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Abstract

Reagents that target protein-protein interactions to rewire signaling are of great relevance in 

biological research. Computational protein design may offer a means of creating such reagents on 

demand, but methods for encoding targeting selectivity are sorely needed. This is especially 

challenging when targeting interactions with ubiquitous recognition modules—e.g., PDZ domains, 

which bind C-terminal sequences of partner proteins. Here we consider the problem of designing 

selective PDZ inhibitor peptides in the context of an oncogenic signaling pathway, in which two 

PDZ domains (NHERF-2 PDZ2—N2P2 and MAGI-3 PDZ6—M3P6) compete for a receptor C-

terminus to differentially modulate oncogenic activities. Because N2P2 increases tumorigenicity 

and M3P6 decreases it, we sought to design peptides that inhibit N2P2 without affecting M3P6. 

We developed a structure-based computational design framework that models peptide flexibility in 

binding, yet is efficient enough to rapidly analyze tradeoffs between affinity and selectivity. 

Designed peptides showed low-micromolar inhibition constants for N2P2 and no detectable M3P6 

binding. Peptides designed for reverse discrimination bound M3P6 tighter than N2P2, further 

testing our technology. Experimental and computational analysis of selectivity determinants 

revealed significant indirect energetic coupling in the binding site. Successful discrimination 

between N2P2 and M3P6, despite their overlapping binding preferences, is highly encouraging for 

computational approaches to selective PDZ targeting, especially because design relied on a 

homology model of M3P6. Still, we demonstrate specific deficiencies of structural modeling that 

must be addressed to enable truly robust design. The presented framework is general and can be 

applied in many scenarios to engineer selective targeting.
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Introduction

Interaction preferences of signaling proteins—i.e., their interaction specificity profiles—are 

tuned for precise control of cellular function, with altered specificity frequently leading to 

disease states [1]. Thus, in order to perturb cellular pathways in desired ways, we must be 

able to tune specificities of targeting reagents [2, 3]. When the goal is to target a single 

binding site, the reagent should be selective—i.e., it should evade interactions with other, 

possibly similar structural regions of cellular proteins. Though different specificity profiles 

may be needed for different applications (e.g., one may want to target multiple sites), the 

ability to design selectivity appears to be a fundamental requirement for effective 

biomolecular targeting. It would enable precise interrogation of individual molecular 

interactions in the cell, opening a broad range of possibilities in therapeutic development and 

mechanistic investigation [4].

Large families of conserved protein-recognition domains (PRDs) have emerged as key 

modulators of cellular protein interactions [5, 6]. Some PRD families are responsible for 

hundreds or even thousands of interactions [7], with the specificity of each family member 

likely suited for its precise function [8, 9]. Such modularity may have arisen for better 

evolvability [3], but it presents challenges for selective biomolecular targeting. For example, 

when targeting a single PRD family member with the aim of inhibiting its interactions, the 

possibility of inhibiting interactions of other family members (with unpredictable functional 

effects) arises naturally.

PDZ domains, named for the first three proteins in which they were found (PSD95, Dlg1, 

and ZO-1), are among the most ubiquitous PRDs. These domains typically recognize the C-

terminal sequences of partnering proteins, binding them in an extended conformation [10]. 

The last six residues of the partner, typically labeled P0 through P-5 starting from the C-

terminus, encode much of the interaction specificity (Fig. 1A) [11], and strong biases exist 

within this short recognition sequence. Many of the over 260 PDZ domains in humans [12] 

are known to be involved in signaling and disease [13-15], making them important targets 

for functional modulation [16, 17]. However, their ubiquity and high conservation, along 

with a short and biased recognition sequence, may drastically complicate selective targeting. 

Encouragingly, Sidhu and co-workers showed PDZ domains to be much less promiscuous 

than previously thought [18], demonstrating at least 16 PDZ specificity classes. Also, in a 

recent experimental study, Madden and co-workers were successful in engineering 

selectivity among five PDZ proteins [19]. Nevertheless, experimental optimization of 

selectivity remains non-trivial and laborious. There is thus a great need for robust 

computational methods for selective PDZ targeting.

Several investigators have developed computational tools for the analysis and design of 

PDZ-peptide interactions. Kortemme and co-workers demonstrated that structure-based 

modeling can predict peptide sequence features recognized by individual PDZ domains in 

good agreement with high-throughput studies [20]. Stanefa and Wallin studied PDZ/peptide 

binding free energy landscapes using implicit-solvent Monte Carlo simulations, showing 

qualitative agreement with experiments [21]. Other studies have demonstrated reasonable 

ability to describe the space of peptide binders using structure-based calculations [22-24] or 
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sequence-based models trained on high-throughput experimental data [11, 25]. Machine-

learning methods can even enable sequence-based prediction of affinities, as demonstrated 

by Kamisetty et al. [25]. PDZ domains have also been subjects of structure-based 

computational design studies. Reina et al. redesigned a PDZ domain to bind new peptide 

sequences [26]. Smith et al. engineered phosphorylatable serines into a PDZ domain, 

providing phosphorylation-based control of peptide affinity [27]. Roberts et al. designed 

binding peptides for the CAL PDZ domain, a known target in cystic fibrosis, showing them 

to rescue the disease phenotype in cells [28]. Despite these notable successes, computational 

design methods that explicitly consider PDZ targeting selectivity are generally lacking, 

which prevents in-silico approaches from maximizing their impact on downstream 

biomedical applications. A structure-based solution to this problem would be ideal, due to 

the potential to generalize to other protein-interaction systems where design of selectivity is 

relevant.

As a motivating example for developing such solutions, in this work we consider a colon-

cancer associated signaling pathway for which selective PDZ targeting may provide a means 

of reducing oncogenicity [29]. This pathway is associated with lysophosphatidic acid (LPA)

—a critical regulator of colon cancer tumorigenesis and metastasis [29-31]. Binding of LPA 

to its receptor LPA2 recruits a PDZ-containing scaffolding protein NHERF-2 to the LPA2 C-

terminus (Fig. 1B) [32, 33]. Several studies have shown the NHERF-2:LPA2 complex to be 

required for oncogenic LPA signaling in colon cancer cells [29, 32-34]. Recently another 

PDZ-containing protein, MAGI-3, was found to compete with NHERF-2 for binding to 

LPA2 and alter the functional outcome (Fig. 1B). Binding of LPA2 to NHERF-2 via its 

second PDZ domain (N2P2) increases oncogenic signaling, while binding to MAGI-3 

through its sixth PDZ domain (M3P6) decreases it [29]. These data underscore the 

importance of selective inhibition within PRD families, as one would ideally like to inhibit 

N2P2 without affecting M3P6.

A common strategy for generating PDZ domain inhibitors is to begin with the C-terminal 

sequence of a native partner [17]. However, because N2P2 and M3P6 both recognize the 

same C-terminal peptide of LPA2 and are generally quite similar (Fig. 1C), this may not be a 

good starting point. Indeed, the overlap in specificites of these domains means attaining 

selectivity between the two may not be trivial. Motivated by both the biomedical relevance 

of LPA/LPA2 signaling as well as the broader need to target PDZ domains selectively, we 

aimed to solve this problem with a general structure-based framework, seeking broadly 

applicable insights. Importantly, our approach decouples the complexity of the structure-

based simulation used to model interactions from the computational efficiency requirements 

imposed by protein design, through the application of Cluster Expansion (CE) [35, 36]. CE 

produces simple sequence-based expressions that closely agree with results of complex 

structural calculations. Here we used CE in conjunction with rigorous structural sampling of 

a flexible peptide in the PDZ pocket [37], but even more sophisticated and demanding 

methodologies are admissible. Further, the framework explicitly considers interactions with 

both the target (here N2P2) and any competitors (here M3P6) via the general-purpose 

CLASSY approach [38], finding sequences optimal in terms of both affinity and selectivity.
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Our three designed peptides exhibited high affinity for N2P2 (7-14 μM), binding it 2-to-4-

fold tighter than the native LPA2 C-terminus. One peptide, predicted to be the least selective 

of the three, bound M3P6 weakly (~600 μM), while the remaining two designs showed no 

detectable binding to the domain. These results are especially encouraging given that a 

homology model of M3P6 was used in the computational framework, as no experimental 

structure was available. To better test the robustness of our framework, we considered the 

reverse design objective of targeting M3P6 and not N2P2. All three designs considered in 

this case bound M3P6 with high affinity (5-13 μM), and two peptides showed preference for 

M3P6. Taking advantage of our computational model, we went on to study the determinants 

of designed selectivity. We found clear evidence of coupling between parts of the interface 

that occurs through indirect means via the peptide’s overall conformation. Experiments with 

peptide and domain mutants confirmed these computational hypotheses. Overall, though the 

structure-based simulation of binding proved reasonably predictive in this pursuit, the need 

for better accuracy was apparent, especially with respect to effects associated with 

dynamics.

LPA/LPA2 signaling is just one example where PDZ-encoded recognition is implicated in 

cancer [39, 40], and these domains are also promising targets in other disease processes [41, 

42]. Thus, strategies for modulating PDZ pathways will have broad utility in dissecting and 

ultimately manipulating disease-relevant interactions. Our results suggest that the use of 

structure-based computation for routine design of selective PDZ inhibitor peptides may be 

within reach, but will likely require further improvements in the accuracy of structural 

modeling techniques used in protein design. We hope that the method of Cluster Expansion 

can provide an avenue for implementing such improvements, by effectively reducing the 

burden of computational efficiency in protein design and enabling the application of more 

detailed and accurate structure-based models.

Results

Homology modeling

A crystal structure of peptide-bound N2P2 existed in the PDB (ID 2HE4), but no structures 

of M3P6 were available at the time of our study. We thus proceeded to build a structural 

representation of M3P6 by homology modeling. Using 14 PDZ domains, each with both a 

peptide-bound and an apo structure in the PDB, we found that the PDZ binding site tends to 

widen upon peptide association (see Fig. S1). Thus, as the template for modeling M3P6, we 

chose the closest-in-sequence peptide-bound structure in the PDB—i.e., the first PDZ 

domain of MAGI-1 (PDB ID 2I04, 40% sequence identity to M3P6), although a closer apo 
structure was available (PDB ID 1WFV with 66% sequence identity to M3P6). A homology 

model was built using the SWISS-MODEL automated server [43], and the resulting 

structure was subjected to a full-atom minimization in PyRosetta [44] after the LPA2 C-

terminal 6-mer peptide was modeled in the binding site (see Materials and Methods).

A template with sequence identity of 40% is generally considered sufficiently close for the 

application of homology modeling [45]. However, because our intention was to use the 

M3P6 model in structure-based protein design, we sought to estimate its likely quality. 

Benchmarks of homology modeling accuracy as a function of sequence identity are widely 
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available [46]. However, we reasoned that performance might differ significantly when 

working within a well-defined protein domain. Further, we were most interested in the 

prediction accuracy within and around the binding site. For these reasons, we performed a 

homology modeling benchmark specific to PDZ domains. We collected 29 distinct crystal 

structures of PDZ-peptide complexes from the PDB and applied the MODELLER package 

[47] to build homology models for each domain using every other domain as template (the 

benchmark was done with MODELLER and not SWISS-MODEL due to ease of 

automation, but the two approaches produced nearly identical models for M3P6). The 841 

resulting models revealed the dependence of prediction quality on sequence identity between 

the modeled sequence and the template (see Fig. S2). For cases in the 35-45% sequence 

identity range, the median Cα RMSD of the binding-site and the peptide-contacting region 

(an average of 19 residues) was 1.4 Å (1.6 Å over all heavy backbone atoms), suggesting 

that the M3P6 model is likely of high quality (see Fig. S2B-C).

