Table 5.
Feature Extraction Method | First SVM Layer Kernel | Accuracy of Recognition System Using Combined Images | ||||||
---|---|---|---|---|---|---|---|---|
Feature-Level Fusion | Score-Level Fusion | |||||||
EER | FAR | GAR | Second SVM Layer Kernel | Accuracy | ||||
EER | FAR | GAR | ||||||
HOG | Linear | 17.892 | 10.00 | 70.80 | Linear | 19.955 | 10.00 | 63.40 |
15.00 | 71.08 | |||||||
15.00 | 78.70 | 19.960 | 80.050 | |||||
20.00 | 80.08 | |||||||
17.90 | 82.116 | 25.00 | 84.96 | |||||
RBF | 20.059 | 15.00 | 70.385 | |||||
20.00 | 84.32 | 20.00. | 79.841 | |||||
20.060 | 79.941 | |||||||
25.00 | 86.947 | 25.00 | 85.259 | |||||
30.00 | 88.901 | |||||||
RBF | 16.632 | 10.00 | 71.90 | Linear | 16.333 | 10.00 | 71.46 | |
15.00 | 81.80 | |||||||
15.00 | 80.59 | 16.340 | 83.675 | |||||
20.00 | 87.64 | |||||||
16.660 | 83.396 | 25.00 | 92.32 | |||||
RBF | 16.277 | 10.00 | 71.368 | |||||
20.00 | 86.52 | 15.00 | 81.99 | |||||
16.280 | 83.726 | |||||||
25.00 | 90.00 | 20.00 | 87.408 | |||||
25.00 | 92.21 |