
Review Article
Stem Cells Applications in Regenerative Medicine and
Disease Therapeutics

Ranjeet Singh Mahla

Department of Biological Sciences, Indian Institute of Science Education and Research (IISER),
Bhopal, Madhya Pradesh 462066, India

Correspondence should be addressed to Ranjeet Singh Mahla; ranjeet@iiserb.ac.in

Received 13 March 2016; Accepted 5 June 2016

Academic Editor: Paul J. Higgins

Copyright © 2016 Ranjeet Singh Mahla.This is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or
organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research
has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite
self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine.
The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change.
Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D
organoids and tissue structures for personalized applications.This review outlines the most recent advancement in transplantation
and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally,
this review also discusses stem cells regenerative application in wildlife conservation.

1. Introduction

Regenerativemedicine, themost recent and emerging branch
of medical science, deals with functional restoration of
specific tissue and/or organ of the patients suffering with
severe injuries or chronic disease conditions, in the state
where bodies own regenerative responses do not suffice [1].
In the present scenario donated tissues and organs cannot
meet the transplantation demands of aged and diseased
populations that have driven the thrust for search for the
alternatives. Stem cells are endorsed with indefinite cell
division potential, can transdifferentiate into other types of
cells, and have emerged as frontline regenerative medicine
source in recent time, for reparation of tissues and organs
anomalies occurring due to congenital defects, disease, and
age associated effects [1]. Stem cells pave foundation for all tis-
sue and organ system of the body andmediates diverse role in
disease progression, development, and tissue repair processes
in host. On the basis of transdifferentiation potential, stem
cells are of four types, that is, (1) unipotent, (2) multipotent,
(3) pluripotent, and (4) totipotent [2]. Zygote, the only
totipotent stem cell in human body, can give rise to whole

organism through the process of transdifferentiation, while
cells from inner cells mass (ICM) of embryo are pluripotent
in their nature and can differentiate into cells representing
three germ layers but do not differentiate into cells of
extraembryonic tissue [2]. Stemness and transdifferentiation
potential of the embryonic, extraembryonic, fetal, or adult
stem cells depend on functional status of pluripotency fac-
tors like OCT4, cMYC, KLF44, NANOG, SOX2, and so
forth [3–5]. Ectopic expression or functional restoration of
endogenous pluripotency factors epigenetically transforms
terminally differentiated cells into ESCs-like cells [3], known
as induced pluripotent stem cells (iPSCs) [3, 4]. On the basis
of regenerative applications, stem cells can be categorized as
embryonic stem cells (ESCs), tissue specific progenitor stem
cells (TSPSCs), mesenchymal stem cells (MSCs), umbilical
cord stem cells (UCSCs), bone marrow stem cells (BMSCs),
and iPSCs (Figure 1; Table 1).The transplantation of stem cells
can be autologous, allogenic, and syngeneic for induction of
tissue regeneration and immunolysis of pathogen or malig-
nant cells. For avoiding the consequences of host-versus-
graft rejections, tissue typing of human leucocyte antigens
(HLA) for tissue and organ transplant as well as use of
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(1) ESCs, (2) TSPSCs, 
(3) MSCs , (4) UCSCs,
(5) BMSCs , (6) IPSCs 

Promises of stem cells in regenerative medicines

(1)

(2)

(3)

(4)

(5)

(6)

(i) T1DM and T2DM treatment
(ii) SLE (autoimmune disease) treatment

(iii) Application for HI treatment
(iv) Krabbe’s disease treatment
(v) Hematopoiesis in neuroblastoma

(i) Improvement of spinal cord injury
(ii) Regeneration of retinal sheet

(iii) Generation of retinal ganglion cells
(iv) Healing of heart defects
(v) Hepatic cell formation 

(vii) Cartilage lesion treatment
(viii) Regeneration of pacemaker

(ix) In vitro gametogenesis

(i) Regeneration of kidney tissue
(ii) Vision restoration in AMD
(iii) Treatment of placental defects 
(iv) Treatment of brain cortex defects
(v) ASD and autism treatment 

(vi) Treatment of liver and lung disease
(vii) Generation of serotonin neurons
(viii) Regeneration of pacemaker

(i) Treatment of diabetes and retinopathy 
(ii) Neurodental therapeutic applications

(iii) Restoration of cognitive functions
(iv) Brain and cancer treatment 
(v) Ear acoustic function restoration 

(vi) Regeneration of intestinal mucosa 
(vii) Treatment of vision defects

(viii) Muscle regeneration
(ix) Regeneration of fallopian tube

(i) Regeneration of bladder tissue
(ii) Muscle regeneration

(iii) Regeneration of teeth tissue
(iv) Healing of orthopedic injuries 
(v) Recovery from muscle injuries 

(vi) Hear scar repair after attack

(i) Treatment of anemia and blood cancer
(ii) Retroviral therapy

(iii) Correction of neuronal defects
(iv) Generation of functional platelets
(v) Alveolar bone regeneration

(vi) Regeneration of diaphragm tissue

(vi) Formation of insulin secreting 𝛽-cells

Figure 1: Promises of stem cells in regenerative medicine: the six classes of stem cells, that is, embryonic stem cells (ESCs), tissue specific
progenitor stem cells (TSPSCs), mesenchymal stem cells (MSCs), umbilical cord stem cells (UCSCs), bone marrow stem cells (BMSCs), and
induced pluripotent stem cells (iPSCs), have many promises in regenerative medicine and disease therapeutics.

immune suppressant is recommended [6]. Stem cells express
major histocompatibility complex (MHC) receptor in low
and secret chemokine that recruitment of endothelial and
immune cells is enabling tissue tolerance at graft site [6].
The current stem cell regenerative medicine approaches are
founded onto tissue engineering technologies that combine
the principles of cell transplantation, material science, and
microengineering for development of organoid; those can
be used for physiological restoration of damaged tissue and
organs. The tissue engineering technology generates nascent
tissue on biodegradable 3D-scaffolds [7, 8].The ideal scaffolds
support cell adhesion and ingrowths, mimic mechanics of
target tissue, support angiogenesis and neovascularisation
for appropriate tissue perfusion, and, being nonimmuno-
genic to host, do not require systemic immune suppres-
sant [9]. Stem cells number in tissue transplant impacts
upon regenerative outcome [10]; in that case prior ex vivo
expansion of transplantable stem cells is required [11]. For
successful regenerative outcomes, transplanted stem cells
must survive, proliferate, and differentiate in site specific

manner and integrate into host circulatory system [12]. This
review provides framework of most recent (Table 1; Figures
1–8) advancement in transplantation and tissue engineering
technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and
iPSCs in regenerativemedicine. Additionally, this review also
discusses stem cells as the tool of regenerative applications in
wildlife conservation.

2. ESCs in Regenerative Medicine

For the first time in 1998, Thomson isolated human ESCs
(hESCs) [13]. ESCs are pluripotent in their nature and can
give rise to more than 200 types of cells and promises for
the treatment of any kinds of disease [13]. The pluripo-
tency fate of ESCs is governed by functional dynamics of
transcription factors OCT4, SOX2, NANOG, and so forth,
which are termed as pluripotency factors. The two alleles
of the OCT4 are held apart in pluripotency state in ESCs;
phase through homologues pairing during embryogenesis
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Figure 2: ESCs in regenerative medicine: ESCs, sourced from ICM of gastrula, have tremendous promises in regenerative medicine. These
cells can differentiate into more than 200 types of cells representing three germ layers. With defined culture conditions, ESCs can be
transformed into hepatocytes, retinal ganglion cells, chondrocytes, pancreatic progenitor cells, cone cells, cardiomyocytes, pacemaker cells,
eggs, and sperms which can be used in regeneration of tissue and treatment of disease in tissue specific manner.