A structure-based model of PDZ-peptide binding

Considerable variation in the precise PDZ-peptide binding conformation exists even within 

the canonical binding mode, as demonstrated in the superposition of known PDZ-peptide 

complexes (Fig. 1D). We thus reasoned that a computational model of PDZ-peptide binding 

must thoroughly sample peptide conformations. As a vehicle for this sampling we chose the 

FlexPepDock ab-initio protocol of the Rosetta modeling suite (hereafter referred to as FPD) 

[37, 48]. FPD takes as input a starting structural model of the domain-peptide complex and 

samples peptide conformations (rigid body orientation and backbone/side-chain dihedral 

angles) as well as domain rotamers in and around the binding site, seeking to minimize an 

empirical scoring function [37]. Six-mer peptides were used in all calculations throughout 

this study, as the last six residues have been shown to encode much of the binding specificity 

[11, 18, 25]. To reduce the possibility of getting trapped in local minima, we used 70 

existing PDZ-peptide complex structures to generate a diverse set of starting domain-docked 

peptide conformations, each initiating an independent FPD simulation (Fig. 1D; see 

Materials and Methods). We found this diversification of sampling trajectories to be 

important as scores and conformations reached from different starting points varied 

considerably, and different starting models gave the best solutions for different peptides (see 

Fig. S3).

To assess the accuracy of our model, we used sets of peptide binding affinities for N2P2 and 

M3P6 reported in the literature [19, 49]. 100 μM was used as the dissociation constant cutoff 

to classify peptides into “binders” and “weak/non-binders” for each domain. Applying our 

FPD-based protocol to model each complex enabled us to benchmark the approach. Using 

the default Rosetta scoring function in FPD (“score12”) led to effective classification for 

N2P2, but performed poorly for M3P6, as illustrated by receiver operating characteristic 

(ROC) curves in Fig. 2. Scrutinizing the energetics of FPD-produced structural models 

revealed that two empirical terms, “rama” and “omega” (capturing the statistical preferences 

for backbone φ/ϕ and ω dihedral angles, respectively), fluctuated unrealistically strongly 

across M3P6-peptide models. Simply omitting these two terms improved classification 

performance for both domains, with a significant improvement for M3P6 (see Fig. 2). The 

reasonable performance for M3P6 further suggests that the homology model is of high 
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quality, though the higher performance for N2P2 is not surprising given that a peptide-bound 

high-resolution crystal structure was used in that case.

FPD Score Significance Threshold

In order to calibrate our interpretation of structure-based scores, we assessed to what extent 

predicted score differences track with differences in affinity. Using the same set of 

experimental PDZ-peptide affinities as above, we considered all pairs of peptides (for each 

domain) and asked how frequently FPD scores predicted the correct order of affinities as a 

function of the score difference (solid line in Fig. S4). We found the threshold of 

significance to be around 1.5 – 2 energy units (eu), such that score differences above this 

range were very likely to establish the correct relative order of affinities.

Cluster Expansion and CLASSY

The modeling procedure described above is highly computationally demanding, taking over 

400 CPU hours per peptide/domain complex on an Intel Xeon 2.70GHz processor. This is 

because we found that extensive conformational sampling was necessary to achieve 

reasonable performance. In fact, our procedure involved a total of 35,000 independent 

Monte Carlo simulations (see Materials and Methods), with attempts at reducing the amount 

of sampling leading to clear degradation in performance. This is consistent with Raveh et al. 

reporting the use of 50,000 independent MC simulations to model a variety of domain-

peptide complexes [37]. To address the issue of computational efficiency and enable the 

application of our structure-based model in design, we turned to the method of Cluster 

Expansion (CE) described previously [35, 36, 50]. In short, CE expresses the result of any 

protein structure-based computation as a series expansion in terms contributions from 

amino-acid clusters of increasing size (cluster functions). For example, if E(σ⃗)is the final 

score from the above FPD protocol applied to the peptide sequence σ⃗ for a given domain, the 

CE expression would state:

(1)

where ρ⃗ is a suitably chosen reference sequence, with σi and ρi being the amino acids in i-th 

position of σ⃗ and ρ⃗, respectively, and L is sequence length. The term C is the reference 

cluster function, which can be interpreted as the score of the reference sequence ρ⃗. For all 

other sequences, additional terms in the expansion contribute to the total score. So, if amino 

acid at position i in σ⃗ differs from that in ρ⃗, this carries an additional contribution from the 

point cluster function fi(σi). Similarly, if amino acids at positions i and j in σ⃗ both differ from 

the corresponding ones in ρ⃗, then besides the two point contributions, there is also an 

additive contribution form the pair cluster function fij(σi, σj). The full expansion contains all 

of the higher-order terms (up to L-tuples) and has exactly as many cluster functions as there 

are possible sequences, so that it is in principle exact. However, to be practical, the 

expansion can be truncated (e.g., to include all up to pair terms) and the values for the 

remaining cluster functions can be obtained by least-squares fitting given a set of training 
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sequences with pre-computed E(σ⃗)[35, 36, 50]. Though generation of this training set takes 

time, once a CE is derived, the evaluation of additional sequences is extremely fast.

We have previously shown that a CE not only increases computational efficiency by many 

orders of magnitude, but also enables the simultaneous design of affinity and specificity via 

the method CLASSY [38]. CLASSY works by finding the sequences that display optimal 

trade-offs between affinity and selectivity—that is, sequences that cannot be simultaneously 

improved in both categories (i.e., the Pareto optimal front). Because of this property, no 

other sequences need to be considered as design candidates.

To apply CLASSY here we first needed to derive cluster expansions for both N2P2 and 

M3P6. Given that our initial goal was to design a peptide to selectively target N2P2, we 

based the amino acids allowed at each position (i.e., the design alphabet) on the range of 

peptides previously shown to bind N2P2 in a high-throughput study [18] and the native 

LPA2 C-terminus (see Fig. 3A). Though this gave only 8,400 possible sequences, the direct 

application of the FPD protocol would be infeasible (even on a 1,000-CPU cluster it would 

take over 140 days). Instead, we applied the protocol to just 192 randomly generated 

sequences from this space with both domains, enabling us to train corresponding cluster 

expansions (see Materials and Methods). Fig. 3B illustrates the resulting agreement between 

CE and FPD-based scores. The CE-based evaluation, involving the addition of a handful of 

terms per sequence, is at least 1010 times faster than the explicit FPD-based protocol, while 

the agreement between the two is very high. Further, the true error introduced by CE is 

likely lower than what is shown in Fig. 3B, because a cluster expansion is expected to reduce 

the effect of stochastic noise in FPD-derived scores. This reduction happens because the CE 

training process effectively averages cluster function contributions in different contexts. To 

test the extent of this effect, we trained cluster expansions using the same training set as 

above (and the same procedure), but added normally distributed random noise with mean of 

0 and standard deviation of 0.5 eu to the FPD-derived scores. Repeating this 100 times 

shows that the standard deviation of CE-predicted sequence scores across different 

expansions (with different realizations of noise) is less than 0.3 eu—a 40% reduction of 

stochastic noise (Fig. S5).

Design

Given the speed of CE evaluation, the entire sequence space considered in design could be 

quickly enumerated and sequences with optimal affinity/selectivity tradeoffs obtained 

directly, without needing to apply the integer linear programming approached we previously 

described [38]. Here the affinity score of peptide σ⃗for domain X was defined as:

(2)

where CEX(σ⃗) is the score for σ⃗ predicted by the cluster expansion for domain X, and 

LMDSTL is the native C-terminus of LPA2 (native peptide). The selectivity score of σ⃗ for 

domain X relative to domain Y was defined as SXY(σ⃗) = AX(σ⃗) − AY(σ⃗). The native LPA2 

C-terminus is a relevant reference point for both affinity and selectivity because its 

interactions with both N2P2 and M3P6 are clearly physiologically relevant.
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Fig. 4A shows the relationship between affinity and selectivity for the entire sequence space 

considered, with the black curve delineating the six sequences making optimal tradeoffs. 

Though the affinity and selectivity appear to be significantly correlated, considerable amount 

of variation in selectivity exists within any given value of predicted affinity (and vice versa). 

These observations parallel the seemingly contradictory results in the literature, where 

selectivity against an undesired partner is sometimes obtained “for free” purely by seeking 

increased affinity for the desired target [26, 51-53], whereas at other times increased affinity 

for the target tracks with that for the competitor [54-56]. The peptide with the highest 

predicted affinity already exhibits considerable N2P2 selectivity, though it is predicted to 

bind to M3P6 with similar affinity as the native peptide (see point 1 in Fig. 4A; note score 

definitions above). At the cost of relatively small amounts of affinity to N2P2, designs are 

predicted to increase N2P2 selectivity further, significantly reducing affinity for M3P6.

We wondered whether the feasibility of selective N2P2 targeting suggested by calculations 

was an artifact of using a crystal structure to score binding to the desired target (N2P2) but a 

homology model to assess undesired interactions with M3P6. Thus, to truly test the 

generality of our selectivity design framework (and the reliability of the homology model), 

we decided to also tackle the opposite design problem—finding peptides that selectively 

associate with M3P6 relative to N2P2. We refer to this as “reverse design” as opposed to 

“forward design” considered above. Using a similar procedure as above to choose a design 

alphabet, train cluster expansions, and apply the CLASSY framework (see Materials and 

Methods and Fig. S6), produced the affinity/selectivity landscape shown in Fig. 4B. In 

contrast to forward design, the sequence with the highest predicted target affinity here, 

though it is expected to have some selectivity, is predicted to bind the competitor better than 

does the native peptide. The Pareto optimal front suggests that additional selectivity can be 

gained at the cost of apparently small losses of affinity, but even the maximum level of 

selectivity here is on par with the level obtained “for free” by the peptide with the highest 

target affinity in forward design (compare optimal fronts in Figs. 4A-B). This predicts that 

M3P6 may be more difficult to target selectively than N2P2 (at least, using our design 

alphabets) and suggests that, in general, the ease of selective targeting may vary among 

representatives of a domain family.

In both design exercises there were six sequences forming the Pareto optimal front (Figs.4A-

B), the CE-predicted affinity scores for all of which were verified to be in close agreement 

with full FPD calculations (Table S1). Three sequences were chosen for experimental 

characterization in each case (FD1–FD3 for forward design and RD1–RD3 for reverse 

design, denoted in Figs. 4A-B) as representing the range of predicted affinity/selectivity 

tradeoffs.

Experimental Validation

Peptide affinities for the two domains were determined by Fluorescence Polarization (FP) 

using well characterized assays [42, 49, 57] (see Materials and Methods). The affinity of 

each domain for a fluorescently labeled reporter peptide was measured first, enabling 

competition assays to determine apparent inhibition constants, Ki, of designed and native 

peptides (see Materials and Methods).
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Table 1 summarizes the measured affinities (see also Figs. S7-S9). All three forward designs 

are highly selective for N2P2, as expected by design. The first of these (FD1), designed 

without explicit consideration of selectivity, does interact with M3P6. However, this 

interaction is approximately an order-of-magnitude weaker than that between M3P6 and the 

native peptide, whereas the corresponding complexes were scored similarly by the model 

(see Fig. 4A). The remaining two designs, predicted to widen the selectivity gap between 

N2P2 and M3P6, do so and show no appreciable M3P6 association.

