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Abstract: The fast development of wireless sensor networks and MEMS make it possible to set
up today real-time wireless geotechnical monitoring. To handle interferences and noises from the
output data, Kalman filter can be selected as a method to achieve a more realistic estimate of the
observations. In this paper, a one-day wireless measurement using accelerometers and inclinometers
was deployed on top of a tunnel section under construction in order to monitor ground subsidence.
The normal vectors of the sensors were firstly obtained with the help of rotation matrices, and then be
projected to the plane of longitudinal section, by which the dip angles over time would be obtained
via a trigonometric function. Finally, a centralized Kalman filter was applied to estimate the tilt
angles of the sensor nodes based on the data from the embedded accelerometer and the inclinometer.
Comparing the results from two sensor nodes deployed away and on the track respectively, the
passing of the tunnel boring machine can be identified from unusual performances. Using this
method, the ground settlement due to excavation can be measured and a real-time monitoring of
ground subsidence can be realized.
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1. Introduction

Due to the fast development of Micro Electro Mechanical Systems (MEMS) and the optimization
of sensor cost, size and energy consumption in the last two decades, Wireless Sensor Networks
(WSNs) has been progressively entered many areas such as disaster monitoring [1–3] and industrial
sensing [4,5]. A WSN consists of spatially distributed sensor nodes to monitor various conditions such
as temperature, pressure, humidity, sound, vibration, pollutants and motion. In this sense they allow
us to enter Internet of Things (IoT) and provide physical information about our environment to users
where ever needed. Nowadays, real-time remote surveillance of environmental conditions has been
achieved and a much more comprehensive understanding of the variations of natural environments
over time can be obtained.

From 2007 to 2011, the Department of Engineering Geology and Hydrogeology at RWTH Aachen
University and its partners carried out a joint project namely SLEWS (a Sensor based Landslide
Early Warning System), aiming at developing a prototype of an alarm and early warning system
for landslides. SLEWS was funded by GEOTECHNOLOGIEN, which is a geoscientific research
and development program supported by the German Federal Ministry for Education and Research
(BMBF) and the German Research Foundation (DFG). A self-organizing and multi-hop wireless
monitoring network was created thereby [6,7]. This wireless monitoring system and its predecessor
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system X-SLEWS [8] have been applied to monitor several kinds of natural hazards and geotechnical
activities such as tilting of rock towers deformation [9], ground subsidence due to ground improvement
measures [10], tunneling construction [11], and landslide monitoring [12]. Figure 1 exhibits the main
components of the X-SLEWS network. The node capsule comprises a base board for processing and
radio and an add-on board for sensing and backup data storage. The add-on board is easily replaced
by another one with different sensors to allow fast adoption to distinct tasks. The battery capsule
allocated with three 3.6-V batteries provides the power supply to the sensor node capsule, separating
node and energy source allows also to exchange energy sources or add modules for energy harvesting
like solar panels. The gateway receives and stores the retrieved data from all the nodes in the network
and broadcasts the updated clock periodically to connected nodes. It bears also a raspberry PI with a
server to control communication and data storage and can be additional equipped with a data up-link
via 3G modem for remote operation and monitoring [8,11].
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Figure 1. Components of X-SLEWS (From [11]). The node capsule comprises a base board for basic
operation and an add-on board for sensing and storing function. The battery capsule allocated
with three 3.6-V batteries provides the power supply to the node capsule while measuring and data
transmitting. The gateway receives and saves the retrieved data from all the nodes in the network and
broadcasts the updated clock periodically to connected nodes.

The X-SLEWS wireless monitoring system was applied in a one-day field test on top of the
construction site of the South Hongmei Road super highway tunnel in Shanghai, and positional
information of the sensor nodes has been obtained based on the measurements from embedded MEMS
accelerometers and inclinometers. Both of the derived normal vectors based on the output of the
MEMS sensors contain interferences and noises and thus a data filter was needed for a good estimate.
In the following we will briefly introduce the sensors and measuring principle applied. Then the
processing of sensor data using rotation matrices will be described. Finally, the usage of the Kalman
filter for data estimation is described in detail and the results will be discussed.