and transdifferentiation processes [14] has been considered
as critical regulatory switch for lineage commitment of ESCs.
The diverse lineage commitment potential represents ESCs
as ideal model for regenerative therapeutics of disease and
tissue anomalies. This section of review on ESCs discusses
transplantation and transdifferentiation of ESCs into retinal
ganglion, hepatocytes, cardiomyocytes, pancreatic progeni-
tors, chondrocytes, cones, egg sperm, and pacemaker cells
(Figure 2; Table 1). Infection, cancer treatment, and accidents
can cause spinal cord injuries (SCIs). The transplantation of
hESCs to paraplegic or quadriplegic SCI patients improves
body control, balance, sensation, and limbal movements [15],
where transplanted stem cells do homing to injury sites. By
birth, humans have fixed numbers of cone cells; degeneration
of retinal pigment epithelium (RPE) of macula in central
retina causes age-relatedmacular degeneration (ARMD).The
genomic incorporation of COCO gene (expressed during
embryogenesis) in the developing embryo leads lineage
commitment of ESCs into cone cells, through suppression of

TGF𝛽, BMP, and Wnt signalling pathways. Transplantation
of these cone cells to eye recovers individual from ARMD
phenomenon, where transplanted cone cells migrate and
form sheet-like structure in host retina [16]. However, estab-
lishment of missing neuronal connection of retinal ganglion
cells (RGCs), cones, andPRE is themost challenging aspect of
ARMD therapeutics. Recently, Donald Z Jacks group at John
Hopkins University School of Medicine has generated RGCs
from CRISPER-Cas9-m-Cherry reporter ESCs [17]. During
ESCs transdifferentiation process, CRIPER-Cas9 directs the
knock-in of m-Cherry reporter into 3󸀠UTR of BRN3B gene,
which is specifically expressed in RGCs and can be used
for purification of generated RGCs from other cells [17].
Furthermore, incorporation of forskolin in transdifferenti-
ation regime boosts generation of RGCs. Coaxing of these
RGCs into biomaterial scaffolds directs axonal differenti-
ation of RGCs. Further modification in RGCs generation
regime and composition of biomaterial scaffoldsmight enable
restoration of vision for ARMD and glaucoma patients [17].
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Figure 3: TSPSCs in regenerative medicine: tissue specific stem and progenitor cells have potential to differentiate into other cells of the
tissue. Characteristically inner ear stem cells can be transformed into auditory hair cells, skin progenitors into vascular smooth muscle
cells, mesoangioblasts into tibialis anterior muscles, and dental pulp stem cells into serotonin cells. The 3D-culture of TSPSCs in complex
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transformation factors secreted by TSPSCs can change cells fate to become other types of cell, such that SSCs coculture with skin, prostate,
and intestine mesenchyme transforms these cells fromMSCs into epithelial cells fate.

Globally, especially in India, cardiovascular problems are
a more common cause of human death, where biomedical
therapeutics require immediate restoration of heart functions
for the very survival of the patient. Regeneration of cardiac
tissue can be achieved by transplantation of cardiomyocytes,
ESCs-derived cardiovascular progenitors, and bone marrow
derivedmononuclear cells (BMDMNCs); however healing by
cardiomyocytes and progenitor cells is superior to BMDM-
NCs but mature cardiomyocytes have higher tissue healing
potential, suppress heart arrhythmias, couple electromag-
netically into hearts functions, and provide mechanical and
electrical repair without any associated tumorigenic effects

[18, 19]. Like CMdifferentiation, ESCs derived liver stem cells
can be transformed into Cytp450-hepatocytes, mediating
chemical modification and catabolism of toxic xenobiotic
drugs [20]. Even today, availability and variability of func-
tional hepatocytes are a major a challenge for testing drug
toxicity [20]. Stimulation of ESCs and ex vivo VitK12 and
lithocholic acid (a by-product of intestinal flora regulating
drugmetabolism during infancy) activates pregnaneX recep-
tor (PXR), CYP3A4, and CYP2C9, which leads to differ-
entiation of ESCs into hepatocytes; those are functionally
similar to primary hepatocytes, for their ability to produce
albumin and apolipoprotein B100 [20]. These hepatocytes
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are excellent source for the endpoint screening of drugs for
accurate prediction of clinical outcomes [20]. Generation of
hepatic cells from ESCs can be achieved in multiple ways,
as serum-free differentiation [21], chemical approaches [20,
22], and genetic transformation [23, 24].These ESCs-derived
hepatocytes are long lasting source for treatment of liver
injuries and high throughput screening of drugs [20, 23, 24].
Transplantation of the inert biomaterial encapsulated hESCs-
derived pancreatic progenitors (CD24+, CD49+, andCD133+)
differentiates into 𝛽-cells, minimizing high fat diet induced
glycemic and obesity effects inmice [25] (Table 1). Addition of
antidiabetic drugs into transdifferentiation regime can boost
ESCs conservation into 𝛽-cells [25], which theoretically can
cure T2DM permanently [25]. ESCs can be differentiated
directly into insulin secreting 𝛽-cells (marked with GLUT2,
INS1, GCK, and PDX1) which can be achieved through
PDX1 mediated epigenetic reprogramming [26]. Globally,
osteoarthritis affects millions of people and occurs when
cartilage at joints wears away, causing stiffness of the joints.
The available therapeutics for arthritis relieve symptoms but
do not initiate reverse generation of cartilage. For young

individuals and athletes replacement of joints is not feasible
like old populations; in that case transplantation of stem cells
represents an alternative for healing cartilage injuries [27].
Chondrocytes, the cartilage forming cells derived fromhESC,
embedded in fibrin gel effectively heal defective cartilage
within 12 weeks, when transplanted to focal cartilage defects
of knee joints in mice without any negative effect [27].
Transplanted chondrocytes form cell aggregates, positive for
SOX9 and collagen II, and defined chondrocytes are active for
more than 12wks at transplantation site, advocating clinical
suitability of chondrocytes for treatment of cartilage lesions
[27]. The integrity of ESCs to integrate and differentiate
into electrophysiologically active cells provides a means for
natural regulation of heart rhythm as biological pacemaker.
Coaxing of ESCs into inert biomaterial as well as propagation
in defined culture conditions leads to transdifferentiation
of ESCs to become sinoatrial node (SAN) pacemaker cells
(PCs) [28]. Genomic incorporation TBox3 into ESCs ex
vivo leads to generation of PCs-like cells; those express
activated leukocyte cells adhesion molecules (ALCAM) and
exhibit similarity to PCs for gene expression and immune
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functions [28]. Transplantation of PCs can restore pacemaker
functions of the ailing heart [28]. In summary, ESCs can
be transdifferentiated into any kinds of cells representing
three germ layers of the body, being most promising source
of regenerative medicine for tissue regeneration and disease
therapy (Table 1). Ethical concerns limit the applications of
ESCs, where set guidelines need to be followed; in that case
TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs can be explored
as alternatives.

3. TSPSCs in Regenerative Medicine

TSPSCs maintain tissue homeostasis through continuous
cell division, but, unlike ESCs, TSPSCs retain stem cells
plasticity and differentiation in tissue specific manner, giving
rise to few types of cells (Table 1). The number of TSPSCs

population to total cells population is too low; in that
case their harvesting as well as in vitro manipulation is
really a tricky task [29], to explore them for therapeutic
scale. Human body has foundation from various types of
TSPSCs; discussing the therapeutic application for all types
is not feasible. This section of review discusses therapeutic
application of pancreatic progenitor cells (PPCs), dental pulp
stem cells (DPSCs), inner ear stem cells (IESCs), intestinal
progenitor cells (IPCs), limbal progenitor stem cells (LPSCs),
epithelial progenitor stem cells (EPSCs), mesoangioblasts
(MABs), spermatogonial stem cells (SSCs), the skin derived
precursors (SKPs), and adipose derived stem cells (AdSCs)
(Figure 3; Table 1). During embryogenesis PPCs give rise
to insulin-producing 𝛽-cells. The differentiation of PPCs
to become 𝛽-cells is negatively regulated by insulin [30].
PPCs require active FGF and Notch signalling; growing
more rapidly in community than in single cell populations
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transdifferentiation monocytes. These multipotent stem cells can cure host from cancer and infection of HIV and HCV.