Reverse designs show a significant shift in selectivity towards M3P6. All designs are more 

selective for M3P6 than the native peptide, with RD1 and RD2 showing 5-and 8-fold shift in 

selectivity. Also, affinities of designed peptides for M3P6 are ~20-fold (for RD1 and RD2) 

and ~7-fold (for RD3) higher than that of the native peptide (see Table 1). However, in line 

with predictions, selectivity here is not as large as in forward design. Notably, peptides did 

not weaken affinity for the competitor (N2P2) relative to the native peptide. This was 

expected only for RD1, while RD2 and RD3 were predicted to bind N2P2 more weakly than 

the native peptide (see Fig. 4B). Still, the reduction in affinity for the competitor, relative to 

the native peptide, was predicted to be lower here than in forward design, as was the overall 

degree of target selectivity (Fig. 4B).

Binding Mode Validation via NMR

To confirm the binding mode intended by design, we employed NMR-based footprinting to 

characterize the association of FD2 and native LPA2 C-terminus with N2P2 (see Materials 

and Methods). This assay identified residues significantly perturbed upon peptide binding 

(defined as a chemical shift perturbed by more than one standard deviation above the 

average; see Materials and Methods), with the results mapped onto the surface of the 

modeled N2P2:peptide complex shown in Fig. 5. Clearly, the affected residues for 

N2P2:FD2 cluster around the canonical binding site, verifying the binding mode as intended 

by design. Further, the significantly perturbed region is similar upon binding the native and 

designed peptides (see Fig. S10), illustrating that FD2 binds in a manner similar to the native 

peptide.

Determinants of selectivity

We sought to understand the reasons behind the general success of our selectivity design, 

looking for potentially generalizable insights. In this respect, CE proves highly useful as it 

readily extracts effective sequence-level contributions from complex structure-based 

simulations. In fact, we found that CE enables a simple visualization of the entire scoring 

model for a given domain, with models for N2P2 and M3P6 in forward and reverse designs 

illustrated in Fig. 3A. Here each design position is shown on one line, with its allowed 

amino acids colored to indicate the magnitude of the corresponding CE self term (see Eq. 1). 

Lines connecting amino acids at different positions indicate pair CE terms, with both color 

and thickness indicating magnitude.

A feature of the forward design problem immediately apparent from this visualization is that 

the best amino-acid choice for binding N2P2 (in terms of self contributions) is often close to 

the worst choice for binding M3P6 (in particular, this is so for positions 0, -3, -4, and -5) 
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(Fig. 3A). In reverse design, however, the best choice for M3P6 is significantly suboptimal 

for N2P2 in only in positions 0 and -5 (Fig. 3B). Though pairwise CE contributions certainly 

complicate the picture, this simple observation is in line with the result of gaining less 

selectivity in reverse design both computationally (Fig. 4B) and experimentally (Table 1). 

This also suggests that selective targeting may be innately “easier” for some domains than 

others.

Indirect effects responsible for differential Phe@P0 preferences

Fig. 3A shows that a very significant contributor to N2P2 selectivity in forward designs 

comes from Phe at position P0, which is highly favored for N2P2 and disfavored for M3P6. 

A retrospective analysis of the work by Sidhu and co-workers confirmed a preference for 

Phe@P0 in N2P2 and lack of this amino acid in 22 peptides selected for binding to PDZ5 of 

K01A6.2, a C. elegans domain with 81% sequence identity to M3P6 [18]. Given the ability 

of our model to anticipate this preference, we sought to understand the structural basis for 

this selectivity, particularly in light of the high similarity between binding sites of N2P2 and 

M3P6. In fact, of the four residues lining the hydrophobic pocket for position P0, three are 

identical between the two domains (Phe19, Leu21 and Ile74; residues numbered as in Fig. 

1C), and one is highly similar (Tyr17 in N2P2 and Phe17 in M3P6; see Fig. 6A). The 

pockets also have visually similar shapes (Figs. 6A and S11A), and best-scoring structures 

of N2P2:FD1 and M3P6:FD1 complexes adopt very similar peptide conformations, 

including the rotamer of Phe@P0 (see Fig. 6A). Our inspection of computational models 

did, however, identify a critical difference between the two domains at position 71—

occupied by Val in N2P2 and Ile in M3P6 (Fig. 6A). Though not a position that would 

typically be considered a part of the P0 binding pocket, we reasoned that the extra methyl 

group in M3P6 might form an unfavorable contact with Phe@P0. We thus modeled the in-
silico I71V mutant of M3P6 (M3P6m), and found its preference at P0 to indeed be shifted 

towards Phe, as its interaction with FD1 was predicted to improve but not its interaction with 

TGETTL (FD1L)—a peptide different from FD1 only in having a Leu the C-terminal 

position (see Table S2). However, decomposing the total scores of M3P6:FD1 and 

M3P6m:FD1 revealed that the interaction energy between Phe@P0 and domain position 71 

became substantially less favorable upon the removal of the hydrophobic methyl group 

(Table S2). That is, I71V was predicted to increase the preference for Phe@P0, but not 

through a direct interaction with the residue. Rather, the improvement came from the 

packing between Phe@P0 and the canonical P0 binding pocket residues (Table S2). This 

suggested that the reason for the poor accommodation of Phe@P0 by wild-type M3P6 was a 

conformational frustration between optimizing packing interactions with canonical binding-

pocket residues (19, 21, and 74) and the boundary residue Ile71. In fact, this frustration is 

evident in the top 10 best-scoring M3P6:FD1 complexes, where Phe@P0 does not appear to 

have a single best binding orientation but rather samples several sub-optimal ones (Fig. 

S11B). On the other hand, top 10 best-scoring structures of M3P6m:FD1 do show a clear 

preference for a single binding pose, as do top-scoring poses of N2P2:FD1 (see Fig. S11C-

D).

Experimental measurements showed that the affinity of M3P6m for FD1 was indeed ~4-fold 

higher than that of the wild-type domain. Further, the difference between affinities of 
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M3P6m for FD1 and the native 6-mer (a peptide with Leu@P0) was only ~2-fold (see Table 

1), indicating that much of the preference for Phe versus Leu at P0 was abrogated by the 

I71V mutation, just as predicted. On the other hand, the native 6-mer bound both M3P6 and 

M3P6m domains with roughly equal affinity, indicating that I71V did not simply increase 

affinity for peptides broadly, but rather modulated the specificity, substantially increasing the 

preference for Phe@P0. Indeed, FD1 would not have been nearly as selective had M3P6m 

been the relevant competitor in forward design.

Peptide positions energetically coupled via peptide conformational ensemble

These results suggested that indirect coupling effects (i.e., energetic coupling between 

regions of the binding site not explained by direct interactions) might play a significant role 

in shaping binding preferences. Coupling between peptide positions would manifest itself 

via higher-order terms in CE (Fig. 3A). This is because a CE pair term fij(σi,σj) indicates that 

the effective joint energetic contribution of amino acids σi and σj at positions i and j, relative 

to reference amino acids ρi and ρj at these positions, cannot be explained solely in terms of 

context-independent contributions from σi and σj (see Eq. 1). These terms are thus akin to 

double mutant coupling energies [35, 58], though their direct interpretation here is 

complicated by the choice of a non-trivial reference sequence in our expansions (i.e., the 

native LPA2 C-terminus). Nevertheless, it is clear from Fig. 3A that CE predicts 

considerable influence of coupling on affinity (see Fig. 3A). On the other hand, this effect 

could have arisen erroneously due to, for example, insufficient structural relaxation of the 

peptide or the domain. We thus sought to test whether predicted intra-peptide coupling 

exists.

It was not surprising to see pair terms between pocket-facing positions (i.e., P0, P-2, and 

P-4), as steric constraints of the binding site should couple these residues via the overall 

bound peptide conformation. On the other hand, it was less obvious that away-facing 

positions (i.e., P-1, P-3, and P-5), which are expected to make “softer” contacts, should be 

significantly coupled. We thus focused on positions P-3 and P-1, seeking to determine 

whether the contribution of Ser@P-3 (having the best CE self term for N2P2 binding, but 

almost the worst for M3P6) depended on the amino acid at position P-1. Specifically, we 

considered the effect of the mutation Ser→Ala@P-3 with either Thr or Arg at position P-1 

(amino acids chosen in FD1 and FD2, respectively; see Fig. 6B inset).

We used the FPD framework to choose the remaining sequence context, aiming to ensure 

appreciable predicted affinity for both N2P2 and M3P6 and enable measurement of coupling 

in both contexts. The resulting peptides CST, CAT, CSR, and CAR are shown in Table 1 along 

with their affinities for the domains. FPD-based calculations suggested that Ser→Ala@P-3 

reduced affinity for N2P2 more in the context of Arg@P-1 than with Thr@P-1 (though 

predicted differences were below the significance threshold of 1.5-2 eu; see Fig. 6B inset 

and Table S3). Reduction of affinity in both contexts was borne out in experiments, but the 

direction of coupling was predicted incorrectly (see Table 1). Namely, loss of affinity due to 

Ser→Ala@P-3 is substantially larger in the context of Thr@P-1 than Arg@P-1, with a 

coupling constant between the two mutations of −0.7 ± 0.1 kcal/mol (definition in Materials 

and Methods).
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Ser→Ala@P-3 was predicted to reduce affinity for M3P6 by roughly the same amount in 

both contexts, though again differences were below the significance threshold (see Table 

S3). Interestingly, experiments showed that reduction in affinity is observed only in the 

context of Arg@P-1, whereas there is a small increase in affinity in the context of Thr@P-1. 

The corresponding coupling here was –0.6 ± 0.1 kcal/mol.

The combination of Ser@P-3 and Arg@P-1 was predicted to be the best for binding N2P2 

and most selective against M3P6—predictions borne out experimentally, with CSR 

exhibiting a ten-fold preference for M3P6. CLASSY picked this combination in FD2 to 

increase N2P2 selectivity relative to FD1, and this was indeed observed experimentally (see 

Table 1). So it would appear that the scoring model performs well in finding selectivity 

modulating residues, but its ability to evaluate context-dependent inter-residue couplings is 

limited.

Optimal complex structures of N2P2:CST found by FPD involved both Ser@P-3 and 

Thr@P-1 hydrogen bonding to Asn20 on the domain (Fig. 6B). This was the basis of FPD’s 

coupling prediction—the contribution of Ser@P-3 in CST is diminished by the fact that ideal 

hydrogen bonding geometry is not achievable (within the constrains of the sampling) for 

both residues (see Table S3). Explicit-solvent Molecular Dynamics (MD) simulations 

provided a plausible explanation for why this prediction was incorrect. Complexes between 

N2P2 and the four coupling peptides (CST, CAT, CSR, and CAR) were each subjected to a 

total of 100 ns of simulation in the NTP ensemble (see Materials and Methods). We 

observed that both peptides with Ala@P-3 were highly flexible at the N-terminus, while 

those with Ser@P-3 preserved the β-sheet structure (Fig. S12). Analysis of the trajectories 

invalidated the basis for FPD’s coupling prediction, showing the Asn20-with-Ser@P-3 

interaction to be, in fact, somewhat stronger with Thr@P-1 than with Arg@P-1 (see Fig. 

S13). Further, changes in peptide dynamics upon the Ser→Ala@P-3 mutation provided a 

significant difference between the two environments at P-1. Due to its length and flexibility, 

Arg@P-1 sampled interactions with several domain residues (e.g., Gln15, Asn20, and 

Asp37), without significantly restricting the peptide conformation. On the other hand, 

Thr@P-1 could only interact with Asn20, and this hydrogen bond imposed a much stronger 

restraint. As a result, the bound ensemble was much broader for CAR than CAT, with 

clustering of the trajectories revealing a far more diverse set of microstates for the former 

than the latter (see Figs. 7 and S14). For example, the most common microstate accounted 

for 54% of the observed ensemble for CAT, but only 27% for CAR. A simple estimate of 

conformational entropy contributions due to these differences revealed that they would 

account for a coupling energy of −0.34 ± 0.09 kcal/mol (see Table S4 and Materials and 

Methods). Although other contributions to the total coupling surely exist, this analysis 

demonstrates a substantial effect (of the right sign and significant magnitude) that was 

missed in our FPD analysis and would likely be missed by any current protein design 

scoring method.