2. Applied MEMS Sensors

Each sensor node has been equipped with a 3-axis accelerometer and two orthogonal 1-axis
inclinometers, both of which are produced by Murata Electronics Oy (previous called VTI Technologies,
Vantaa, Finland) and are mounted on an add-on board. In Table 1 a generic data sheet for the two sensor
is shown.

Basically, MEMS Accelerometers and inclinometers share the same principle to observe
acceleration. A sketch of a MEMS accelerometer is shown below in Figure 2. The movable proof
mass is suspended by the restoring springs, while the sensing plates are fixed onto the sensor board.
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The accelerometer is sensitive to the linear acceleration of the sensor and the earth gravitational field.
When the sensing plate deflects from the original position, the change in capacitance (C1 and C2)
between the fingers of the proof mass and sensing plates can be converted into a voltage signal, which
is subsequently digitized to digital value, from which the acceleration along the axis can be expressed
through a given formula. Due to different precision of the sensors, the output of the accelerometer and
inclinometer is substituted into respective formulas to obtain the acceleration value [13].

Table 1. Generic Data Sheet of the two Sensors Used in the Deployment.

Sensor Type Accelerometer Inclinometer

Product SCA3100-D04 SCA830-D07
Size(w ˆ h ˆ l) 7.0 ˆ 3.3 ˆ 8.6 mm3 7.6 ˆ 3.3 ˆ 8.6 mm3

Measurement Axis 3-axis 1-axis
Range ˘2 g ˘1 g

Sensitivity (LSB/g) 900 (0.0637˝/count) 32,000 (0.00179˝/count)
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Figure 3. Measurement of Inclination from the Accelerometer. The accelerometer measures the value 
of ݃′, which represents for the weight of the earth’s gravitational acceleration ݃ in the axial direction 
on the sensor board. The tilt angle of the axis ∝ with respect to the horizontal plane can be calculated 
via an inverse trigonometric function: ∝= arcsin ' . 

Figure 2. Sketch of a MEMS Accelerometer (Modified from [14]). The sensing plate is fixed onto
the sensor board and the movable proof mass is suspended by the restoring spring. The proof mass
will drift downward when a linear acceleration points upwards or the Earth’s gravitational field
points downwards.

When the accelerometer or the inclinometer is used for measuring the gravity, as the output
represents the weight of the earth gravitational field along the axis (Figure 3), the tilt angle of the axis
with respect to the horizontal plane can be obtained easily via a sine function [11].
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Figure 3. Measurement of Inclination from the Accelerometer. The accelerometer measures the value
of g1, which represents for the weight of the earth’s gravitational acceleration g in the axial direction on
the sensor board. The tilt angle of the axis 9 with respect to the horizontal plane can be calculated via
an inverse trigonometric function: 9 “ arcsin g1

g .
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3. Acquiring Sensor Motion Using Inertial Navigation Algorithm

During the monitoring, a 3-axis accelerometer returns three values in each measurement,
representing the respective weights of the earth’s gravitational acceleration along the three axial
directions. In this sense each axis can be seen and handled equally to an independent sensor, like
the two orthogonal 1-axis inclinometers which provide from each sensor a perpendicular inclination.
Processing output, the tilt angle of each axis of the accelerometers and the inclinometers can be
deduced. However, we cannot gain an understanding of the spatial variations of the sensors by only
comparing the three values from accelerometers and the two values from inclinometers over time.
Indeed, there is lack of a unified spatial parameter that enables a comparison of the results from
distinct sensors. Hence, before the study of the spatial variations of the sensors, a normal vector should
be calculated as a standard expression, representing the position of a sensor in a three dimensional
Cartesian coordinate system. The deviation of the normal vector can be divided into three gradual
steps [15] and will be briefly explained as follows.