advocates the functional importance of niche effect in self-
renewal and transdifferentiation processes. In 3D-scaffold
culture system, mice embryo derived PPCs grow into hollow
organoid spheres; those finally differentiate into insulin-
producing 𝛽-cell clusters [29]. The DSPSCs, responsible for
maintenance of teeth health status, can be sourced fromapical
papilla, deciduous teeth, dental follicle, and periodontal
ligaments, have emerged as regenerative medicine candidate,
and might be explored for treatment of various kinds of
disease including restoration neurogenic functions in teeth
[31, 32]. Expansion ofDSPSCs in chemically defined neuronal
culture medium transforms them into a mixed population
of cholinergic, GABAergic, and glutaminergic neurons; those
are known to respond towards acetylcholine, GABA, and
glutamine stimulations in vivo. These transformed neuronal
cells express nestin, glial fibrillary acidic protein (GFAP),
𝛽III-tubulin, and voltage gated L-type Ca2+ channels [32].
However, absence of Na+ and K+ channels does not sup-
port spontaneous action potential generation, necessary for
response generation against environmental stimulus. All

together, these primordial neuronal stem cells have pos-
sible therapeutic potential for treatment of neurodental
problems [32]. Sometimes, brain tumor chemotherapy can
cause neurodegeneration mediated cognitive impairment, a
condition known as chemobrain [33]. The intrahippocampal
transplantation of human derived neuronal stem cells to
cyclophosphamide behavioural decremented mice restores
cognitive functions in a month time. Here the transplanted
stem cells differentiate into neuronal and astroglial lineage,
reduce neuroinflammation, and restore microglial functions
[33]. Furthermore, transplantation of stem cells, followed by
chemotherapy, directs pyramidal and granule-cell neurons
of the gyrus and CA1 subfields of hippocampus which leads
to reduction in spine and dendritic cell density in the
brain. These findings suggest that transplantation of stem
cells to cranium restores cognitive functions of the chemo-
brain [33]. The hair cells of the auditory system produced
during development are not postmitotic; loss of hair cells
cannot be replaced by inner ear stem cells, due to active
state of the Notch signalling [34]. Stimulation of inner ear
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progenitors with Υ-secretase inhibitor (LY411575) abrogates
Notch signalling through activation of transcription factor
atonal homologue 1 (Atoh1) and directs transdifferentiation
of progenitors into cochlear hair cells [34]. Transplantation
of in vitro generated hair cells restores acoustic functions
in mice, which can be the potential regenerative medicine
candidates for the treatment of deafness [34]. Generation of
the hair cells also can be achieved through overexpression of
𝛽-catenin and Atoh1 in Lrg5+ cells in vivo [35]. Similar to ear
progenitors, intestine of the digestive tract also has its own
tissue specific progenitor stem cells, mediating regeneration
of the intestinal tissue [34, 36]. Dysregulation of the common
stem cells signalling pathways, Notch/BMP/TGF-𝛽/Wnt, in
the intestinal tissue leads to disease. Information on these
signalling pathways [37] is critically important in designing
therapeutics. Coaxing of the intestinal tissue specific progeni-
tors with immune cells (macrophages), connective tissue cells
(myofibroblasts), and probiotic bacteria into 3D-scaffolds of
inert biomaterial, crafting biological environment, is suitable
for differentiation of progenitors to occupy the crypt-villi
structures into these scaffolds [36]. Omental implementation
of these crypt-villi structures to dogs enhances intestinal
mucosa through regeneration of goblet cells containing

intestinal tissue [36]. These intestinal scaffolds are close
approach for generation of implantable intestinal tissue,
divested by infection, trauma, cancer, necrotizing enterocol-
itis (NEC), and so forth [36]. In vitro culture conditions
cause differentiation of intestinal stem cells to become other
types of cells, whereas incorporation of valproic acid and
CHIR-99021 in culture conditions avoids differentiation of
intestinal stem cells, enabling generation of indefinite pool
of stem cells to be used for regenerative applications [38].
The limbal stem cells of the basal limbal epithelium, marked
with ABCB5, are essential for regeneration and maintenance
of corneal tissue [39]. Functional status of ABCB5 is critical
for survival and functional integrity of limbal stem cells,
protecting them from apoptotic cell death [39]. Limbal stem
cells deficiency leads to replacement of corneal epithelium
with visually dead conjunctival tissue, which can be con-
tributed by burns, inflammation, and genetic factors [40].
Transplanted human cornea stem cells to mice regrown into
fully functional human cornea, possibly supported by blood
eye barrier phenomena, can be used for treatment of eye
diseases, where regeneration of corneal tissue is critically
required for vision restoration [39]. Muscle degenerative
disease like duchenne muscular dystrophy (DMD) can cause
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extensive thrashing ofmuscle tissue, where tissue engineering
technology can be deployed for functional restoration of
tissue through regeneration [41]. Encapsulation of mouse
or human derived MABs (engineered to express placental
derived growth factor (PDGF)) into polyethylene glycol
(PEG) fibrinogen hydrogel and their transplantation beneath
the skin at ablated tibialis anterior form artificial muscles,
which are functionally similar to those of normal tibialis
anterior muscles [41]. The PDGF attracts various cell types
of vasculogenic and neurogenic potential to the site of
transplantation, supporting transdifferentiation of mesoan-
gioblasts to become muscle fibrils [41]. The therapeutic
application of MABs in skeletal muscle regeneration and
other therapeutic outcomes has been reviewed by others [42].
One of the most important tissue specific stem cells, the
male germline stem cells or spermatogonial stem cells (SSCs),
produces spermatogenic lineage through mesenchymal and
epithets cells [43] which itself creates niche effect on other
cells. In vivo transplantation of SSCs with prostate, skin,
and uterine mesenchyme leads to differentiation of these

cells to become epithelia of the tissue of origin [43]. These
newly formed tissues exhibit all physical and physiological
characteristics of prostate and skin and the physical charac-
teristics of prostate, skin, and uterus, express tissue specific
markers, and suggest that factors secreted from SSCs lead
to lineage conservation which defines the importance of
niche effect in regenerative medicine [43]. According to an
estimate, more than 100 million people are suffering from the
condition of diabetic retinopathy, a progressive dropout of
vascularisation in retina that leads to loss of vision [44]. The
intravitreal injection of adipose derived stem cells (AdSCs)
to the eye restores microvascular capillary bed in mice.
The AdSCs from healthy donor produce higher amounts of
vasoprotective factors compared to glycemic mice, enabling
superior vascularisation [44]. However use of AdSCs for
disease therapeutics needs further standardization for cell
counts in dose of transplant and monitoring of therapeutic
outcomes at population scale [44]. Apart from AdSCs, other
kinds of stem cells also have therapeutic potential in regen-
erative medicine for treatment of eye defects, which has been
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reviewed by others [45]. Fallopian tubes, connecting ovaries
to uterus, are the sites where fertilization of the egg takes
place. Infection in fallopian tubes can lead to inflammation,
tissue scarring, and closure of the fallopian tube which often
leads to infertility and ectopic pregnancies. Fallopian is also
the site where onset of ovarian cancer takes place.The studies
on origin and etiology of ovarian cancer are restricted due
to lack of technical advancement for culture of epithelial
cells. The in vitro 3D organoid culture of clinically obtained
fallopian tube epithelial cells retains their tissue specificity,
keeps cells alive, which differentiate into typical ciliated and
secretory cells of fallopian tube, and advocates that ectopic
examination of fallopian tube in organoid culture settings
might be the ideal approach for screening of cancer [46].The
sustained growth and differentiation of fallopian TSPSCs into
fallopian tube organoid depend both on the active state of
the Wnt and on paracrine Notch signalling [46]. Similar to
fallopian tube stem cells, subcutaneous visceral tissue specific
cardiac adipose (CA) derived stem cells (AdSCs) have the
potential of differentiation into cardiovascular tissue [47].
Systemic infusion of CA-AdSCs into ischemic myocardium
of mice regenerates heart tissue and improves cardiac func-
tion through differentiation to endothelial cells, vascular
smooth cells, and cardiomyocytes and vascular smooth cells.
The differentiation and heart regeneration potential of CA-
AdSCs are higher than AdSCs [48], representing CA-AdSCs
as potent regenerative medicine candidates for myocardial
ischemic therapy [47]. The skin derived precursors (SKPs),
the progenitors of dermal papilla/hair/hair sheath, give rise
to multiple tissues of mesodermal and/or ectodermal origin
such as neurons, Schwann cells, adipocytes, chondrocytes,
and vascular smooth muscle cells (VSMCs). VSMCs mediate
wound healing and angiogenesis process can be derived
from human foreskin progenitor SKPs, suggesting that SKPs
derived VSMCs are potential regenerative medicine candi-
dates for wound healing and vasculature injuries treatments
[49]. In summary, TSPSCs are potentiated with tissue regen-
eration, where advancement in organoid culture (Figure 3;
Table 1) technologies defines the importance of niche effect
in tissue regeneration and therapeutic outcomes of ex vivo
expanded stem cells.