The significantly higher structural heterogeneity of Ala@P-3 versus Ser@P-3, observed by 

MD, is not unexpected given that Ala is unable to make side-chain salt bridge interactions 

with binding-site residues. Interestingly, however, the well-scoring structural ensemble 

sampled by FPD did not reveal a similar higher heterogeneity for Ala@P-3. In fact, all four 
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coupling peptides exhibited roughly equivalent distributions of microstates as revealed by 

the same clustering analysis as above (see Fig. S14). More work is required to determine 

whether this is due to insufficient sampling performed in FPD or an inherent problem with 

the underlying energy function, but the ability to reproduce correct ensemble properties 

certainly appears to be a requirement for capturing the sort of entropic coupling we have 

observed by MD.

Discussion

Our computational framework was successful in achieving the practical design goal of this 

study—designed peptides were highly selective for binding N2P2 over M3P6, providing 

potential tools for interrogating the LPA signaling network and for investigating a 

therapeutic approach to colon cancer. That this success was reached by means of thorough 

structural sampling via the FlexPepDock ab-initio protocol, exploring both local adjustments 

in the binding site and global docking and folding of the peptide [37] (Fig. 2), is 

encouraging for the general applicability of the framework. We did, however, find it 

important to seed the protocol with a diverse population of reasonable starting 

conformations built form previously solved PDZ-peptide structures (see Fig. S3). Schueler-

Furman and co-workers have shown considerable success in modeling domain-peptide 

interaction specificity using an alternative sampling approach, whereby they use the 

FlexPepBind protocol to perform local refinement, but use a priori structural constraints 

derived from known important features of the binding pose [59, 60]. In both cases prior 

structural information is used and is important, and the two approaches represent alternative 

means of incorporating such information. Details of the system at hand and the application

—e.g., whether it is important for the framework to tackle non-canonically binding modes—

would dictate which method would apply best. However, the fact that both approaches 

perform well offers considerable promise for tackling the PRD-peptide binding problem, 

particularly given the continually accumulating structural data on diverse PRDs.

A marked advantage of structure-computational approaches to protein design is that they can 

provide testable hypotheses on the determinants of designed properties and lead to general 

insights. Thus, to better understand the problem of selective PDZ targeting, we sought to 

uncover the determinants of selectivity in our system. Scoring the entire sequence space 

considered in design against both N2P2 and M3P6, made possible by the application of CE, 

enabled a global view of the affinity/selectivity landscape (Fig. 4). There are two 

fundamental ways to improve selectivity—by increasing affinity for the target or decreasing 

affinity for the competitor. Because we calculated domain-peptide scores relative to the 

native interaction (see Eq. 2), points falling on diagonal lines in Fig. 4 correspond to 

sequences predicted to bind the competitor roughly as well as the native peptide. Thus, our 

model predicts that optimizing target affinity alone, though it does lead to some selectivity, 

leaves affinity for the competitor generally on par with the wild-type interaction, in both 

reverse and forward design. In other words, if decreasing competitor affinity is not an 

explicit design requirement, it is predicted not to happen automatically. On the other hand, 

as the Pareto-optimal fronts in Fig. 4 demonstrate, once the requirement of selectivity is 

explicitly imposed, with small losses in affinity considerable destabilization of the 

competing interaction is expected. These predictions were partially borne out in 
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experiments, though model inaccuracies were apparent. The affinity-only peptide in forward 

design (FD1) did detectably associate with M3P6, though about an order of magnitude more 

weakly than the native peptide. Peptides further down the Pareto-optimal front, FD1 and 

FD2, did further destabilize the competitor complex, showing no detectable M3P6 

association, while affinities for the target were roughly unchanged. In general, forward 

design appeared to be a case where achieving selectivity was “easy”, in the sense that even 

the peptide that would have been chosen purely based on consideration of affinity already 

showed selectivity. This was not the case with targeting M3P6, where achieving selectivity 

appeared more difficult. First, the model predicted a significantly lower level of selectivity 

achievable in this case (see Fig. 4B). As in forward design, here the affinity-only variant, 

RD1, was expected to interact appreciably with the competitor (even somewhat better than 

does the native peptide; see Fig. 4B), and peptides further down the Pareto-optimal front 

(RD2 and RD3) were predicted to destabilize this interaction. Experiments showed that RD1 

did indeed associate with N2P2 more tightly than the native peptide (~5 μM versus ~28 μM; 

Table 1). Further, RD2 did destabilize this complex and increase selectivity as predicted, 

though this increase was not substantial (from 3-fold to 4.6-fold; Table 1).

From these results it is apparent that predictions of our structure-based model are only 

qualitatively accurate. So what, if anything, can we state with confidence regarding the 

general issue of achieving selectivity? For one, our data clearly show that selectivity does 

not, in general, come “for free” with high affinity. Peptide engineered in both reverse and 

forward design bound the target with high affinity, much higher than did the native peptide 

and roughly equivalent between the two design problems. On the other hand, the achieved 

level of selectivity was considerably lower in targeting M3P6 than N2P2. Graphical 

representations of CE models suggest sequence-based reasons for these observations (see 

Fig. 3A). One important difference between N2P2 and M3P6 is in the preferences at position 

P0. N2P2 can accommodate Phe here, while for M3P6 this residue is highly unfavorable. On 

the other hand, residues that are accommodated well by M3P6 (i.e., Leu and Val) are also 

accommodated well by N2P2. Though the possibility remains that a more rare (or unnatural) 

amino acid at P0 would show preference for M3P6, this nevertheless suggests that some 

domains may be more inherently “selectively targetable” than others.

It has been suggested that when designing high-affinity binders, sequence changes made to 

optimize the target complex should be, on average, random with respect to competitors [53]. 

This argument would appear strongest when the target and competitors are sufficiently 

different. On the other hand, when these are similar, one might expect significant correlation 

between changes advantageous for target and competitor binding [38]. Our present study 

further suggests that directionality is important in defining the relationship between target 

and competitors. That is, though A may be an easy target when B is the competitor, B may 

not necessarily be an easy target with A as a competitor. By mapping these relationships 

between all PDZ domains, it may thus be possible to succinctly describe the landscape of 

selective targeting of these functionally important modules.

The amino-acid identity at position P0 is perhaps the most significant contributor to PDZ-

peptide recognition [61]. This residue is hydrophobic in classical PDZ binding motifs [18]—

a constrain originating from the hydrophobic binding pocket into which the P0 side-chain 
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packs. Our computational model recapitulates the importance of P0 for binding, showing 

Phe@P0 to provide a significant preference for N2P2 over M3P6. However, interrogation of 

the model as to the source of this selectivity revealed a surprising mechanism involving a 

residue from what would typically be considered the P-2 binding pocket (Fig. 6A). Residue 

71, Val in N2P2 and Ile in M3P6, appeared to encode much of this preference by indirectly 

modulating the binding landscape of Phe@P0. Even though Ile71 in M3P6 interacts 

favorably with Phe@P0 in bound peptides (better than the corresponding Val71 in N2P2), 

and this interaction is weakened in the I71V mutant M3P6m, the mutation does enable 

substantially better packing of Phe@P0 into its standard binding pocket (Table S2). Thus, 

Ile71 serves as a “gatekeeper” residue that causes a conformational frustration for Phe@P0, 

whereby interactions with its canonical binding pocket and the gatekeeper cannot be 

optimized simultaneously. M3P6m resolves this frustration, and experiments confirm its 

shift in specificity towards Phe@P0 (see Table 1).

We went on to look for further evidence of indirect coupling by predicting non-additivity 

between energetic contributions of residues at P-1 and P-3. Measurements revealed that the 

change in N2P2 affinity due to the Ser→Ala@P-3 mutation depended significantly on 

whether Thr or Arg was present at P-1 (see Table 1). In fact, the magnitude of the coupling 

between the two mutations (–0.7 ± 0.1 kcal/mol) was on par with values measured for 

known specificity-determining interactions in other systems [62]. Significant energetic 

coupling has not, to our knowledge, been shown in PDZ-binding peptides, and intra-peptide 

coupling effects have been largely ignored in PDZ-binding models. However, Gfeller et al. 
recently demonstrated significant correlation between positional identities in peptides 

selected to bind individual PDZ domains via high-throughput experiments [63]. The authors 

argue this to be evidence of “multiple binding specificities” within a single domain, such 

that the space of peptide sequences compatible with binding a given PDZ domain is better 

characterized with multiple sequence motifs rather than a single motif. Our findings also 

suggest that the affinity/specificity landscape of PDZ-binding peptides cannot be well 

described using positional preferences alone.

As with positional preferences, one generally expects coupling contributions to be domain-

specific. Therefore, properly accounting for these will improve our ability to design selective 

targeting peptides. This will become especially important when aiming to achieve more 

global selectivity, likely to be necessary for downstream biomedical applications. On the 

other hand, capturing coupling effects well is a difficult task in the context of computational 

protein design. Because insufficient structural relaxation will tend to produce apparently 

significant but erroneous coupling in models, thorough sampling of backbone degrees of 

freedom is likely a minimal requirement. Due to their high computational cost, such models 

are not commonly used in protein design. Using the technique of Cluster Expansion, we 

were able to surmount this computational cost, allowing for the use of FPD—a state-of-the-

art flexible domain/peptide modeling tool—in our design calculations. Nevertheless, we still 

found that the sign of the predicted coupling between Ser/Ala@P-3 and Thr/Arg@P-1 was 

incorrect. This illustrates the complexity of the underlying problem, but also underscores the 

need for more accurate structural models. In fact, using explicit-solvent MD simulations, we 

discovered that accounting for the degeneracy of bound peptide ensembles introduces 

significant non-additive entropic contributions that are on the order of the observed coupling 
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and of the right sign (Fig. 7 and Table S4). Interestingly, FPD-based sampling did not reveal 

a similar variation in structural heterogeneity between peptides (Fig. S14). This suggests that 

aiming to correctly describe ensemble properties, rather than just the ground-state structure, 

would be an important next goal in developing FPD and similar docking/sampling 

approaches.

Conclusions

Given the roles of N2P2 and M3P6 in LPA2-associated tumorigenicity (Fig. 1B), the design 

problems posed in this study are biomedically relevant and the resulting peptides are 

potential tools for functional modulation. On a broader scale, our study represents a critical 

test of computational design for the selective targeting of PDZ domains—a problem of 

relevance in a wide range of biological systems. We found that selectivity, in general, does 

not arise “for free” from optimizing affinity for the target alone. Further, our results suggest 

that some domains are likely more selectively targetable than others, which may be a 

significant consideration in choosing therapeutic targets in the cell. We also found clear 

evidence of the importance of indirect coupling between binding-site residues in modulating 

affinity and selectivity. Coupling effects are likely to provide additional ammunition for 

achieving selectivity, but they are difficult to catalog experimentally, which further motivates 

the developing of accurate structure-based models.

The success of our computational framework demonstrates the feasibility of PDZ selective 

targeting by design, even in cases with considerable specificity overlap and with partial 

structural information. Nevertheless, we find that accuracy of structure-based modeling 

continues to be a significant limitation. Using a state-of-the-art modeling platform predicted 

qualitative positional preferences well, but the non-quantitative nature of the model was 

highly limiting when weighing the trade-offs between affinity and selectivity. Ultimately, to 

solve the problem of selective targeting by design, more accurate computational methods 

will be required. For example, we show here that considerations of dynamics, generally 

absent in protein-design scoring functions, can have significant effects on the energetics of 

peptide binding. Because protein design imposes significant computational constraints on 

scoring models, explicit consideration of such effects is currently considered prohibitive. On 

the other hand, the method of Cluster Expansion can be used to bridge the gap between 

detailed structure-based simulations and the computational efficiency required for protein 

design. We thus hope that this technique can enable further improvement in the accuracy of 

scoring functions used in design.