3.1. Expression of g’

We define a coordinate system OX0Y0Z0, which is transformed to a new coordinate system
OX1Y1Z1 by rotating a roll angle φ, a pitch angle θ and a yaw angle ψ around x-, y- and z-axis
respectively (Figure 4). For each step of rotation, there is a corresponding rotation matrix R that
transfers the expression of a vector based on the old coordinate system to an expression based on the
new one. There are six possible orders for the rotation of the coordinate system but only the orders of
Z-Y-X or Z-X-Y can assure a solution, since a spatial vector has two degrees of freedom [14]. Taking the
Z-Y-X order for instance, after being rotated successively around z-, y- and x-axis, the rotated vector of
earth gravitational acceleration p0, 0,´1q1 can be expressed as:

g1xyz “ Rx pϕqRy pθqRz pψq

¨

˚

˝

0
0
´1

˛

‹

‚

“

¨

˚

˝

sinθ

´cosθsinϕ

´cosθcosϕ

˛

‹

‚

(1)
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Figure 4. Coordinate System Transforming Through the Order of X-Y-Z (modified from [11]). The initial
coordinate system OX0Y0Z0 is transformed to OX1Y1Z1 considering the roll, pitch and yaw angles
around the x-, y- and z-axis respectively.

3.2. Acquirement of Rotation Angles

In this step, based on the equivalent relations between the sensor output value and the
corresponding components of the g1 vector, the roll ϕ and pitch θ can be resolved and rotation
matrices are hereby obtained. As a result of the mechanism of an accelerometer, the vector of the
earth’s gravitational acceleration is exported as p0, 0, 1qT instead of p0, 0,´1qT [11]. Similarly, the
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components of g1xyz are correspondingly equal to the magnitude of the normalized accelerometer

reading Gp
`

Gpx, Gpy, Gpz
˘T after multiplying with ´1, which can be presented as:

Gp

‖ Gp ‖ “ ´g1xyz “ ´

¨

˚

˝

sinθ

´cosθsinϕ

´cosθcosϕ

˛

‹

‚

(2)

Solving the equation, the roll ϕ and the pitch θ can be expressed as:
Accelerometer:

ϕ “ arctan
ˆ

Gpy

Gpz

˙

(3)

θ “ ´arcsin
Gpx

b

G2
px ` G2

py ` G2
pz

(4)

Inclinometer:

ϕ “ arcsin
Gpy

b

1´ G2
px

(5)

θ “ ´arcsinGpx (6)

Since current monitoring system is not equipped with a magnetometer or a gyroscope, the value
of yaw ψ cannot be solved. Nevertheless, taking account of the relatively simple deformation mode
in geotechnical projects and the slight relevance to construction safety, the yaw ψ that represents the
rotation around z-axis could be considered as zero.

3.3. Derivation of the Normal Vector

After retrieving the expression of rotation matrices, we operate the matrices inversely and intend
to convert the normal vector from the transformed coordinate system into a description according
to the old one. Defining the upward direction that is perpendicular to the sensor board plane as the
normal direction; following the Z-Y-X order, the equation that describes the correlation between initial
normal vector Vn and the converted normal vector p0, 0, 1qT in the rotated coordinate system can be
expressed as:

Rx pϕqRy pθqRz pψqVn “

¨

˚

˝

0
0
1

˛

‹

‚

(7)

As the rotation matrices Rz pψq, Ry pθq and Rx pϕq are unit orthogonal matrices (Unit Orthogonal
Matrix: is a unitized square matrix, the transpose of which equals to its inverse, which can be expressed
as QT “ Q´1, QQT “ QTQ “ E, where E is the identity matrix), they satisfy the principle that the
transpose equals to their inverse. Hence Vn can be solved by:

Vn “ RT
z pψqRT

y pθqRT
x pϕq

¨

˚

˝

0
0
1

˛

‹

‚

(8)

ñ Vn “

¨

˚

˝

cosϕsinθ

´sinϕ

cosϕcosθ

˛

‹

‚

(9)

The normal vector represents the tilt direction and the tilt angle of the sensor board, which moves
along with the monitored objects during geotechnical events.
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4. Positional Estimate Using Kalman Filter

The normal vectors calculated from raw data of the MEMS sensor have inherited interferences and
noises from different sources and thus should not be used directly to represent the position. Therefore,
Kalman filter is used subsequently to estimate the state of the observations. In particular, this allows
also to apply the concept of sensor fusion if more than one sensor is used e.g., to monitor inclination
or acceleration.