4. MSCs/Stromal Cells in
Regenerative Medicine

MSCs, the multilineage stem cells, differentiate only to
tissue of mesodermal origin, which includes tendons, bone,
cartilage, ligaments, muscles, and neurons [50]. MSCs are
the cells which express combination of markers: CD73+,
CD90+, CD105+, CD11b−, CD14−, CD19−, CD34−, CD45−,
CD79a−, and HLA-DR, reviewed elsewhere [50]. The appli-
cation of MSCs in regenerative medicine can be generalized
from ongoing clinical trials, phasing through different state
of completions, reviewed elsewhere [90]. This section of
review outlines the most recent representative applications of
MSCs (Figure 4; Table 1). The anatomical and physiological
characteristics of both donor and receiver have equal impact
on therapeutic outcomes. The bone marrow derived MSCs

(BMDMSCs) from baboon are morphologically and pheno-
typically similar to those of bladder stem cells and can be used
in regeneration of bladder tissue. The BMDMSCs (CD105+,
CD73+, CD34−, and CD45−), expressing GFP reporter,
coaxed with small intestinal submucosa (SIS) scaffolds, aug-
ment healing of degenerated bladder tissue within 10wks of
the transplantation [51].The combinatorial CD characterized
MACs are functionally active at transplantation site, which
suggests that CD characterization of donorMSCs yields supe-
rior regenerative outcomes [51]. MSCs also have potential
to regenerate liver tissue and treat liver cirrhosis, reviewed
elsewhere [91]. The regenerative medicinal application of
MSCs utilizes cells in two formats as direct transplantation
or first transdifferentiation and then transplantation; ex
vivo transdifferentiation of MSCs deploys retroviral delivery
system that can cause oncogenic effect on cells. Nonviral,
NanoScript technology, comprising utility of transcription
factors (TFs) functionalized gold nanoparticles, can target
specific regulatory site in the genome effectively and direct
differentiation of MSCs into another cell fate, depending
on regime of TFs. For example, myogenic regulatory factor
containing NanoScript-MRF differentiates the adipose tissue
derived MSCs into muscle cells [92]. The multipotency char-
acteristics representMSCs as promising candidate for obtain-
ing stable tissue constructs through coaxed 3D organoid
culture; however heterogeneous distribution of MSCs slows
down cell proliferation, rendering therapeutic applications
of MSCs. Adopting two-step culture system for MSCs can
yield homogeneous distribution of MSCs in biomaterial
scaffolds. For example, fetal-MSCs coaxed in biomaterial
when cultured first in rotating bioreactor followed with static
culture lead to homogeneous distribution of MSCs in ECM
components [7]. Occurrence of dental carries, periodontal
disease, and tooth injury can impact individual’s health,
where bioengineering of teeth can be the alternative option.
Coaxing of epithelial-MSCs with dental stem cells into syn-
thetic polymer gives rise tomature teeth unit, which consisted
of mature teeth and oral tissue, offering multiple regenerative
therapeutics, reviewed elsewhere [52]. Like the tooth decay,
both human and animals are prone to orthopedic injuries,
affecting bones, joint, tendon,muscles, cartilage, and so forth.
Althoughnatural healing potential of bone is sufficient to heal
the common injuries, severe trauma and tumor-recession
can abrogate germinal potential of bone-forming stem cells.
In vitro chondrogenic, osteogenic, and adipogenic potential
of MSCs advocates therapeutic applications of MSCs in
orthopedic injuries [53]. Seeding of MSCs, coaxed into
biomaterial scaffolds, at defective bone tissue, regenerates
defective bone tissues, within fourwks of transplantation; by
the end of 32wks newly formed tissues integrate into old bone
[54]. Osteoblasts, the bone-forming cells, have lesser actin
cytoskeleton compared to adipocytes and MSCs. Treatment
of MSCs with cytochalasin-D causes rapid transportation
of G-actin, leading to osteogenic transformation of MSCs.
Furthermore, injection of cytochalasin-D to mice tibia also
promotes bone formation within a wk time frame [55].
The bone formation processes in mice, dog, and human
are fundamentally similar, so outcomes of research on mice
and dogs can be directional for regenerative application to



14 International Journal of Cell Biology

human. Injection of MSCs to femur head of Legg-Calve-
Perthes suffering dog heals the bone very fast and reduces the
injury associated pain [55]. Degeneration of skeletal muscle
andmuscle cramps are very common to sledge dogs, animals,
and individuals involved in adventurous athletics activities.
Direct injection of adipose tissue derived MSCs to tear-site
of semitendinosus muscle in dogs heals injuries much faster
than traditional therapies [56]. Damage effect treatment
for heart muscle regeneration is much more complex than
regeneration of skeletal muscles, which needs high grade
fine-tuned coordination of neurons withmuscles. Coaxing of
MSCs into alginate gel increases cell retention time that leads
to releasing of tissue repairing factors in controlled man-
ner. Transplantation of alginate encapsulated cells to mice
heart reduces scar size and increases vascularisation, which
leads to restoration of heart functions. Furthermore, trans-
planted MSCs face host inhospitable inflammatory immune
responses and other mechanical forces at transplantation
site, where encapsulation of cells keeps them away from all
sorts of mechanical forces and enables sensing of host tissue
microenvironment, and respond accordingly [57]. Ageing,
disease, and medicine consumption can cause hair loss,
known as alopecia. Although alopecia has no life threatening
effects, emotional catchments can lead to psychological dis-
turbance. The available treatments for alopecia include hair
transplantation and use of drugs, where drugs are expensive
to afford and generation of new hair follicle is challenging.
Dermal papillary cells (DPCs), the specialized MSCs local-
ized in hair follicle, are responsible for morphogenesis of
hair follicle and hair cycling. The layer-by-layer coating of
DPCs, called GAG coating, consists of coating of geletin
as outer layer, middle layer of fibroblast growth factor 2
(FGF2) loaded alginate, and innermost layer of geletin. GAG
coating creates tissue microenvironment for DPCs that can
sustain immunological andmechanical obstacles, supporting
generation of hair follicle. Transplantation of GAG-coated
DPCs leads to abundant hair growth and maturation of
hair follicle, where GAG coating serves as ECM, enhanc-
ing intrinsic therapeutic potential of DPCs [58]. During
infection, the inflammatory cytokines secreted from host
immune cells attractMSCs to the site of inflammation, which
modulates inflammatory responses, representing MSCs as
key candidate of regenerative medicine for infectious disease
therapeutics. Coculture of macrophages (M𝜙) and adipose
derived MSCs from Leishmania major (LM) susceptible and
resistant mice demonstrates that AD-MSCs educate M𝜙
against LM infection, differentially inducing M1 and M2
phenotype that represents AD-MSC as therapeutic agent
for leishmanial therapy [93]. In summary, the multilineage
differentiation potential of MSCs, as well as adoption of next-
generation organoid culture system, avails MSCs as ideal
regenerative medicine candidate.

5. UCSCs in Regenerative Medicine

Umbilical cord, generally thrown at the time of child birth,
is the best known source for stem cells, procured in nonin-
vasive manner, having lesser ethical constraints than ESCs.

