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Abstract

Background—Consistent localization of cerebellar cortex in a standard coordinate system is 

important for functional studies and detection of anatomical alterations in studies of morphometry. 

To date, no pediatric cerebellar atlas is available.

New method—The probabilistic Cape Town Pediatric Cerebellar Atlas (CAPCA18) was 

constructed in the age-appropriate National Institute of Health Pediatric Database asymmetric 

template space using manual tracings of 16 cerebellar compartments in 18 healthy children (9–13 

years) from Cape Town, South Africa. The individual atlases of the training subjects were also 

used to implement multi atlas label fusion using multi atlas majority voting (MAMV) and multi 

atlas generative model (MAGM) approaches. Segmentation accuracy in 14 test subjects was 

compared for each method to ‘gold standard’ manual tracings.

Results—Spatial overlap between manual tracings and CAPCA18 automated segmentation was 

73% or higher for all lobules in both hemispheres, except VIIb and X. Automated segmentation 

using MAGM yielded the best segmentation accuracy over all lobules (mean Dice Similarity 

Coefficient 0.76; range 0.55–0.91).

Comparison with existing methods—In all lobules, spatial overlap of CAPCA18 

segmentations with manual tracings was similar or higher than those obtained with SUIT (spatially 

unbiased infra-tentorial template), providing additional evidence of the benefits of an age 

appropriate atlas. MAGM segmentation accuracy was comparable to values reported recently by 

Park et al. (2014) in adults (across all lobules mean DSC = 0.73, range 0.40–0.89).

Conclusions—CAPCA18 and the associated multi atlases of the training subjects yield 

improved segmentation of cerebellar structures in children.
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1. Introduction

The human brain is a complex structure and mapping its functional organization presents an 

ongoing challenge. Recent findings suggest that the cerebellum is functionally 

heterogeneous, with different topological regions subserving sensory, motor, cognitive, and 

affective processing (Stoodley and Schmahmann, 2009; Schlerf et al., 2010; Strick et al., 

2009; Schmahmann and Sherman, 1998; Makris et al, 2005). As such, it has become 

increasingly important to identify precisely which lobule is activated in functional imaging 

studies. Efforts to map cerebellar function have, however, been limited by the fact that 

available cerebellar atlases are generally limited to gross morphologic relationships (Crosby 

et al., 1962; Carpenter et al., 1976; DeArmond et al., 1976; Waddington et al., 1984; Roberts 

et al., 1987; Kretschmann and Weinrich, 1992), that the individual cerebellar lobules are 

generally not labeled, and only limited sections are depicted in either one or two of the 

cardinal planes with large gaps between these. Furthermore, the terminology used to identify 

the fissures and lobules in these atlases is not uniform and is often contradictory.

Schmahmann et al. (2000) presented a human cerebellar atlas with sections at 2 mm 

intervals in three cardinal planes based on high-resolution T1-weighted Magnetic Resonance 

(MR) images of a single human cerebellum that was coregistered to the Montreal 

Neurological Institute (MNI) template (Evans et al., 1993) and annotated using a revised and 

simplified nomenclature. Using the above MR image atlas of the human cerebellum as a 

basis for identification of landmarks and fissures, Makris et al. (2005) developed a manual 

method aided by a set of computer-assisted algorithms to facilitate the parcellation of the 

cerebellar cortex into 32 parcellation units (PUs) per hemicerebellum in a manageable 

period of time. In their implementation, the fissures divide the cortex into lobules, while 

longitudinal divisions separate the vermis from the hemispheres, and subdivide the 

hemispheres into medial and lateral zones. The large lateral hemispheric region of Crus I 

and II is divided into a further two zones. The authors found that intraclass correlation 

coefficients (McGraw and Wong, 1996; Shrout and Fleiss, 1979) for both intra- and inter-

rater reliability were significantly improved by clustering PUs according to either lobar 

divisions, anatomical connectivity, or functional connectivity. Lobar clusters are widely used 

(Pierson et al., 2002) and divide the cerebellum into anterior, posterior and flocculonodular 

lobes that are separated by the primary and the posterolateral fissures, respectively. In all 

these studies only data acquired from adults were used.