Materials and Methods

Structure-based Modeling

The structure of N2P2 was taken from the Protein Data Bank entry 2HE4. The boundaries of 

M3P6 were defined according to UniProt (residues 1047-1126 from entry Q5TCQ9). A 

common numbering of residues was adopted for the two domains according to their 

sequence alignment in Fig. 1C. The six PDZ domains of MAGI-3 are sometimes denoted in 

the literature as M3P0–M3P5, due to the fact that the most N-terminal domain was identified 
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last. Here we use the more canonical nomenclature of M3P1–M3P6, so that M3P6 refers to 

the most C-terminal PDZ domain of MAGI-3.

Using the SWISS-MODEL automated server [43], a homology model of M3P6 was built 

with the structure of MAGI-1 PDZ1 bound to a human papillomavirus E6 polypeptide (PDB 

ID: 2I04) as the template. The resulting structure was aligned to the template by optimizing 

the root-mean squared deviation (RMSD) of the binding site region (residues 16-24 and 

67-75) and the peptide backbone from the template was copied to the M3P6 model. Side-

chains of the LPA2 C-terminus (LMDSTL) were then repacked onto the peptide backbone 

and the resulting M3P6-peptide complex was subjected to continuous full-atom 

minimization in PyRosetta using dfpmin with tolerance as 0.01, where the movement of 

backbone torsion angles and chi-angles were allowed [44]. The M3P6 structure produced in 

this way was used for subsequent peptide scoring.

Rosetta FlexPepDock ab-initio protocol (FPD) [37] was used for scoring domain-peptide 

combinations. To reduce the possibility of being trapped in a local minimum, a diverse set of 

starting peptide-bound conformations was generated for each peptide, on the basis of 70 

existing PDZ-peptide complex structures (identified with the help of the Extended PDZ 

Database [64]; shown superimposed in Fig. 1D). The binding mode within each of these 70 

structures was transferred to either N2P2 or M3P6 by first aligning the corresponding 

binding sites and then copying the coordinates of the peptide backbone. The alignment was 

performed to minimize the binding-site RMSD, with the correspondence between N2P2 and 

M3P6 binding sites (i.e., residues 16-24 and 67-75 in Fig. 1C) and those of existing complex 

structures defined using MaDCaT [65]. Thus, for each domain-sequence pair, 70 

independent FPD simulations were initiated, each starting with a different initial 

conformation. As each simulation was asked to general 500 structural models (from 500 

independent MC simulations), a total of 35,000 models were produced for a given domain-

peptide combination.

Models were scored as the total score of the complex less the total reference state weight. 

We found this to perform better on our benchmark datasets than the “reweighted score” used 

in other studies [37, 66], which magnifies the contribution of interface residues. The default 

scoring function (score12) was used in FPD, but we found that dropping statistical terms 

“rama” and “omega” upon model re-evaluation improved the performance. The lowest score 

among all 35,000 models for a given domain-peptide pair was assigned as the final metric.

PDZ Homology Modeling Benchmark

Of the 70 experimental PDZ-peptide structures used elsewhere in this study (Fig.1D), 29 

were PDZ/peptide co-crystal structures and were used for a homology modeling benchmark. 

We focused the benchmark on peptide-bound structures only because of our finding that the 

binding site tended to widen upon peptide association (Fig. S1B). Each domain was used to 

build a homology model for every other domain, resulting in 841 predictions. Modeller 9.10 

was used, with the input file generated by using sequences extracted from the target and 

template PDB files. The comparative modeling module “automodel” was used for the entire 

modeling process. The alignment between template and target sequences was built with the 

standard Needleman-Wunsch dynamic programming method, using the BLOSUM62 
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mutation matrix with a gap-opening and gap-extension penalties of -11 and -1, respectively. 

Sequence identity was computed from this alignment.

Model accuracy was determined based on backbone RMSD of the most relevant PDZ 

binding pocket region. This region was defined on the target structure based on being in 

contact with the last five amino acids of the bound peptide. More specifically, any residue 

with a heavy atom within 6 Å of any atom of the bound C-terminal five-mer was considered 

relevant. RMSD’s were calculated over the backbone of this region relative to the 

corresponding residues on the modeled structure. CA and full-backbone RMSD’s involved 

19 and 77 atoms on average, respectively.

Design Procedure

The reference and all point clusters were considered in CE, but pair clusters were restricted 

to position pairs separated by a single residue. Such pairs would map to one side of the 

binding interface and were deemed more likely to couple. The amino-acid alphabet in 

forward and reverse design was based on residues observed in peptides chosen to bind N2P2 

and M3P6, respectively, in a previous phage-display study [18], augmented by residues from 

the LPA2 C-terminus. Sequences for CE training where initially chosen randomly from 

design alphabets. Following this, additional random sequences constrained to have CFs 

underrepresented in the initial set were added until all candidate CFs were present at least 

three times. The resulting training sets for forward design and reverse design consisted of 

192 and 84 peptide sequences, respectively. FPD was run to score the binding of each 

training-set sequence to both N2P2 and M3P6. To prevent overtraining in CE derivation, we 

used our previously described strategy, in which constant and all point cluster functions were 

included in the model, but pair cluster functions were included only if they improved the 

cross-validation root-mean-square (CV RMS) [35]. The final quality of each CE was 

evaluated using 50 additional randomly-generated sequences not present in CE training sets, 

with performance on these test sets shown in Fig. 3C.

Derived cluster expansions were used to score the entire sequence space in both design 

problems. For sequences on the affinity/selectivity Pareto-optimal front (six sequences in 

each case), FPD was run to confirm CE-estimated binding scores, with close agreement 

between CE and FPD seen in all cases (Table S1).

Molecular Dynamics

Explicit-solvent molecular dynamics simulations were run using NAMD 2.9, developed by 

the Theoretical and Computational Biophysics Group in the Beckman Institute for Advanced 

Science and Technology at the University of Illinois at Urbana-Champaign [67]. To speed up 

calculations, explicit non-bonded interactions were cut off at 10 Å, with a switching function 

starting at 6 Å (CHARMM22 force-field). Particle Mesh Ewald method was used to account 

for long-range electrostatics and an analytical correction was applied to account for long-

range van der Waals energies [68]. Pande and co-workers showed, on the example of 

computing amino-acid analog solvation free energies, that with these long-range corrections 

a 6/10 Å non-bonded interaction schedule was essentially as effective as using much longer 

explicit cutoffs (e.g., 12/14 Å) [69]. Each simulated complex (N2P2 with one of the four 

Zheng et al. Page 18

J Mol Biol. Author manuscript; available in PMC 2016 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coupling peptides) was padded with 10 Å of TIP3 water on all sides and simulations were 

run in the NTP ensemble (pressure 1 atm, temperature 298.15 K). Each peptide was 

subjected to ten independent 10-ns simulations, starting with the FPD predicted model, with 

an integration step of 1 fs. Frames were saved every 100 fs.

The combined trajectory for each peptide, produced by concatenating the second half of all 

10-ns runs, was clustered using a greedy algorithm implemented by the “measure cluster” 

command in VMD [70]. Specifically, every 10th frame was read (corresponding to 1 ps 

between frames) and clustering was performed using best-fit RMSD over the binding region 

(peptide plus select domain residues) as a metric of distance between frames. Domain 

residues were added to the binding region definition based on making important contacts 

with the bound peptide, and these were Tyr17, Asn20, His22, Arg34, and His67 (see Fig. 

S15). Distance threshold for clustering was 1.5 Å, meaning that all frames within a given 

cluster were within no more than 1.5 Å RMSD of the cluster centroid. The same approach 

was used for clustering FPD-sampled structures (see Fig. S14). Of the 3,500 models 

produced for each peptide, only those within 2.5 eu of the best-scoring conformation were 

clustered, and a threshold of 0.8 Å was used due to the lower overall heterogeneity (with a 

threshold of 1.5 Å nearly all conformations are placed into a single cluster).

The frequency of each cluster was used as an approximation of its probability, and an 

entropic contribution was estimated as S = −R Σi fi · ln(fi) where the sum extends over all 

clusters and fi is the frequency of cluster i (see Table S4). Given this value for each of the 

coupling peptides (SST, SAT, and SAR, corresponding to peptides CST, CAT, CSR, and CAR, 

respectively), the coupling contribution was computed as T · [(SAR − SSR) − (SAT − SST)] 

(T, the absolute temperature, was 298.15 K). To provide a measure of the random error of 

this estimate, we first calculated the apparent correlation time of cluster identity. That is, for 

a given lag time t, we computed the probability of two frames separated by t occupying the 

same cluster. The resulting curves of probability as a function of t fit well to single 

exponential decay, and the fits were used to derive the time corresponding to the point of 

half decay, which was defined as the correlation time τ. This time varied between 80 and 

150 ps for the four coupling peptides. We then split the combined trajectory of each peptide 

into windows of duration τ, and randomly discarded half of these windows. This was meant 

to sub-sample the trajectory, but in a way that recognized its internally correlated nature. 

Entropy contributions from sub-sampled trajectories were estimated as above, and 

performing this procedure 1,000 times gave a standard deviation of the sub-sampled 

estimate, which was taken as an indicator of statistical error (reported in Table S4). The error 

estimate for the entire coupling contribution was obtained by standard error propagation.

Experimental Coupling Constants

The coupling constant between Ser/Ala@P-3 and Arg/Thr@P-1 was defined as 

, where , , , and 

were the standard-state dissociation free energies of CAT, CST, CAR, and CSR to the domain 

in question (either N2P2 or M3P6), respectively. Dissociation free energies were estimated 

from the apparent inhibition constants shown in Table 1. Error bounds on the estimated 
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coupling constants were computed using 95% confidence intervals from Ki fits and the 

standard error propagation.

Protein Expression and Purification

DNA vectors—A DNA fragment encoding a 10x His tag followed by a 3C protease 

recognition site and an N-terminal portion of N2P2 was purchased from Integrated DNA 

Technologies (IDT). Using the Nco1 and Xma1 restriction sites the fragment was inserted 

into a pET16b expression vector already containing N2P2 (generously provided by Dr. Dean 

Madden, Dartmouth College, and previously described by Cushing et al. [71]). The final 

expression vector thus contained the N2P2 domain (residues 143-280 from UniProt entry 

Q15599; Fig. 1C) tagged at the N-terminus with a 10x His tag and a 3C protease recognition 

site linker to enable tag removal.

A DNA fragment encoding M3P6 (residues 1040-1149 of UniProt entry Q5TCQ9-2; Fig. 

1C) was produced through overlap extension PCR of two fragments purchased from IDT, 

followed by gel purification using QIAquick Gel Extraction Kit (Qiagen). The M3P6 

fragment, having appropriate sequence overlaps with the pET 48b(+) multiple cloning site, 

was combined with the plasmid through a Gibson Assembly reaction (NEB). The final 

expression vector contained M3P6 fused with a thioredoxin solubility tag and a 6x His 

purification tag on the N-terminus, separated by a 3C protease site.

M3P6m was created by site directed mutagenesis of pET48b(+)-M3P6. Briefly, a primer 

introducing the change was purchased from IDT and the region was substituted in the parent 

vector using Gibson Assembly.

Sequences of all constructs were verified at the Dartmouth Molecular Biology Core Facility.