Umbilical cord is rich source of hematopoietic stem cells
(HSCs) and MSCs, which possess enormous regeneration
potential [94] (Figure 5; Table 1). The HSCs of cord blood
are responsible for constant renewal of all types of blood cells
and protective immune cells. The proliferation of HSCs is
regulated by Musashi-2 protein mediated attenuation of Aryl
hydrocarbon receptor (AHR) signalling in stem cells [95].
UCSCs can be cryopreserved at stem cells banks (Figure 5;
Table 1), in operation by both private and public sector
organization. Public stem cells banks operate on donation
formats and perform rigorous screening for HLA typing
and donated UCSCs remain available to anyone in need,
whereas private stem cell banks operation is more person-
alized, availing cells according to donor consent. Stem cell
banking is not so common, even in developed countries.
Survey studies find that educated women are more eager
to donate UCSCs, but willingness for donation decreases
with subsequent deliveries, due to associated cost and safety
concerns for preservation [96]. FDA has approved five HSCs
for treatment of blood and other immunological complica-
tions [97]. The amniotic fluid, drawn during pregnancy for
standard diagnostic purposes, is generally discarded without
considering its vasculogenic potential. UCSCs are the best
alternatives for those patients who lack donors with fully
matched HLA typing for peripheral blood and PBMCs and
bone marrow [98]. One major issue with UCSCs is number
of cells in transplant, fewer cells in transplant require more
time for engraftment to mature, and there are also risks of
infection and mortality; in that case ex vivo propagation of
UCSCs can meet the demand of desired outcomes. There
are diverse protocols, available for ex vivo expansion of
UCSCs, reviewed elsewhere [99]. Amniotic fluid stem cells
(AFSCs), coaxed to fibrin (required for blood clotting, ECM
interactions, wound healing, and angiogenesis) hydrogel and
PEG supplemented with vascular endothelial growth factor
(VEGF), give rise to vascularised tissue, when grafted tomice,
suggesting that organoid cultures of UCSCs have promise
for generation of biocompatible tissue patches, for treating
infants born with congenital heart defects [59]. Retroviral
integration of OCT4, KLF4, cMYC, and SOX2 transforms
AFSCs into pluripotency stem cells known as AFiPSCs
which can be directed to differentiate into extraembryonic
trophoblast by BMP2 and BMP4 stimulation, which can be
used for regeneration of placental tissues [60]. Wharton’s
jelly (WJ), the gelatinous substance inside umbilical cord,
is rich in mucopolysaccharides, fibroblast, macrophages,
and stem cells. The stem cells from UCB and WJ can be
transdifferentiated into 𝛽-cells. Homogeneous nature of WJ-
SCs enables better differentiation into 𝛽-cells; transplanta-
tion of these cells to streptozotocin induced diabetic mice
efficiently brings glucose level to normal [7]. Easy access
and expansion potential and plasticity to differentiate into
multiple cell lineages represent WJ as an ideal candidate
for regenerative medicine but cells viability changes with
passages with maximum viable population at 5th-6th pas-
sages. So it is suggested to perform controlled expansion
of WJ-MSCS for desired regenerative outcomes [9]. Study
suggests that CD34+ expression leads to the best regenerative
outcomes, with less chance of host-versus-graft rejection. In
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vitro expansion of UCSCs, in presence of StemRegenin-1 (SR-
1), conditionally expands CD34+ cells [61]. In type I diabetic
mellitus (T1DM), T-cell mediated autoimmune destruction
of pancreatic 𝛽-cells occurs, which has been considered as
tough to treat. Transplantation of WJ-SCs to recent onset-
T1DM patients restores pancreatic function, suggesting that
WJ-MSCs are effective in regeneration of pancreatic tissue
anomalies [62]. WJ-MSCs also have therapeutic importance
for treatment of T2DM. A non-placebo controlled phase I/II
clinical trial demonstrates that intravenous and intrapancre-
atic endovascular injection of WJ-MSCs to T2DM patients
controls fasting glucose and glycated haemoglobin through
improvement of 𝛽-cells functions, evidenced by enhanced c-
peptides and reduced inflammatory cytokines (IL-1𝛽 and IL-
6) and T-cells counts [63]. Like diabetes, systematic lupus
erythematosus (SLE) also can be treated with WJ-MSCs
transplantation. During progression of SLE host immune
system targets its own tissue leading to degeneration of
renal, cardiovascular, neuronal, and musculoskeletal tissues.
A non-placebo controlled follow-up study on 40 SLE patients
demonstrates that intravenous infusion ofWJ-MSC improves
renal functions and decreases systematic lupus erythemato-
sus disease activity index (SLEDAI) and British Isles Lupus
Assessment Group (BILAG), and repeated infusion of WJ-
MSCs protects the patient from relapse of the disease [64].
Sometimes, host inflammatory immune responses can be
detrimental for HSCs transplantation and blood transfu-
sion procedures. Infusion of WJ-MSC to patients, who
had allogenic HSCs transplantation, reduces haemorrhage
inflammation (HI) of bladder, suggesting that WJ-MSCs are
potential stem cells adjuvant in HSCs transplantation and
blood transfusion based therapies [100]. Apart from WJ,
umbilical cord perivascular space and cord vein are also
rich source for obtaining MSCs. The perivascular MSCs
of umbilical cord are more primitive than WJ-MSCs and
other MSCs from cord suggest that perivascular MSCs
might be used as alternatives for WJ-MSCs for regenerative
therapeutics outcome [101]. Based on origin, MSCs exhibit
differential in vitro and in vivo properties and advocate
functional characterization of MSCs, prior to regenerative
applications. Emerging evidence suggests that UCSCs can
heal brain injuries, caused by neurodegenerative diseases
like Alzheimer’s, Krabbe’s disease, and so forth. Krabbe’s
disease, the infantile lysosomal storage disease, occurs due
to deficiency of myelin synthesizing enzyme (MSE), affecting
brain development and cognitive functions. Progression of
neurodegeneration finally leads to death of babies aged
two. Investigation shows that healing of peripheral nervous
system (PNS) and central nervous system (CNS) tissues with
Krabbe’s disease can be achieved by allogenic UCSCs. UCSCs
transplantation to asymptomatic infants with subsequent
monitoring for 4–6 years reveals that UCSCs recover babies
from MSE deficiency, improving myelination and cognitive
functions, compared to those of symptomatic babies. The
survival rate of transplanted UCSCs in asymptomatic and
symptomatic infants was 100% and 43%, respectively, sug-
gesting that early diagnosis and timely treatment are critical
for UCSCs acceptance for desired therapeutic outcomes.
UCSCs are more primitive than BMSCs, so perfect HLA