Kalman filter goes back on 1960, when R. E. Kalman proposed a recursive solution to the
discrete-data linear filtering problem [16]. As one of the primary developers of the linear quadratic
estimation (LQE), this method is named after his name. Kalman filter is a set of mathematical equations
that uses a recursive means to estimate the underlying system state by minimizing the mean square
error [17]. Nowadays, Kalman filter and its extended version have been widely used in target tracking,
navigation, and other relevant fields in data processing [18,19]. In the following a brief introduction of
Kalman filter followed by his application to our problem of noisy positional data is given.

4.1. A Brief Introduction of Kalman Filter

The first step of the Kalman filter is to build a model that represents the series of data. The state
variable x is addressed as an expression of discrete linear stochastic difference equation and the
measurement value z is described as a linear function of x:

xk “ Axk´1 ` Buk´1 `wk´1 (10)

zk “ Hxk ` vk (11)

where:

A—State transition matrix relating the state at the previous time step k ´ 1 to that at the current
step k;
u—Optional control input;
B—Control matrix that relates u to the state x;
w—Process noise vector, w(i) is normally distributed denoted by N(0, Q) and the covariance

cov rw piq , w pjqs “ Q ¨ δij, where δij “

#

0 i f i ‰ j
1 i f i “ j

;

H—Meaurement transition matrix relating the state x to the measurement z;
v—Measurement noise vector, v piq is normally distributed denoted by N p0, Rq and the

covariance cov rv piq , v pjqs “ R ¨ δij, where δij “

#

0 i f i ‰ j
1 i f i “ j

, and w and v are

statistically independent.

Once the Kalman filter model is established, the estimating process is applied by a
predictor-corrector cycle. As is shown in Figure 5, when the initial state value is established, the
iteration can be immediately started. Specifically, time update equations and measurement update
equations are respectively grouped that are responsible for the priori estimate for the next time step
and the feedback of the priori estimate. Table 2 provides the update equations from groups of time
and measurement. A detailed explanation of Kalman filter can be found in [17,20]. There are several
formulations Kalman filter update equations; in this paper, a specific form of Kalman gain K and a
posteriori estimate error covariance P are selected on purpose of a concise expression of Kalman filter
algorithms (Tables 2 and 3) for both single and multi-sensor systems. More information can be found
in [21].
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Table 2. Kalman Filter Update Equations (x̂´k —A priori state estimate at step k, P´k —A priori estimate
error covariance at step k, x̂k—A posteriori state estimate at step k, Pk—A posteriori estimate error
covariance at step k, Kk—Kalman Gain that is deduced by minimizing Pk).

Time Update Equations Measurement Update Equations
x̂´k “ Ax̂k´1 ` Buk´1 (12) Kk “ Pk HT R´1

k (14)
P´k “ APk´1 AT `Qk´1 (13) x̂k “ x̂´k ` Kk

`

zk ´ Hx̂´k
˘

(15)

Pk “
´

P´k
´1 ` HT R´1

k H
¯´1

(16)

In a multi-sensor system, the main fusion methods include centralized and distributed means [22],
the sketches of which are illustrated in Figure 6. Specifically, for centralized fusion methods, Willner,
Chang [23] has introduced three main linear Kalman filter algorithms for a multi-sensor system, namely
parallel filter, sequentially filter and data compression filter, and all the three filters are equivalent and
optimum. For distributed fusion methods, Carson has proposed a federated Kalman filter as a typical
representation [24,25]. Generally speaking, the centralized fusion consumes intensive resources during
calculating but assures a limited loss of information, while the distributed fusion calculates faster
but has a less accuracy. In the following application, the centralized fusion method will be applied
considering the relatively small amount of processed data at the same time.
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Figure 6. Centralized Fusion and Distributed Fusion. In centralized fusion, all measurements are sent
to the fusion center; while in distributed fusion, the sensors supply data to a set of local processors to
conduct pretreatment firstly, and then the result will be sent to the fusion center for a global estimate.
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4.2. Application of Kalman Filter to Monitor Tunneling-Induced Ground Subsidence from Sensor Motion