Expression—All domains were expressed in Rosetta 2 (DE3) cells (Novagen). 10mL 

starter cultures of Terrific Broth supplemented with ampicillin and chloramphenicol (for 

N2P2) or kanamycin and chloramphenicol (for M3P6) were inoculated from single colonies 

or stored glycerol stocks and grown up overnight at 37°C with shaking. The next day the 

starter culture was used to seed a 1L culture of Terrific Broth (TB) media containing 

chloramphenicol at (34 μg/mL) and either ampicillin (100 μg/mL for N2P2) or kanamycin 

(50 μg/mL for M3P6). Cultures grew at 37°C with shaking to an OD600 of 0.6-0.8 before 

being shifted to 16°C. After cooling for 20 minutes cultures were induced with 0.1mM IPTG 

and continued to incubate at 16°C for 20-24 hours.

Lysis—Cells were centrifuged for 20 minutes at 6,000 RPM and then resuspended in lysis 

buffer—Bugbuster (Novagen), 25mM Tris, pH 7.5, 150mM NaCl, 2mM MgCl2, 0.5% v/v 

Protease Inhibitor Cocktail Set III, EDTA-free (Calbiochem), 1mM THP (Novagen), 

50U/mL benzonase (Novagen). Lysis proceeded for 20 minutes on ice and suspension was 

then clarified by centrifugation for 20 minutes at 18,000g at 4°C.

Purification—Clarified supernatant was supplemented with imidazole to a final 

concentration of 10mM. 1mL of Nickel Sepharose 6 Fast Flow resin (GE) was prepared for 

each 1 L of culture by pre-equilibrating with five column volumes of distilled water 
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followed by binding buffer (25mM Tris, pH 7.5, 150mM NaCl, 20mM imidazole, 1mM 

THP). Clarified supernatant was batch bound to prepared resin by incubating the two 

together with stirring at 4°C for 1 hour. After 1 hour, the supernatant and resin mixture was 

loaded into a plastic column (Pierce) and allowed to drain by gravity. Resin was washed two 

times with five column volumes (CV) of binding buffer and then two times with five CV of 

wash buffer (25mM Tris, pH7.5, 150mM NaCl, 40mM imidazole, 1mM THP). Protein was 

eluted with ten CV of elution buffer (25mM Tris, pH7.5, 150mM NaCl, 400mM imidazole, 

1mM THP) and 1mL fractions were collected and supplemented with 50mM EDTA to 

chelate nickel that may have dissociated from the column. Fractions were run on a 10% 

tricine SDS-PAGE gel and evaluated for purity and concentration. Fractions with high 

concentration and purity were carried forward for digestion.

Digestion with 3C protease—Fractions carried forward were pooled, yield was 

estimated and 6x His tagged 3C protease was added at 1:50 w/w ratio to the protein prep. 

The mixture was transferred to 3.5K MWCO dialysis tubing (Thermo Scientific) and 

dialyzed in 1L protein buffer (25mM Tris, pH 7.5, 150mM NaCl, 1mM THP) with stirring 

overnight at 4°C. The next day the mixture was incubated with prepared Nickel Sepharose 6 

Fast Flow Resin at 4°C with stirring for 15 minutes. The resin and protein mixture was 

poured into a plastic chromatography column and the flow-through was collected.

Storage—The collected protein was concentrated and two buffer exchanges of 1:10 each 

were completed with freezer storage buffer (25mM Tris, pH 7.5, 150mM NaCl, 0.1mM 

TCEP, 10% glycerol, 0.02% sodium azide) using Amicon Ultra 10,000 MWCO centrifugal 

filters. Concentration was determined by measuring A280 using a Nanodrop 2000 and 

applying theoretical extinction coefficients (calculated using the ExPASy ProtParam tool; 

2980 M−1cm−1 for N2P2 and 5960 M−1cm−1 for M3P6 and M3P6m). Protein stocks were 

stored as aliquots at -80C.

Analytical FPLC—Purified proteins were analyzed on an Akta Explorer (GE Healthcare) 

by injecting 500 μg of protein over a Superdex 75 10/300 GL column. Absorbance of 

fractions was measured at 280 nm and 218 nm and chromatograms were analyzed using 

Unicorn 5.10 software (GE Healthcare). All proteins eluted in a single peak at a retention 

time consistent with a monomer.

MALDI-TOF—The identity of purified proteins was confirmed by MALDI-TOF analysis on 

an Applied Biosystems Voyager-DE Pro MALDI-TOF mass spectrophotometer at the 

Dartmouth Molecular Biology & Proteomics Core Facility. Samples were prepared by 

mixing 1:1 with sinapinic acid matrix (Thermo Scientific).

Peptide Synthesis

All peptides were synthesized by GenScript USA. For Kd and Ki experiments, peptide 

concentrations were determined by dividing the weight of lyophilized peptide powder by the 

volume of suspending buffer. Because the three reverse design peptides contained a Trp 

residue, we were also able to determine their concentration spectroscopically using their 

theoretical extinction coefficient at 280 nm, showing the two methods of concentration 
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determination to be within 15-20% of each other (see Supplementary Material). For 

experiments aimed at determining double-mutant coupling free energies, because additional 

accuracy was required, peptide concentrations were established using quantitative amino 

acid analysis [REF] performed by GenScript USA.

Fluorescence Polarization

Fluorescence Polarization (FP) assays were performed to measure domain-peptide 

dissociation and inhibition constants (Kd and Ki, respectively) generally as described 

elsewhere in the literature [42], with some minor changes. Purified domain proteins were 

dialyzed into FP buffer A (25 mM Tris, pH 7.5, 150 mM NaCl, 0,1 mM TCEP). Appropriate 

amounts of domain proteins were incubated in FP buffer B (FP buffer A plus a final 

concentration of 0.1 mg/mL IgG, 0.5 mM Thesit, and 30 nM fluorescently labeled reporter 

peptide) for 20 min to equilibrate. In a Kd assay, equilibrated domain was serially diluted 

into FP buffer B, incubated in the dark with gentle shaking for 10 minutes, spun briefly to 

remove air bubbles and then 30uL was transferred to an assay plate. We measured 

fluorescence anisotropy as a function of domain concentration to determine the domain-

reporter dissociation constant (Kd). In a Ki assay, the domain protein, at a concentration 

ranging between 1.5-3 times of the domain-reporter Kd, was equilibrated in FP buffer B, and 

a competitor peptide serially diluted in FP buffer B was added to the equilibrated solution. 

We measured the anisotropy as a function of competitor concentration to determine the 

apparent inhibition constant (Ki). Fluorescein isothiocyanate (FITC)-labeled C-terminal 

10mer of LPA2 (FITC-Ahx-NGHPLMDSTL) and FITC-labeled C-terminal 10mer of 

claudin23 (FITC-Ahx-QNSLPCDSDL) were used as reporters for N2P2 and M3P6, 

respectively (Ahx: aminohexanoic acid). When measuring the affinities of LPA2 6mer to 

N2P2, we used FITC-labeled FD2 8-mer (FITC-Ahx-GGSGSTRF) as the reporter. All 

dilutions were incubated on black 96-well plates for 10 min with gentle agitation. After 

centrifugation for 2 min at 1,500 rpm to remove bubbles, 30 μL of each well was transferred 

to assay plates, then centrifuged again for 2 min at 1,500 rpm. Assay plates were incubated 

in the dark for 20 min, then scanned in a Tecan Infinite M1000 Microplate Reader with a 10 

min pre-read equilibration at 27 °C.

Data were processed in MATLAB. A nonlinear least-squares algorithm was used to fit the 

experimental anisotropy to the anisotropy calculated by the equation below:

where [L]0 was total labeled peptide concentration, [PL] the concentration of domain-

labeled peptide complex, SL and SPL the innate anisotropies due to pure unbound peptide 

and domain-peptide complex, respectively. For Kd experiments, [PL] was calculated by 

considering the simple binding equilibrium of labeled peptide L and domain P:
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where [P] and [P]0 where unbound and total domain concentrations, discarding the 

meaningless solution to the quadratic equation. Kd, SL, and SPL were fit to minimize the 

sum-squared error between calculated and experimental anisotropies using MATLAB’s 

Curve Fitting Toolbox. For Ki experiments, [PL] is the solution to a cubic equation resulting 

from considering linked equillibria of labeled and unlabeled peptide (L and C, respectively) 

binding to domain P:

where [C]0, [C], [PC] were total, free, and domain-bound concentrations of unlabeled 

peptide. The MATLAB function “roots” was used to calculate the three roots to the above 

cubic equation, discarding the two that were meaningless. Ki, SL, and SPL were fit to 

minimize the sum-squared error between calculated and measured anisotropies using a 

combination of MATLAB’s Optimization and Curve Fitting Toolboxes.

We used global fitting to fit replicates measuring the Kd or Ki of the same domain-peptide 

combination. To this end, Kd or Ki were constrained to be the same across all replicates, 

whereas SL and SPL were allowed to vary among them to account for small experiment-to-

experiment variations (SL and SPL in different replicate tended to agreed closely). Ki, SL, 

and SPL were fit to minimize the sum-squared error between calculated and measured 

anisotropies over all replicates.

For binding between M3P6 and forward design peptides, we were unable to reach the 

plateau region in competition assays (Fig. S8). In the case of FD1, though some reduction in 

anisotropy was observed at high peptide concentration, control measurements (involving the 

same dilutions as in normal Ki experiments but lacking the domain) revealed a strong 

viscosity effect above ~1 mM FD1, preventing us from making measurements at higher 

concentrations. For FD2 and FD3, as no significant decrease of anisotropy was seen even at 

~1mM peptide, we found it unnecessary to determine affinity accurately. We did want to 

estimate a reasonable range of affinities from available data in these cases, however. To this 

end, we performed a series of fitting procedures, in which Ki was fixed at a specific value 

(scanned in a wide range) and the remaining parameters were fit to optimize error (SL was 

constrained to the range of 10-20 anisotropy units, based on anisotropy values seen when the 

reporter peptide was mixed with the competitor peptide alone). We then considered fitting 

error as a function of the fixed Ki looking for regions that can be safely discarded from 

consideration—i.e., regions where the fitting error is higher than the error expected from 

typical experimental variations (calculated as the mean experiment-to-experiment difference 

between all pairs of independent measurements for a given peptide/domain pair); Fig. S9. 

The remaining region was considered a plausible interval for Ki (see Fig. S9).
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95% confidence bounds for Kd and Ki estimates were calculated as , 

where t is the inverse of Student’s T cumulative distribution at p = 0.95, X is the Jacobian of 

the fitted values with respect to the variable coefficients, and s2 is the mean squared error 

[72].

NMR Footprinting

The NMR based peptide binding assays were carried out on a Bruker Avance III 700 MHz 

NMR, with a 5 mm cryoprobe. Samples were in the following buffer: 25 mM NaPi, 50 mM 

NaCl, 0.1 mM TCEP, 0.02% w/v NaN3, 5% v/v D2O, at pH 6.8. Concentration of N2P2 and 

peptide in samples was 100μM. Chemical shift perturbations from 1H,15N HSQC 

experiments were used to determine the location of peptide binding. 16 scans were collected 

with 1024 points in the 1H-dimension and 128 in the 15N-dimension. Spectra comparisons 

were carried out with Sparky 3.115 [73]. The following equation was used to normalize 

chemical shift perturbation values [74]:

where Δobs is the normalized chemical shift, Δ1H is the change of the chemical shift in 

the 1H-dimension, Δ15N is the chemical shift change in the 15N-dimension. Normalized 

chemical shift perturbations were considered significant if they were greater than one 

standard deviation above the mean. Details of N2P2 assignment will be reported elsewhere. 