typing is not critically required, representing UCSCs as an
excellent source for treatment of all the diseases involving
lysosomal defects, like Krabbe’s disease, hurler syndrome,
adrenoleukodystrophy (ALD), metachromatic leukodystro-
phy (MLD), Tay-Sachs disease (TSD), and Sandhoff disease
[65]. Brain injuries often lead to cavities formation, which
can be treated from neuronal parenchyma, generated ex vivo
from UCSCs. Coaxing of UCSCs into human originated
biodegradable matrix scaffold and in vitro expansion of
cells in defined culture conditions lead to formation of
neuronal organoids, within threewks’ time frame. These
organoids structurally resemble brain tissue and consisted
of neuroblasts (GFAP+, Nestin+, and Ki67+) and immature
stem cells (OCT4+ and SOX2+). The neuroblasts of these
organoids further can be differentiated into mature neurons
(MAP2+ and TUJ1+) [66]. Administration of high dose
of drugs in divesting neuroblastoma therapeutics requires
immediate restoration of hematopoiesis. Although BMSCs
had been promising in restoration of hematopoiesis UCSCs
are sparely used in clinical settings. A case study demonstrates
that neuroblastoma patients who received autologous UCSCs
survive without any associated side effects [12]. During
radiation therapy of neoplasm, spinal cordmyelitis can occur,
although occurrence of myelitis is a rare event and usually
such neurodegenerative complication of spinal cord occurs
6–24 years after exposure to radiations. Transplantation of
allogenic UC-MSCs in laryngeal patients undergoing radi-
ation therapy restores myelination [102]. For treatment of
neurodegenerative disease like Alzheimer’s disease (AD),
amyotrophic lateral sclerosis (ALS), traumatic brain injuries
(TBI), Parkinson’s, SCI, stroke, and so forth, distribution
of transplanted UCSCs is critical for therapeutic outcomes.
In mice and rat, injection of UCSCs and subsequent MRI
scanning show that transplanted UCSCs migrate to CNS and
multiple peripheral organs [67]. For immunomodulation of
tumor cells disease recovery, transplantation of allogenicDCs
is required. The CD11c+DCs, derived from UCB, are mor-
phologically and phenotypically similar to those of peripheral
blood derived CTLs-DCs, suggesting that UCB-DCs can be
used for personalized medicine of cancer patient, in need for
DCs transplantation [103]. Coculture of UCSCs with radia-
tion exposed human lung fibroblast stops their transdifferen-
tiation, which suggests that factors secreted fromUCSCsmay
restore niche identity of fibroblast, if they are transplanted
to lung after radiation therapy [104]. Tearing of shoulder
cuff tendon can cause severe pain and functional disability,
whereas ultrasound guided transplantation of UCB-MSCs
in rabbit regenerates subscapularis tendon in fourwks’ time
frame, suggesting that UCB-MSCs are effective enough to
treat tendons injuries when injected to focal points of tear-site
[68]. Furthermore, transplantation of UCB-MSCs to chon-
dral cartilage injuries site in pig knee along with HA hydrogel
composite regenerates hyaline cartilage [69], suggesting that
UCB-MSCs are effective regenerative medicine candidate
for treating cartilage and ligament injuries. Physiologically
circulatory systems of brain, placenta, and lungs are similar.
Infusion of UCB-MSCs to preeclampsia (PE) induced hyper-
tension mice reduces the endotoxic effect, suggesting that
UC-MSCs are potential source for treatment of endotoxin
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induced hypertension during pregnancy, drug abuse, and
other kinds of inflammatory shocks [105]. Transplantation
of UCSCs to severe congenital neutropenia (SCN) patients
restores neutrophils count from donor cells without any
side effect, representing UCSCs as potential alternative for
SCN therapy, when HLA matched bone marrow donors
are not accessible [106]. In clinical settings, the success of
myocardial infarction (MI) treatment depends on ageing,
systemic inflammation in host, and processing of cells for
infusion. Infusion of human hyaluronan hydrogel coaxed
UCSCs in pigs induces angiogenesis, decreases scar area,
improves cardiac function at preclinical level, and suggests
that the same strategy might be effective for human [107]. In
stem cells therapeutics, UCSCs transplantation can be either
autologous or allogenic. Sometimes, the autologous UCSCs
transplants cannot combat over tumor relapse, observed in
Hodgkin’s lymphoma (HL), which might require second
dose transplantation of allogenic stem cells, but efficacy and
tolerance of stem cells transplant need to be addressed,
where tumor replace occurs. A case study demonstrates that
second dose allogenic transplants of UCSCs effective for HL
patients, who had heavy dose in prior transplant, increase the
long term survival chances by 30% [10]. Patients undergoing
long term peritoneal renal dialysis are prone to peritoneal
fibrosis and can change peritoneal structure and failure of
ultrafiltration processes. The intraperitoneal (IP) injection of
WJ-MSCs prevents methylglyoxal induced programmed cell
death and peritoneal wall thickening and fibrosis, suggesting
that WJ-MSCs are effective in therapeutics of encapsulating
peritoneal fibrosis [70]. In summary, UCB-HSCs, WJ-MSCs,
perivascular MSCs, and UCB-MSCs have tissue regeneration
potential.

6. BMSCs in Regenerative Medicine

Bone marrow found in soft spongy bones is responsible for
formation of all peripheral blood and comprises hematopoi-
etic stem cells (producing blood cells) and stromal cells
(producing fat, cartilage, and bones) [108] (Figure 6; Table 1).
Visually bone marrow has two types, red marrow (myeloid
tissue; producing RBC, platelets, and most of WBC) and
yellow marrow (producing fat cells and some WBC) [108].
Imbalance in marrow composition can culminate to the
diseased condition. Since 1980, bone marrow transplantation
is widely accepted for cancer therapeutics [109]. In order to
avoid graft rejection, HLA typing of donors is a must, but
completely matched donors are limited to family members,
which hampers allogenic transplantation applications. Since
matching of all HLA antigens is not critically required, in that
case defining the critical antigens for haploidentical allogenic
donor for patients, who cannot find fully matched donor,
might relieve from donor constraints. Two-step administra-
tion of lymphoid and myeloid BMSCs from haploidentical
donor to the patients of aplastic anaemia and haematological
malignancies reconstructs host immune system and the
outcomes are almost similar to fully matched transplants,
which recommends that profiling of critically importantHLA

is sufficient for successful outcomes of BMSCs transplan-
tation. Haploidentical HLA matching protocol is the major
process for minorities and others who do not have access
to matched donor [71]. Furthermore, antigen profiling is
not the sole concern for BMSCs based therapeutics. For
example, restriction of HIV1 (human immune deficiency
virus) infection is not feasible through BMSCs transplan-
tation because HIV1 infection is mediated through CD4+
receptors, chemokine CXC motif receptor 4 (CXCR4), and
chemokine receptor 5 (CCR5) for infecting and propagating
into T helper (Th), monocytes, macrophages, and dendritic
cells (DCs). Genetic variation in CCR2 and CCR5 receptors
is also a contributory factor; mediating protection against
infection has been reviewed elsewhere [110]. Engineering of
hematopoietic stem and progenitor cells (HSPCs) derived
CD4+ cells to express HIV1 antagonistic RNA, specifically
designed for targeting HIV1 genome, can restrict HIV1
infection, through immune elimination of latently infected
CD4+ cells. A single dose infusion of genetically modified
(GM), HIV1 resistant HSPCs can be the alternative of HIV1
retroviral therapy. In the present scenario stem cells source,
patient selection, transplantation-conditioning regimen, and
postinfusion follow-up studies are the major factors, which
can limit application of HIV1 resistant GM-HSPCs (CD4+)
cells application in AIDS therapy [72, 73]. Platelets, essential
for blood clotting, are formed from megakaryocytes inside
the bone marrow [74]. Due to infection, trauma, and cancer,
there are chances of bone marrow failure. To an extent,
spongy bone marrow microenvironment responsible for
lineage commitment can be reconstructed ex vivo [75]. The
ex vivo constructed 3D-scaffolds consisted of microtubule
and silk sponge, flooded with chemically defined organ
culture medium, which mimics bone marrow environment.
The coculture of megakaryocytes and embryonic stem cells
(ESCs) in this microenvironment leads to generation of
functional platelets from megakaryocytes [75]. The ex vivo
3D-scaffolds of bone microenvironment can stride the path
for generation of platelets in therapeutic quantities for regen-
erativemedication of burns [75] and blood clotting associated
defects. Accidents, traumatic injuries, and brain stroke can
deplete neuronal stem cells (NSCs), responsible for genera-
tion of neurons, astrocytes, and oligodendrocytes. Brain does
not repopulate NSCs and heal traumatic injuries itself and
transplantation of BMSCs also can heal neurodegeneration
alone. Lipoic acid (LA), a known pharmacological antioxi-
dant compound used in treatment of diabetic and multiple
sclerosis neuropathy when combined with BMSCs, induces
neovascularisation at focal cerebral injuries, within 8wks
of transplantation. Vascularisation further attracts microglia
and induces their colonization into scaffold, which leads
to differentiation of BMSCs to become brain tissue, within
16wks of transplantation. In this approach, healing of tissue
directly depends on number of BMSCs in transplantation
dose [76]. Dental caries and periodontal disease are common
craniofacial disease, often requiring jaw bone reconstruction
after removal of the teeth. Traditional therapy focuses on
functional and structural restoration of oral tissue, bone,
and teeth rather than biological restoration, but BMSCs
based therapies promise for regeneration of craniofacial bone
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defects, enabling replacement of missing teeth in restored
bones with dental implants. Bone marrow derived CD14+
and CD90+ stem and progenitor cells, termed as tissue
repair cells (TRC), accelerate alveolar bone regeneration and
reconstruction of jaw bone when transplanted in damaged
craniofacial tissue, earlier to oral implants. Hence, TRC
therapy reduces the need of secondary bone grafts, best
suited for severe defects in oral bone, skin, and gum,
resulting from trauma, disease, or birth defects [77]. Overall,
HSCs have great value in regenerative medicine, where stem
cells transplantation strategies explore importance of niche
in tissue regeneration. Prior to transplantation of BMSCs,
clearance of original niche from target tissue is necessary
for generation of organoid and organs without host-versus-
graft rejection events. Some genetic defects can lead to
disorganization of niche, leading to developmental errors.
Complementation with human blastocyst derived primary
cells can restore niche function of pancreas in pigs and
rats, which defines the concept for generation of clinical
grade human pancreas in mice and pigs [111]. Similar to
other organs, diaphragm also has its own niche. Congenital
defects in diaphragm can affect diaphragm functions. In
the present scenario functional restoration of congenital
diaphragm defects by surgical repair has risk of reoccurrence
of defects or incomplete restoration [8]. Decellularization of
donor derived diaphragm offers a way for reconstruction of
new and functionally compatible diaphragm through niche
modulation. Tissue engineering technology based decel-
lularization of diaphragm and simultaneous perfusion of
bonemarrowmesenchymal stem cells (BM-MSCs) facilitates
regeneration of functional scaffolds of diaphragm tissues [8].
In vivo replacement of hemidiaphragm in rats with reseeded
scaffolds possesses similar myography and spirometry as it
has in vivo in donor rats. These scaffolds retaining natural
architecture are devoid of immune cells, retaining intact
extracellular matrix that supports adhesion, proliferation,
and differentiation of seeded cells [8]. These findings suggest
that cadaver obtained diaphragm, seeded with BM-MSCs,
can be used for curing patients in need for restoration of
diaphragm functions (Figure 6; Table 1). However, BMSCs are
heterogeneous population, which might result in differential
outcomes in clinical settings; however clonal expansion of
BMSCs yields homogenous cells population for therapeutic
application [8]. One study also finds that intracavernous
delivery of single clone BMSCs can restore erectile func-
tion in diabetic mice [112] and the same strategy might
be explored for adult human individuals. The infection
of hepatitis C virus (HCV) can cause liver cirrhosis and
degeneration of hepatic tissue. The intraparenchymal trans-
plantation of bone marrow mononuclear cells (BMMNCs)
into liver tissue decreases aspartate aminotransferase (AST),
alanine transaminase (ALT), bilirubin, CD34, and 𝛼-SMA,
suggesting that transplantedBMSCs restore hepatic functions
through regeneration of hepatic tissues [113]. In order tomeet
the growing demand for stem cells transplantation therapy,
donor encouragement is always required [8]. The stem cells
donation procedure is very simple; with consent donor
gets an injection of granulocyte-colony stimulating factor
(G-CSF) that increases BMSCs population. Bone marrow