A one-day field test of the X-SLEWS wireless sensor network was conducted from 10 a.m. to
5 p.m. on 27 January in 2013 at a tunneling construction site in Shanghai. The sensor nodes were
deployed at the surface above the underground super highway tunnel at South Hongmei Road, while
the shield machine would pass below the area at a depth of 41.65 m. Due to the subsidence related to
the tunnel excavation, subsurface deformations was expected to monitor. Each node contains a 3-axis
accelerometer and two orthogonal 1-axis inclinometers, and both of them are able to measure the
tilting of the sensor with a settable frequency to the base station via a wireless network [8]. The MEMS
sensors of the sensor node are orientated on a plane defined as sensor plane, and we observe the
change of the orientation of the normal vector and define it as the expected motion due to the tunnel
driving. Figure 7 shows the orientation of the MEMS sensor nodes in relation to the tunnel axis
as well as the expected stages of motion caused by shield tunneling. When the excavation causes
ground subsidence, the sensor node will firstly incline to the shield head, secondly restore to a certain
extent with the expansion of the settlement area, and then tilt to the shield head again following the
succeeding subsidence.
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Figure 7. Schematic Diagram of Spatial Relation Between Sensors and the Shield Machine (a) and
Expected Motion Stages of a Sensor Node Caused by Shield Tunneling (b) (modified from [11]).

The data retrieved from two sensor nodes have been processed in this paper as an example.
Firstly, the normal vectors over time have been derived as briefly described above and in detail
in [11]. To monitor the ground deformation, the change in inclination of the surface, respectively
the sensor node, as depicted in Figure 7, can be used as a measure and to visualize the changes
over time. The normal vectors have been consequently projected into the longitudinal section of the
tunnel, and the dip angle values have been hereby solved to express the vertical the best tilting of
the sensor. Figure 8 illustrates the derivation of the dip angle from the projected normal vector Vn_prj
in the longitudinal section, and Figure 9 shows the plots of dip angles of two sensor nodes located
away from and on the track in the longitudinal section over the observing day. Particularly, Node 102
was deployed on the surface on the track of the tunnel for the purpose of an observation of ground
subsidence, while Node 101 located 16 m away from the excavation center is used as a reference of
Node 102.
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Figure 9. Plots of Dip Angles of Sensor Node 101 (away from Track) and Node 102 (on the Track) in
the Longitudinal Section over the Observing Day. Blue and green lines stand for the performances of
the accelerometer and the inclinometer. Vertical bars can be recognized as outliers.

The change of the inclination has been simplified as a uniform motion. Hereby, the movement
model of the inclination of the sensor node can be defined as:

θk “ θk´1 ` Tωk´1 `wk´1, k “ 1, 2, . . . (17)

ωk “ ωk´1 `wk´1, k “ 1, 2, . . . (18)

In which θk and ωk are the tilt angle and the angular velocity at time k, T is the measuring time
interval, wk is the process noise vector at time k.
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During the monitoring, the measurements were conducted every ten seconds, thus the measuring
time interval T is taken as 10. Therefore, the Kalman filter model is built as:

xk “ Axk´1 ` δwk´1, k “ 1, 2, . . . (19)

where xk “

«

θk
ωk

ff

, A “

«

1 10
0 1

ff

, δ “

«

1
1

ff

, w is the process noise vector and it is normally

distributed denoted by N p0, Qq and the covariance cov rw piq , w pjqs “ Q ¨ δij, where δij “

#

0 i f i ‰ j
1 i f i “ j

.

Because the state transition matrix A has a high reliability, the result will not be influenced
much by w, hence we define a relatively small value of covariance as 10´7 and thus

Q “

«

0.0000001 0
0 0.0000001

ff

.

