very speculative at present but it might be useful as a roadmap
for further studies aimed at understanding the chronology un-
derlying the pathophysiology of prediabetes development.
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