collection is done from hip bone using syringe in 4-5 hrs,
requiring local anaesthesia andwithin a wk time frame donor
gets recovered donation associated weakness.

7. iPSCs in Regenerative Medicine

The field of iPSCs technology and research is new to all
other stem cells research, emerging in 2006 when, for the
first time, Takahashi and Yamanaka generated ESCs-like
cells through genetic incorporation of four factors, Sox2,
Oct3/4, Klf4, and c-Myc, into skin fibroblast [3]. Due to
extensive nuclear reprogramming, generated iPSCs are indis-
tinguishable from ESCs, for their transcriptome profiling,
epigenetic markings, and functional competence [3], but use
of retrovirus in transdifferentiation approach has questioned
iPSCs technology. Technological advancement has enabled
generation of iPSCs from various kinds of adult cells phasing
through ESCs or direct transdifferentiation. This section of
review outlinesmost recent advancement in iPSC technology
and regenerative applications (Figure 7; Table 1). Using the
new edge of iPSCs technology, terminally differentiated skin
cells directly can be transformed into kidney organoids [114],
which are functionally and structurally similar to those of
kidney tissue in vivo. Up to certain extent kidneys heal
themselves; however natural regeneration potential cannot
meet healing for severe injuries. During kidneys healing
process, a progenitor stem cell needs to become 20 types
of cells, required for waste excretion, pH regulation, and
restoration of water and electrolytic ions. The procedure for
generation of kidney organoids ex vivo, containing functional
nephrons, has been identified for human. These ex vivo
kidney organoids are similar to fetal first-trimester kidneys
for their structure and physiology. Such kidney organoids
can serve as model for nephrotoxicity screening of drugs,
disease modelling, and organ transplantation. However gen-
eration of fully functional kidneys is a far seen event with
today’s scientific technologies [114]. Loss of neurons in
age-related macular degeneration (ARMD) is the common
cause of blindness. At preclinical level, transplantation of
iPSCs derived neuronal progenitor cells (NPCs) in rat limits
progression of disease through generation of 5-6 layers of
photoreceptor nuclei, restoring visual acuity [78].The various
approaches of iPSCs mediated retinal regeneration including
ARMD have been reviewed elsewhere [79]. Placenta, the
cordial connection between mother and developing fetus,
gets degenerated in certain pathophysiological conditions.
Nuclear programming of OCT4 knock-out (KO) and wild
type (WT) mice fibroblast through transient expression
of GATA3, EOMES, TFAP2C, and +/− cMYC generates
transgene independent trophoblast stem-like cells (iTSCs),
which are highly similar to blastocyst derived TSCs for DNA
methylation, H3K7ac, nucleosome deposition of H2A.X, and
other epigenetic markings. Chimeric differentiation of iTSCs
specifically gives rise to haemorrhagic lineages and placental
tissue, bypassing pluripotency phase, opening an avenue
for generation of fully functional placenta for human [115].
Neurodegenerative disease like Alzheimer’s and obstinate
epilepsies can degenerate cerebrum, controlling excitatory
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and inhibitory signals of the brain. The inhibitory tones in
cerebral cortex and hippocampus are accounted by 𝛾-amino
butyric acid secreting (GABAergic) interneurons (INs). Loss
of these neurons often leads to progressive neurodegen-
eration. Genomic integration of Ascl1, Dlx5, Foxg1, and
Lhx6 to mice and human fibroblast transforms these adult
cells into GABAergic-INs (iGABA-INs). These cells have
molecular signature of telencephalic INs, release GABA,
and show inhibition to host granule neuronal activity [81].
Transplantation of these INs in developing embryo cures
from genetic and acquired seizures, where transplanted cells
disperse andmature into functional neuronal circuits as local
INs [82]. Dorsomorphin and SB-431542 mediated inhibition
of TGF-𝛽 and BMP signalling direct transformation of
human iPSCs into cortical spheroids.These cortical spheroids
consisted of both peripheral and cortical neurons, sur-
rounded by astrocytes, displaying transcription profiling and
electrophysiology similarity with developing fetal brain and
mature neurons, respectively [83]. The underlying complex
biology and lack of clear etiology and genetic reprogram-
ming and difficulty in recapitulation of brain development
have barred understanding of pathophysiology of autism
spectrum disorder (ASD) and schizophrenia. 3D organoid
cultures of ASD patient derived iPSC generate miniature
brain organoid, resembling fetal brain few months after
gestation. The idiopathic conditions of these organoids are
similar with brain of ASD patients; both possess higher
inhibitory GABAergic neurons with imbalanced neuronal
connection. Furthermore these organoids express forkhead
Box G1 (FOXG1) much higher than normal brain tissue,
which explains that FOXG1 might be the leading cause of
ASD [84]. Degeneration of other organs and tissues also
has been reported, like degeneration of lungs which might
occur due to tuberculosis infection, fibrosis, and cancer. The
underlying etiology for lung degeneration can be explained
through organoid culture. Coaxing of iPSC into inert bio-
material and defined culture leads to formation of lung
organoids that consisted of epithelial and mesenchymal cells,
which can survive in culture for months. These organoids
are miniature lung, resemble tissues of large airways and
alveoli, and can be used for lung developmental studies
and screening of antituberculosis and anticancer drugs [87].
The conventional multistep reprogramming for iPSCs con-
sumes months of time, while CRISPER-Cas9 system based
episomal reprogramming system that combines two steps
together enables generation of ESCs-like cells in less than
twowks, reducing the chances of culture associated genetic
abrasions and unwanted epigenetic [80]. This approach can
yield single step ESCs-like cells in more personalized way
from adults with retinal degradation and infants with severe
immunodeficiency, involving correction for geneticmutation
of OCT4 and DNMT3B [80]. The iPSCs expressing anti-
CCR5-RNA, which can be differentiated into HIV1 resistant
macrophages, have applications in AIDS therapeutics [88].
The diversified immunotherapeutic application of iPSCs has
been reviewed elsewhere [89]. The 𝛼-1 antitrypsin deficiency
(A1AD) encoded by serpin peptidase inhibitor clade A
member 1 (SERPINA1) protein synthesized in liver pro-
tects lungs from neutrophils elastase, the enzyme causing