Since there are two types of sensors (accelerometers and an inclinometers) have been embedded
in a sensor node, both of the measurements are going to be processed in the fusion center. Hereby the
measurement value z known as the tilt angle at step k is defined as:

zk “ Hxk ` vk, k “ 0, 1, 2, . . . (20)

In which zk “

«

zk,1
zk,2

ff

, H “

«

H1

H2

ff

“

«

1 0
1 0

ff

, vk “

«

vk,1
vk,2

ff

. Assuming the measurement

noise vector v is white noise with a covariance of 1, and thus Rk “

«

Rk,1
Rk,2

ff

“

«

1
1

ff

.

The initial values of the model are defined as x0 “

«

0
0

ff

, P0 “

«

1 0
0 1

ff

. These values are

substituted into Equation (21) to Equation (25) in Table 3, following the Kalman filter cycle as shown
in Figure 5.

Table 3. Kalman Filter Equations for Centralized Fusion.

Time Update Equations Measurement Update Equations
x̂´k “ Ax̂k´1 (21) Kk,i “ Pk HT

i R´1
k,i (23)

P´k “ APk´1 AT `Qk´1 (22) x̂k “ x̂´k `
2
ř

i“1
Kk,i

“

zk,i ´ Hi x̂
´
k
‰

(24)

Pk “ pP
´
k
´1 `

2
ř

i“1
HT

i R´1
k,i Hiq

´1
(25)

Before the application of Kalman filter, the values of dip angles of Nodes 101 and 102 were
subtracted by their initial values individually, as there was an initial offset for each sensor due to the
soldering. In this way the variation of dip angles of both sensors of Nodes 101 and 102 can be plotted,
which are presented in Figure 10 together with the filtered result. In general, the filtered dip angles
show much lower variances compared to the values from the accelerometer and the inclinometer.
A discussion and evaluation is given in the following.
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Figure 10. Plots of Dip Angle Variations of Sensor Node 101 (away from Track) and Node 102 (on the
Track) in the Longitudinal Section over the Observing Day. The absolute values were subtracted by the
initial value to obtain variations of dip angles, and the changes detected from the accelerometer and
inclinometer can thus be compared directly. Blue and green lines stand for the performances of the
accelerometer and the inclinometer, and the red line is the result after the application of Kalman filter.
Vertical bars can be recognized as outliers.

4.3. Evaluation and Discussion of the Filtering

As is shown in Figure 10, vertical bars in blue and green indicate outliers caused by noise
interferences from electrical fields and ground vibration when the tunnel boring machine and
other construction measures approach, where the sensor node would be affected and thus would
obtain inaccurate measurements. Regarding the accelerometer, the combination of the three 1-axis
accelerometer has enabled a normalization in calculating the normal vector, but the relatively
low sensitivity of 0.0637˝/count has reduced the reliability of the deduced dip angle. As for the
inclinometer, in spite of the high sensitivity of 0.00179˝/count compared to the accelerometer, the
output from the inclinometer could not be normalized because only two orthogonal axes were deployed
with inclinometers. Therefore, to carry out a data filter to identify the outliers on the observed data
before they are used for an assessment is necessary and valuable. In Figure 10, the scale of the outliers
for the inclinometer is evidently much bigger than that of the accelerometer for both nodes. Hence, it
can be inferred that with a strong effect of noise interferences and ground vibration, the difference of
sensitivity would not be the main factor of malfunction any more. Instead, the defect of normalization
of the inclinometer has resulted in higher ratio of outliers and an unstable performance.

To explore more information hidden from the variations of dip angles, standard deviations of the
filtered dip angles were calculated every hour for both sensor nodes, and amplified filtered variations
of dip angles with sectional standard deviation values is presented in Figure 11. The standard deviation
values are mostly between 0.0172 and 0.0266, but two exceptions appear in the first two hours for Node
102 with a value of 0.0481 and 0.0373 respectively. On the other hand, Node 101 that was deployed
16 meters away performed regularly in the first two hours compared to its latter performance. Hereby,
the abnormality of Node 102 indicates a disturbance of the data when the tunnel boring machine
passed through the area underground.