The NHERF2 PDZ2 assignments have been deposited in the Biological Magnetic 

Resonance bank under entry number 19871.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We would like to thank Dr. Dean R. Madden and Dr. Mark A. McPeek for access to laboratory equipment, Dr. Dean 
R. Madden for insightful conversations about this work and members of the Madden laboratory, especially Dr. 
Jeanine F. Amacher and Dr. Lemira S. Al Ayyoubi, for help and advice with experimental setup and sharing of 
reagents. We would also like to thank Dr. Dean R. Madden and Dr. Chris Bailey-Kellogg for critical reading of the 
manuscript. This work was funded by the American Cancer Society grant IRG-82-003-27, the Alfred P. Sloan 
fellowship, and startup funds form Dartmouth College to GG. The compute cluster used in this study was purchased 
with funds from the NSF award CNS-1205521.

References

1. Ryan D, Matthews J. Protein-protein interactions in human disease. Current opinion in structural 
biology. 2005; 15:441–6. [PubMed: 15993577] 

2. Yeh BJ, Rutigliano RJ, Deb A, Bar-Sagi D, Lim WA. Rewiring cellular morphology pathways with 
synthetic guanine nucleotide exchange factors. Nature. 2007; 447:596–600. [PubMed: 17515921] 

3. Bhattacharyya RP, Remenyi A, Yeh BJ, Lim WA. Domains, motifs, and scaffolds: the role of 
modular interactions in the evolution and wiring of cell signaling circuits. Annual review of 
biochemistry. 2006; 75:655–80.

Zheng et al. Page 24

J Mol Biol. Author manuscript; available in PMC 2016 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Bashor CJ, Horwitz AA, Peisajovich SG, Lim WA. Rewiring cells: synthetic biology as a tool to 
interrogate the organizational principles of living systems. Annual review of biophysics. 2010; 
39:515–37.

5. Pawson T, Nash P. Assembly of cell regulatory systems through protein interaction domains. 
Science (New York, NY). 2003; 300:445–52.

6. Kuriyan J, Cowburn D. Modular peptide recognition domains in eukaryotic signaling. Annual 
review of biophysics and biomolecular structure. 1997; 26:259–88.

7. Neduva V, Linding R, Su-Angrand I, Stark A, de Masi F, Gibson T, et al. Systematic discovery of 
new recognition peptides mediating protein interaction networks. PLoS biology. 2005; 3

8. Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction. Genes & 
development. 2000; 14:1027–47. [PubMed: 10809663] 

9. Reinke AW, Baek J, Ashenberg O, Keating AE. Networks of bZIP protein-protein interactions 
diversified over a billion years of evolution. Science (New York, NY). 2013; 340:730–4.

10. Lee H-JJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and 
modification. Cell communication and signaling : CCS. 2009; 8:8. [PubMed: 20509869] 

11. Chen J, Chang B, Allen J, Stiffler M, MacBeath G. Predicting PDZ domain-peptide interactions 
from primary sequences. Nature biotechnology. 2008; 26:1041–5.

12. te Velthuis A, Sakalis P, Fowler D, Bagowski C. Genome-wide analysis of PDZ domain binding 
reveals inherent functional overlap within the PDZ interaction network. PLoS One. 2011; 6

13. Ivarsson Y. Plasticity of PDZ domains in ligand recognition and signaling. FEBS letters. 2012; 
586:2638–47. [PubMed: 22576124] 

14. Romero G, von Zastrow M, Friedman P. Role of PDZ proteins in regulating trafficking, signaling, 
and function of GPCRs: means, motif, and opportunity. Advances in pharmacology (San Diego, 
Calif). 2011; 62:279–314.

15. Gardiol D. PDZ-containing proteins as targets in human pathologies. The FEBS journal. 2012; 
279:3529. [PubMed: 22748103] 

16. Dev KK. Making protein interactions druggable: targeting PDZ domains. Nature reviews Drug 
discovery. 2004; 3:1047–56. [PubMed: 15573103] 

17. Grillo-Bosch D, Choquet D, Sainlos M. Inhibition of PDZ domain-mediated interactions. Drug 
discovery today Technologies. 2013; 10:40.

18. Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh JH, Reva B, et al. A specificity map for the PDZ 
domain family. PLoS biology. 2008; 6:e239. [PubMed: 18828675] 

19. Vouilleme L, Cushing P, Volkmer R, Madden D, Boisguerin P. Engineering peptide inhibitors to 
overcome PDZ binding promiscuity. Angewandte Chemie (International ed in English). 2010; 
49:9912–6. [PubMed: 21105032] 

20. Smith C, Kortemme T. Structure-based prediction of the peptide sequence space recognized by 
natural and synthetic PDZ domains. Journal of molecular biology. 2010; 402:460–74. [PubMed: 
20654621] 

21. Staneva I, Wallin S. Binding free energy landscape of domain-peptide interactions. PLoS 
computational biology. 2011; 7

22. Kaufmann K, Shen N, Mizoue L, Meiler J. A physical model for PDZ-domain/peptide interactions. 
Journal of molecular modeling. 2011; 17:315–24. [PubMed: 20461427] 

23. Crivelli J, Lemmon G, Kaufmann K, Meiler J. Simultaneous prediction of binding free energy and 
specificity for PDZ domain-peptide interactions. Journal of computer-aided molecular design. 
2013

24. King CA, Bradley P. Structure-based prediction of protein-peptide specificity in Rosetta. Proteins. 
2010; 78:3437–49. [PubMed: 20954182] 

25. Kamisetty, H.; Ghosh, B.; Langmead, C.; Bailey-Kellogg, C. Learning Sequence Determinants of 
Protein: Protein Interaction Specificity with Sparse Graphical Models. Springer; 2014. p. 129-43.

26. Reina J, Lacroix E, Hobson S, Fernandez-Ballester G, Rybin V, Schwab M, et al. Computer-aided 
design of a PDZ domain to recognize new target sequences. Nature structural biology. 2002; 
9:621–7. [PubMed: 12080331] 

Zheng et al. Page 25

J Mol Biol. Author manuscript; available in PMC 2016 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Smith CA, Shi CA, Chroust MK, Bliska TE, Kelly MJ, Jacobson MP, et al. Design of a 
phosphorylatable PDZ domain with peptide-specific affinity changes. Structure (London, 
England : 1993). 2013; 21:54–64.

28. Roberts K, Cushing P, Boisguerin P, Madden D, Donald B. Computational design of a PDZ domain 
peptide inhibitor that rescues CFTR activity. PLoS computational biology. 2012; 8

29. Lee SJ, Ritter SL, Zhang H, Shim H, Hall RA, Yun CC. MAGI-3 competes with NHERF-2 to 
negatively regulate LPA2 receptor signaling in colon cancer cells. Gastroenterology. 2011; 
140:924–34. [PubMed: 21134377] 

30. Willier S, Butt E, Grunewald T. Lysophosphatidic acid (LPA) signalling in cell migration and 
cancer invasion: a focussed review and analysis of LPA receptor gene expression on the basis of 
more than 1700 cancer microarrays. Biology of the cell / under the auspices of the European Cell 
Biology Organization. 2013; 105:317–33. [PubMed: 23611148] 

31. Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nature reviews 
Cancer. 2003; 3:582–91. [PubMed: 12894246] 

32. Yun C, Sun H, Wang D, Rusovici R, Castleberry A, Hall R, et al. LPA2 receptor mediates 
mitogenic signals in human colon cancer cells. American journal of physiology Cell physiology. 
2005; 289:11.

33. Oh Y-S, Jo N, Choi J, Kim H, Seo S-W, Kang K-O, et al. NHERF2 specifically interacts with 
LPA2 receptor and defines the specificity and efficiency of receptor-mediated phospholipase C-
beta3 activation. Molecular and cellular biology. 2004; 24:5069–79. [PubMed: 15143197] 

34. Rusovici R, Ghaleb A, Shim H, Yang V, Yun C. Lysophosphatidic acid prevents apoptosis of 
Caco-2 colon cancer cells via activation of mitogen-activated protein kinase and phosphorylation 
of Bad. Biochimica et biophysica acta. 2007; 1770:1194–203. [PubMed: 17544220] 

35. Grigoryan G, Zhou F, Lustig SR, Ceder G, Morgan D, Keating AE. Ultra-fast evaluation of protein 
energies directly from sequence. PLoS computational biology. 2006; 2:e63. [PubMed: 16789811] 

36. Apgar JR, Hahn S, Grigoryan G, Keating AE. Cluster expansion models for flexible-backbone 
protein energetics. Journal of computational chemistry. 2009; 30:2402–13. [PubMed: 19360809] 

37. Raveh B, London N, Zimmerman L, Schueler-Furman O. Rosetta FlexPepDock ab-initio: 
simultaneous folding, docking and refinement of peptides onto their receptors. PloS one. 2011; 
6:e18934. [PubMed: 21572516] 

38. Grigoryan G, Reinke AW, Keating AE. Design of protein-interaction specificity gives selective 
bZIP-binding peptides. Nature. 2009; 458:859–64. [PubMed: 19370028] 

39. Grandy D, Shan J, Zhang X, Rao S, Akunuru S, Li H, et al. Discovery and characterization of a 
small molecule inhibitor of the PDZ domain of dishevelled. The Journal of biological chemistry. 
2009; 284:16256–63. [PubMed: 19383605] 

40. Subbaiah VK, Kranjec C, Thomas M, Banks L. PDZ domains: the building blocks regulating 
tumorigenesis. The Biochemical journal. 2011; 439:195–205. [PubMed: 21954943] 

41. Leslie K, Song G, Barrick S, Wehbi V, Vilardaga J-P, Bauer P, et al. Ezrin-Radixin-Moesin-binding 
Phosphoprotein 50 (EBP50) and Nuclear Factor-κB (NF-κB): A FEED-FORWARD LOOP FOR 
SYSTEMIC AND VASCULAR INFLAMMATION. The Journal of biological chemistry. 2013; 
288:36426–36. [PubMed: 24196963] 

42. Cushing P, Vouilleme L, Pellegrini M, Boisguerin P, Madden D. A stabilizing influence: CAL PDZ 
inhibition extends the half-life of ΔF508-CFTR. Angewandte Chemie (International ed in English). 
2010; 49:9907–11. [PubMed: 21105033] 

43. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based 
environment for protein structure homology modelling. Bioinformatics. 2006; 22:195–201. 
[PubMed: 16301204] 

44. Chaudhury S, Lyskov S, Gray JJ. PyRosetta: a script-based interface for implementing molecular 
modeling algorithms using Rosetta. Bioinformatics. 2010; 26:689–91. [PubMed: 20061306] 

45. Wallner B, Elofsson A. All are not equal: a benchmark of different homology modeling programs. 
Protein science : a publication of the Protein Society. 2005; 14:1315–27. [PubMed: 15840834] 

46. Eyrich V, Martí-Renom M, Przybylski D, Madhusudhan M, Fiser A, Pazos F, et al. EVA: 
continuous automatic evaluation of protein structure prediction servers. Bioinformatics (Oxford, 
England). 2001; 17:1242–3.

Zheng et al. Page 26

J Mol Biol. Author manuscript; available in PMC 2016 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



47. Eswar N, Webb B, Marti-Renom M, Madhusudhan M, Eramian D, Shen M-Y, et al. Comparative 
protein structure modeling using Modeller. Current protocols in bioinformatics / editoral board, 
Andreas D Baxevanis [et al]. 2006; Chapter 5

48. Leaver-Fay A, Tyka M, Lewis S, Lange O, Thompson J, Jacak R, et al. ROSETTA3: an object-
oriented software suite for the simulation and design of macromolecules. Methods in enzymology. 
2011; 487:545–74. [PubMed: 21187238] 

49. Stiffler M, Chen J, Grantcharova V, Lei Y, Fuchs D, Allen J, et al. PDZ domain binding selectivity 
is optimized across the mouse proteome. Science (New York, NY). 2007; 317:364–9.