disruption of lungs connective tissue. A1AD deficiency is
common cause of both lung and liver disease like chronic
obstructive pulmonary disease (COPD) and liver cirrhosis.
Patient specific iPSCs from lung and liver cells might explain
pathophysiology of A1AD deficiency. COPD patient derived
iPSCs show sensitivity to toxic drugs which explains that
actual patient might be sensitive in similar fashion. It is
known that A1AD deficiency is caused by single base pair
mutation and correction of thismutation fixes theA1ADdefi-
ciency in hepatic-iPSCs [85]. The high order brain functions,
like emotions, anxiety, sleep, depression, appetite, breathing
heartbeats, and so forth, are regulated by serotonin neurons.
Generation of serotonin neurons occurs prior to birth, which
are postmitotic in their nature. Any sort of developmental
defect and degeneration of serotonin neurons might lead
to neuronal disorders like bipolar disorder, depression, and
schizophrenia-like psychiatric conditions. Manipulation of
Wnt signalling in human iPSCs in defined culture conditions
leads to an in vitro differentiation of iPSCs to serotonin-
like neurons. These iPSCs-neurons primarily localize to
rhombomere 2-3 segment of rostral raphe nucleus, exhibit
electrophysiological properties similar to serotonin neurons,
express hydroxylase 2, the developmental marker, and release
serotonin in dose and time dependent manner. Transplanta-
tion of these neurons might cure from schizophrenia, bipolar
disorder, and other neuropathological conditions [116]. The
iPSCs technology mediated somatic cell reprogramming of
ventricular monocytes results in generation of cells, sim-
ilar in morphology and functionality with PCs. SA note
transplantation of PCs to large animals improves rhythmic
heart functions. Pacemaker needs very reliable and robust
performance so understanding of transformation process and
site of transplantation are the critical aspect for therapeutic
validation of iPSCs derived PCs [28]. Diabetes is a major
health concern in modern world, and generation of 𝛽-
cells from adult tissue is challenging. Direct reprogramming
of skin cells into pancreatic cells, bypassing pluripotency
phase, can yield clinical grade 𝛽-cells. This reprogramming
strategy involves transformation of skin cells into definitive
endodermal progenitors (cDE) and foregut like progenitor
cells (cPF) intermediates and subsequent in vitro expansion
of these intermediates to become pancreatic 𝛽-cells (cPB).
The first step is chemically complex and can be understood as
nonepisomal reprogramming on day one with pluripotency
factors (OCT4, SOX2, KLF4, and hair pin RNA against p53),
then supplementation with GFs and chemical supplements
on day seven (EGF, bFGF, CHIR, NECA, NaB, Par, and
RG), and two weeks later (Activin-A, CHIR, NECA, NaB,
and RG) yielding DE and cPF [86]. Transplantation of cPB
yields into glucose stimulated secretion of insulin in diabetic
mice defines that such cells can be explored for treatment of
T1DM and T2DM in more personalized manner [86]. iPSCs
represent underrated opportunities for drug industries and
clinical research laboratories for development of therapeutics,
but safety concerns might limit transplantation applications
(Figure 7; Table 1) [117]. Transplantation of human iPSCs into
mice gastrula leads to colonization and differentiation of cells
into three germ layers, evidenced with clinical developmental
fat measurements. The acceptance of human iPSCs by mice
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gastrula suggests that correct timing and appropriate repro-
gramming regime might delimit humanmice species barrier.
Using this fact of species barrier, generation of human organs
in closely associated primates might be possible, which can
be used for treatment of genetic factors governed disease
at embryo level itself [118]. In summary, iPSCs are safe and
effective for treatment of regenerative medicine.

8. Stem Cells in Wildlife Conservation

The unstable growth of human population threatens the
existence of wildlife, through overexploitation of natural
habitats and illegal killing of wild animals, leading many
species to face the fate of being endangered and go for
extinction. For wildlife conservation, the concept of creation
of frozen zoo involves preservation of gene pool and germ
plasm from threatened and endangered species (Figure 8).
The frozen zoo tissue samples collection from dead or live
animal can be DNA, sperms, eggs, embryos, gonads, skin,
or any other tissue of the body [119]. Preserved tissue can be
reprogrammed or transdifferentiated to become other types
of tissues and cells, which opens an avenue for conservation
of endangered species and resurrection of life (Figure 8). The
gonadal tissue from young individuals harbouring immature
tissue can be matured in vivo and ex vivo for generation
of functional gametes. Transplantation of SSCs to testis of
male from the same different species can give rise to sper-
matozoa of donor cells [120], which might be used for IVF
based captive breeding of wild animals. The most dangerous
fact in wildlife conservation is low genetic diversity, too
few reproductively capable animals which cannot maintain
adequate genetic diversity in wild or captivity. Using the edge
of iPSC technology, pluripotent stem cells can be generated
from skin cells. For endangered drill,Mandrillus leucophaeus,
and nearly extinct white rhinoceros, Ceratotherium simum
cottoni, iPSC has been generated in 2011 [121]. The endan-
gered animal drill (Mandrillus leucophaeus) is genetically
very close to human and often suffers from diabetes, while
rhinos are genetically far removed from other primates.
The progress in iPSCs, from the human point of view,
might be transformed for animal research for recapturing
reproductive potential and health in wild animals. However,
stem cells based interventions in wild animals are much
more complex than classical conservation planning and
biomedical research has to face. Conversion of iPSC into
egg or sperm can open the door for generation of IVF
based embryo; those might be transplanted in womb of live
counterparts for propagation of population. Recently, iPSCs
have been generated for snow leopard (Panthera uncia),
native to mountain ranges of central Asia, which belongs
to cat family; this breakthrough has raised the possibilities
for cryopreservation of genetic material for future cloning
and other assisted reproductive technology (ART) applica-
tions, for the conservation of cat species and biodiversity.
Generation of leopard iPSCs has been achieved through
retroviral-system based genomic integration of OCT4, SOX2,
KLF4, cMYC, and NANOG.These iPSCs from snow leopard
also open an avenue for further transformation of iPSCs

into gametes [122]. The in vivo maturation of grafted tissue
depends both on age and on hormonal status of donor tissue.
These facts are equally applicable to accepting host. Ectopic
xenografts of cryopreserved testis tissue from Indian spotted
deer (Moschiola indica) to nude mice yielded generation of
spermatocytes [123], suggesting that one-day procurement
of functional sperm from premature tissue might become
a general technique in wildlife conservation. In summary,
tissue biopsies from dead or live animals can be used for
generation of iPSCs and functional gametes; those can be
used in assisted reproductive technology (ART) for wildlife
conservation.

9. Future Perspectives

The spectacular progress in the field of stem cells research
represents great scope of stem cells regenerative therapeutics.
It can be estimated that by 2020 or so we will be able to
produce wide array of tissue, organoid, and organs from
adult stem cells. Inductions of pluripotency phenotypes in
terminally differentiated adult cells have better therapeutic
future than ESCs, due to least ethical constraints with adult
cells. In the coming future, there might be new pharmaceu-
tical compounds; those can activate tissue specific stem cells,
promote stem cells to migrate to the side of tissue injury, and
promote their differentiation to tissue specific cells. Except
few countries, the ongoing financial and ethical hindrance
on ESCs application in regenerative medicine have more
chance for funding agencies to distribute funding for the least
risky projects on UCSCs, BMSCs, and TSPSCs from biopsies.
The existing stem cells therapeutics advancements are more
experimental and high in cost; due to that application on
broad scale is not feasible in current scenario. In the near
future, the advancements of medical science presume using
stem cells to treat cancer, muscles damage, autoimmune
disease, and spinal cord injuries among a number of impair-
ments and diseases. It is expected that stem cells therapies
will bring considerable benefits to the patients suffering from
wide range of injuries and disease.There is high optimism for
use of BMSCs, TSPSCs, and iPSCs for treatment of various
diseases to overcome the contradictions associated with
ESCs. For advancement of translational application of stem
cells, there is a need of clinical trials, which needs funding
rejoinder from both public and private organizations. The
critical evaluation of regulatory guidelines at each phase of
clinical trial is a must to comprehend the success and efficacy
in time frame.
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