Sensors 2016, 16, 1109 12 of 15

Sensors 2016, 16, 1109 11 of 14 

 

observed data before they are used for an assessment is necessary and valuable. In Figure 10, the 
scale of the outliers for the inclinometer is evidently much bigger than that of the accelerometer for 
both nodes. Hence, it can be inferred that with a strong effect of noise interferences and ground 
vibration, the difference of sensitivity would not be the main factor of malfunction any more. Instead, 
the defect of normalization of the inclinometer has resulted in higher ratio of outliers and an unstable 
performance. 

To explore more information hidden from the variations of dip angles, standard deviations of 
the filtered dip angles were calculated every hour for both sensor nodes, and amplified filtered 
variations of dip angles with sectional standard deviation values is presented in Figure 11. The 
standard deviation values are mostly between 0.0172 and 0.0266, but two exceptions appear in the 
first two hours for Node 102 with a value of 0.0481 and 0.0373 respectively. On the other hand, Node 
101 that was deployed 16 meters away performed regularly in the first two hours compared to its 
latter performance. Hereby, the abnormality of Node 102 indicates a disturbance of the data when 
the tunnel boring machine passed through the area underground. 

 
Figure 11. Plots of Dip Angle Variations after Kalman Filter of Sensor Node 101 (away from Track) 
and Node 102 (on the Track) in the Longitudinal Section over the Observing Day with Hourly 
Standard Deviations. The values of standard deviations are mostly between 0.0172 and 0.0266, and 
the two exceptions appear in the first two hours for Node 102 indicating a disturbance of the data. 

Taking the second measuring hour for Node 102 as an example, a comparison was made 
between the filtered dip angles based on different algorithms of Kalman filter. Figure 12 shows the 
plots of dip angle variations over time after distinct filtering. The blue line corresponds to the filtered 
dip angles based on measurements from the 3-axis accelerometer, while the green line represents the 
result corresponding to the two orthogonal 1-axis inclinometers. The red line shows centralized 
filtered dip angles on the basis of both the accelerometer and the inclinometer, and the average of 
two individual filtering (blue and green line) is also indicated with purple dot line. It can be observed 
that the centralized filtering is not always consistent with the curve of the average. The standard 
deviation of the inclinometer line is much higher than the accelerometer line, which indicates that the 
lack of z-axis of the inclinometer combination has led an instable performance. Nevertheless, 
considering its higher sensitivity, the variations calculated by inclinometers should still be taken into 
account, especially when the variations of dip angle are not notable. The standard deviation of the 
dip angle variations based on both sensor values is higher than that from the accelerometer and lower 

 

11:04:53 12:04:35 13:04:17 14:03:59 15:03:41 16:03:23 17:03:05

Time

-0.3

-0.2

-0.1

0

0.1

D
ip

 A
n

g
le

 in
 L

o
ng

itu
di

n
al

 S
ec

tio
n

 S
ec

tio
n/

° Variations of Projected Dip Angle of Node 101 After Kalman Filter (away from Track)

Dip Angle KF

11:04:53 12:04:21 13:03:50 14:03:18 15:02:47 16:02:15 17:01:44

Time

-0.3

-0.2

-0.1

0

0.1

D
ip

 A
ng

le
 in

 L
on

g
itu

di
n

al
 S

ec
tio

n/
°

Variations of Projected Dip Angle of Node 102 After Kalman Filter (on the Track)

Dip Angle KF

Sn = 0.0206 Sn = 0.0236 Sn = 0.0235 Sn = 0.0215 Sn = 0.0172 Sn = 0.0185

Sn = 0.0481 Sn = 0.0373 Sn = 0.0220 Sn = 0.0235 Sn = 0.0266 Sn = 0.0229

Figure 11. Plots of Dip Angle Variations after Kalman Filter of Sensor Node 101 (away from Track)
and Node 102 (on the Track) in the Longitudinal Section over the Observing Day with Hourly
Standard Deviations. The values of standard deviations are mostly between 0.0172 and 0.0266, and the
two exceptions appear in the first two hours for Node 102 indicating a disturbance of the data.