50. Zhou F, Grigoryan G, Lustig SR, Keating AE, Ceder G, Morgan D. Coarse-graining protein 
energetics in sequence variables. Physical review letters. 2005; 95:148103. [PubMed: 16241695] 

51. Yin H, Slusky JS, Berger BW, Walters RS, Vilaire G, Litvinov RI, et al. Computational design of 
peptides that target transmembrane helices. Science (New York, NY). 2007; 315:1817– 22.

52. Fu X, Apgar J, Keating A. Modeling backbone flexibility to achieve sequence diversity: the design 
of novel alpha-helical ligands for Bcl-xL. Journal of molecular biology. 2007; 371:1099– 117. 
[PubMed: 17597151] 

53. Shifman JM, Mayo SL. Exploring the origins of binding specificity through the computational 
redesign of calmodulin. Proceedings of the National Academy of Sciences of the United States of 
America. 2003; 100:13274–9. [PubMed: 14597710] 

54. Bolon DN, Grant RA, Baker TA, Sauer RT. Specificity versus stability in computational protein 
design. Proceedings of the National Academy of Sciences of the United States of America. 2005; 
102:12724–9. [PubMed: 16129838] 

55. Kangas E, Tidor B. Electrostatic specificity in molecular ligand design. The Journal of Chemical 
Physics. 2000

56. Mason JM, Schmitz MA, Muller KM, Arndt KM. Semirational design of Jun-Fos coiled coils with 
increased affinity: Universal implications for leucine zipper prediction and design. Proceedings of 
the National Academy of Sciences of the United States of America. 2006; 103:8989–94. [PubMed: 
16754880] 

57. Stiffler M, Grantcharova V, Sevecka M, MacBeath G. Uncovering quantitative protein interaction 
networks for mouse PDZ domains using protein microarrays. Journal of the American Chemical 
Society. 2006; 128:5913–22. [PubMed: 16637659] 

58. Serrano L, Horovitz A, Avron B, Bycroft M, Fersht AR. Estimating the contribution of engineered 
surface electrostatic interactions to protein stability by using double-mutant cycles. Biochemistry. 
1990; 29:9343–52. [PubMed: 2248951] 

59. London N, Lamphear CL, Hougland JL, Fierke CA, Schueler-Furman O. Identification of a novel 
class of farnesylation targets by structure-based modeling of binding specificity. PLoS 
computational biology. 2011; 7

60. London N, Gullá S, Keating AE, Schueler-Furman O. In silico and in vitro elucidation of BH3 
binding specificity toward Bcl-2. Biochemistry. 2012; 51:5841–50. [PubMed: 22702834] 

61. Amacher JF, Cushing PR, Bahl CD, Beck T, Madden DR. Stereochemical determinants of C-
terminal specificity in PDZ peptide-binding domains: a novel contribution of the carboxylate-
binding loop. The Journal of biological chemistry. 2013; 288:5114–26. [PubMed: 23243314] 

62. Krylov D, Barchi J, Vinson C. Inter-helical interactions in the leucine zipper coiled coil dimer: pH 
and salt dependence of coupling energy between charged amino acids. Journal of molecular 
biology. 1998; 279:959–72. [PubMed: 9642074] 

63. Gfeller D, Butty F, Wierzbicka M, Verschueren E, Vanhee P, Huang H, et al. The multiple-
specificity landscape of modular peptide recognition domains. Molecular systems biology. 2011; 
7:484. [PubMed: 21525870] 

64. Wang CK, Pan L, Chen J, Zhang M. Extensions of PDZ domains as important structural and 
functional elements. Protein & cell. 2010; 1:737–51. [PubMed: 21203915] 

65. Zhang J, Grigoryan G. Mining tertiary structural motifs for assessment of designability. Methods in 
enzymology. 2013; 523:21–40. [PubMed: 23422424] 

66. Raveh B, London N, Schueler-Furman O. Sub-angstrom modeling of complexes between flexible 
peptides and globular proteins. Proteins. 2010; 78:2029–40. [PubMed: 20455260] 

Zheng et al. Page 27

J Mol Biol. Author manuscript; available in PMC 2016 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



67. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular 
dynamics with NAMD. Journal of computational chemistry. 2005; 26:1781–802. [PubMed: 
16222654] 

68. Shirts MR, Mobley DL, Chodera JD, Pande VS. Accurate and efficient corrections for missing 
dispersion interactions in molecular simulations. The journal of physical chemistry B. 2007; 
111:13052–63. [PubMed: 17949030] 

69. Michael RS, Jed WP, William CS, Vijay SP. Extremely precise free energy calculations of amino 
acid side chain analogs: Comparison of common molecular mechanics force fields for proteins. 
The Journal of Chemical Physics. 2003; 119

70. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of molecular 
graphics. 1996; 14:33. [PubMed: 8744570] 

71. Cushing PR, Fellows A, Villone D, Boisguérin P, Madden DR. The relative binding affinities of 
PDZ partners for CFTR: a biochemical basis for efficient endocytic recycling. Biochemistry. 2008; 
47:10084–98. [PubMed: 18754678] 

72. Seber, G.; Wild, C. Nonlinear regression. Wiley; New York: 2003. p. 204-6.

73. Goddard, TD.; Kneller, DG. SPARKY 3. University of California; San Francisco: 

74. Banaszynski LA, Liu CW, Wandless TJ. Characterization of the FKBP. rapamycin.FRB ternary 
complex. Journal of the American Chemical Society. 2005; 127:4715–21. [PubMed: 15796538] 

Zheng et al. Page 28

J Mol Biol. Author manuscript; available in PMC 2016 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. PDZ-peptide recognition, encoded by N2P2 and M3P6, regulates LPA signaling
(a) A canonical PDZ-peptide binding conformation (peptide shown in cyan and a portion of 

the domain binding site in green; only backbone and Cβ atoms are rendered). Standard 

labeling of peptide residues is indicated. (b) A putative model for LPA-induced signaling in 

colon cancer cells. NHERF-2 and MAGI-3 compete for binding to the C-terminus of active 

LPA2, antagonistically modulating the downstream oncogenicity through differential 

regulation of phospholipase C β3 (PLC-β3) [29]. (c) Sequence alignment between N2P2 and 

M3P6. The indicated numbering was adopted throughout the study to refer to residues of 

both domains. The regions used to align the binding sites (yellow), the four hydrophobic 

residues lining the P0 binding pockets (magenta), and the position critical for modulating P0 

binding specificity (cyan) are highlighted. (d) The binding sites (green) of the 70 PDZ-

peptide structures used to generate diverse starting peptide conformations (cyan) are shown 

aligned, illustrating the considerable flexibility of PDZ-bound peptides.
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Figure 2. A benchmark of the FPD-based PDZ-peptide modeling protocol
Dotted lines (N2P2 and M3P6) show the results using the default Rosetta scoring function, 

and solid lines (N2P2’ and M3P6’) represent the performance upon omitting “rama” and 

“omega” terms. The area under curve (AUC) for each case is indicated in the legend in 

parenthesis. There were 15 and 41 data points for N2P2 and M3P6, respectively. Of those, 7 

and 25, respectively, were classified as “binders” based on having measured affinities below 

100 μM. TP: number of true positives; FP: number of false positives; TN: number of true 

negatives; FN: number of false negatives.
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Figure 3. Design of N2P2-vs-M3P6 selectivity
(a) Design alphabets and CE parameters for forward design (upper row) and reverse design 

(lower row). Encircled letters represent amino acids allowed at corresponding positions, and 

edges represent pairwise terms between the two connected amino acids. Circles and edges 

are colored to indicate the signs and magnitudes of corresponding self and pair cluster 

functions, respectively, according to the colorbar shown (Rosetta energy units, eu). Edge 

thickness also reflects pair cluster function magnitude. (b) Correlations between FPD and 

CE scores for both domains in training and test sets for forward design. Each point 

represents a peptide sequence. The squares of correlation coefficients are indicated.
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Figure 4. Predicted affinity/selectivity landscapes
Each dot represents a single peptide sequence, and the sequences for which affinities and 

specificities cannot be optimized simultaneously (Pareto optimal front; white points) are 

connected with black lines. Because scores are expressed relative to the native peptide (see 

Eq. 2), sequences falling on/near the diagonal are predicted to bind the competitor roughly 

as well as the native peptide. (a) and (b) correspond to forward design (8400 sequences) and 

reverse design (960 sequences), respectively. The sequences selected for experimental 

validation (3 in each case) are labeled with numbers.
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Figure 5. Binding mode validation for FD2:N2P2 with NMR footprinting
(a) 1H,15N HSQC spectra of N2P2 alone (blue) and in the presence of the FD2 (red), with 

select residues labeled. (b) Design model of FD2:N2P2 with N2P2 residues exhibiting 

significant chemical shifts highlighted in red (see Materials and Methods).
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Figure 6. Specificity determinants predicted by structural modeling
(a) Models of FD1 in peptide-binding pockets of N2P2 (green) and M3P6 (cyan). (b) 

Models of CST (magenta) and CAT (green) in the peptide-binding pocket of N2P2. Shown 

are best-scoring models. According to FPD calculations, in the model of CST, Ser@P-3 and 

Thr@P-1 both hydrogen bond to the same Asn20, while in the model of CAT Asn20 adopts a 

different rotamer to form a more optimal hydrogen bond with Thr@P-1. Inset in (b) depicts 

the results of double mutant coupling energy calculations using FPD (red) as well as 

corresponding experimental values (black, underlined).
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Figure 7. Clustering the MD trajectories of N2P2 with coupling peptides reveals different 
distributions of peptide microstates
The fraction of the total ensemble covered by each of the top nine clusters is shown in a pie-

chart (peptide name indicated above each chart). The last pie segment corresponds to the 

remaining fraction of the ensemble not covered by the top nine microstates.
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Table 1

Domain-peptide affinities measured by fluorescence polarization (FP) assay.

Ki of all tested peptidesa

Abbreviation Sequence Ki for N2P2 Ki for M3P6 Ki for M3P6m

(μM)

LPA2 6-mer LMDSTL 28.4 ± 1.8 47.4 ± 2.6 67.7 ± 5.4

FD1 TGETTF 14.2 ± 2.2 600 ± 300 151 ± 15.9

FD2 SGSTRF 6.8 ± 0.7 > 1000

FD3 SGSTHF 9.1 ± 1.0 > 1000

RD1 DFETWV 5.4 ± 1.2 1.8 ± 0.5

RD2 GFETWV 12.5 ± 2.0 2.7 ± 0.4

RD3 GFDTWV 4.6 ± 1.5 6.8 ± 1.5

CST DFSTTV 54.8 ± 3.0 241.7 ± 17.6

CSR DFSTRV 52.1 ± 5.3 510.4 ± 51.4

CAT DFATTV 253.8 ± 6.6 351.4 ± 17.9

CAR DFATRV 69.3 ± 8.7 284.6 ± 24.5

Kd of all reporter peptidesb

Abbreviation Sequence Kd for N2P2 Kd for M3P6 Kd for M3P6m

(μM)

LPA2 10-mer NGHPLMDSTL 11.5 ± 0.7

Claudin23 QNSLPCDSDL 3.6 ± 0.2 4.1 ± 0.4

FD2 8-mer GGSGSTRF 3.6 ± 0.5

a
see Fig. S8 for raw data and fits

b
see Fig. S7 for raw data and fits
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