Taking the second measuring hour for Node 102 as an example, a comparison was made between
the filtered dip angles based on different algorithms of Kalman filter. Figure 12 shows the plots of
dip angle variations over time after distinct filtering. The blue line corresponds to the filtered dip
angles based on measurements from the 3-axis accelerometer, while the green line represents the result
corresponding to the two orthogonal 1-axis inclinometers. The red line shows centralized filtered dip
angles on the basis of both the accelerometer and the inclinometer, and the average of two individual
filtering (blue and green line) is also indicated with purple dot line. It can be observed that the
centralized filtering is not always consistent with the curve of the average. The standard deviation of
the inclinometer line is much higher than the accelerometer line, which indicates that the lack of z-axis
of the inclinometer combination has led an instable performance. Nevertheless, considering its higher
sensitivity, the variations calculated by inclinometers should still be taken into account, especially
when the variations of dip angle are not notable. The standard deviation of the dip angle variations
based on both sensor values is higher than that from the accelerometer and lower than that from the
inclinometer, which have combined the advantages from both sensors and reduced to the instability to
a certain level.

If the sensor node was deployed exactly on the ground above the tunneling center, it is not
possible to evaluate the ground settlement by just calculating the tilt angle from only one single node
located at the center along the longitudinal or the transversal direction. Nevertheless, when a series
of sensor nodes are closely located on the ground from a distance away to the excavating center, a
smooth subsidence map can be achieved. Figure 13 presents a sketch showing the way of deploying
sensor nodes in order to draw a settlement curve in the cross section. Simplifying the subsided ground
surfaces between two adjacent sensor nodes are even, the absolute ground subsidence in the section
can be calculated via the tangent function presented as a polyline. After that, a smooth subsidence
curve can be obtained by interpolating the polyline (Figure 13). Anyhow, it has to be considered
that modern tunnel driving in urban areas and especially in the Shanghai areas is carried out with
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large experience and considering larger safety margins to reduce settlements. Therefore, ground
displacements and tilt motion are always considerably low.
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Figure 12. Plots of Dip Angle Variations after Kalman Filter of Node 102 (on the Track) in the
Longitudinal Section During the Second Measuring Hour. Blue and green lines are results after
Kalman filter for the accelerometer and inclinometer respectively, and the red line shows the result
solved by a centralized Kalman filter based on the tilt values from two sensors. The standard deviation
of the red line is higher than that of the blue line and lower than that of the green line. The purple dot
line displays the average of the blue and green lines.

Figure 13. Planned Distribution of Sensor Nodes along the Transversal Direction and Drawing of a
Settlement Curve. The settlement is gradually accumulated from the node deployed at a distance
showing no variations to the one at the excavating center on the ground. Starting with a value
of zero, a smooth curve of vertical ground settlement can be obtained using the tangent function
and interpolation.
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Finally, as Kalman filter is a recursive solution that can be continually applied to estimate the
situation in the next time step and then be updated after obtaining the observation, the a priori estimate
made by Kalman filter can be taken into account into a Building Information Model (BIM) to support
the management and facility operation. Furthermore, it can be used as a kind of early warning systems
to indicate changes in the ground response to the excavation.

5. Conclusions

In this paper, a one-day field test was deployed on top of a tunnel section under construction
and MEMS sensor nodes equipped with both accelerometers and inclinometers were used to measure
the changes of the surface caused by excavation. Normal vectors of the sensors were deduced using
rotation matrices and consequently were projected to the longitudinal section for the purpose of an
assessment of ground settlement. Aiming at an improved data reliability and a better estimate of
the inclination, a centralized Kalman filter was conducted based on the results from accelerometers
and inclinometers. Furthermore, a discussion based on the filtered result was provided afterwards to
evaluate the performance of the sensors and the process of tunneling.
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