Subsequently, Diedrichsen (2006) developed the high-resolution spatially unbiased infra-

tentorial template (SUIT) of the cerebellum by normalizing individual cerebella of 20 

healthy adults non-linearly to each other before averaging, which improved specificity when 

labelling regions in functional MRI data.

Although atlases are widely used to assign anatomical labels to locations, there is a high risk 

for error due to high spatial variability of individual cerebellar anatomy, and even more so 
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between different populations. Probabilistic atlases enable the assignment of labels to 

specific regions while also providing a quantitative measure of the uncertainty of such 

assignments. Currently, whole brain probabilistic atlases typically treat the cerebellum as a 

single structure without any lobular divisions (Hammers et al., 2003; Shattuck et al., 2008). 

In 2009, the first probabilistic cerebellar SUIT atlas was created (Diedrichsen et al., 2009) 

based on manual tracings of lobules on T1-weighted MRI scans (1 mm isotropic resolution) 

of 20 healthy adult participants (10 male, 10 female, age range 19–27 years). The SUIT atlas 

defines twenty-eight compartments: lobules I–IV and V divided into left and right 

hemispheres; lobules VI, Crus I, Crus II, VIIb, VIIIa, VIIIb, IX, and X divided into vermal 

sections in addition to left and right hemispheres. This atlas aims specifically to improve 

inter-subject co-registration of cerebella to yield improved specificity of cerebellar 

activations and valid assignments of functional activations to specific cerebellar lobules.

We were interested in examining cerebellar anatomy in children (age 9–13 years) from the 

Cape Coloured (mixed ancestry) community in Cape Town, South Africa. Since manual 

tracing is both time intensive and subjective, we wanted to perform automatic cerebellar 

segmentation. It has been noted previously, however, that a specialized atlas should be 

created for research in children (Diedrichsen, 2006) as the shape and ratio of gray matter to 

white matter in the cerebella of children differ significantly from that of adults (Fonov et al., 

2011). To our knowledge, no pediatric cerebellar atlas is currently available.

In developing an atlas, an important decision relates to the registration target (template). A 

template closer to the study population reduces morphometric bias and the amount of 

nonlinear deformation required to establish spatial alignment (Yoon et al., 2009) between the 

template and subject. Wilke et al. (2008) developed the ‘Template O Matic’ toolbox for SPM 

that creates an age specific whole brain template by initially using linear co-registration of 

subjects and regressing for age and gender in pediatric populations. The resulting template, 

however, appears smoothed and lacks anatomical detail in the regions of greatest variability.

The unbiased nonlinear National Institutes of Health Pediatric Database (NIHPD) template 

created by Fonov et al. (2011) provides better spatial resolution and improved contrast 

compared to the classical International Consortium for Brain Mapping (ICBM152) template. 

NIHPD templates are available for different age ranges for normal brain development; the 

pediatric population was grouped into five categories between the ages of 4.5 and 18.5 years. 

For each category, two templates were constructed, one that preserves asymmetry and 

another with symmetric hemispheres. Deformation studies using these five different 

templates have shown that the average magnitude of deformation increases with increasing 

difference in age between the template used and the subject being studied (Fonov et al., 

2011). In the present study we used the NIHPD unbiased nonlinear template that preserves 

asymmetry closest to the age range of our subject population (7.5 – 13.5 years).

Although recent advances in image segmentation have demonstrated that multi atlas 

segmentation improves accuracy over standard atlas based approaches, these have rarely 

been applied to cerebellar segmentation, possibly due to the need for a large number of 

manually segmented atlases, which is both time intensive to construct and requires extensive 

expertise. Pipitone et al. (2014) recently developed the Multiple Automatically Generated 
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Templates (MAGeT-Brain) algorithm, which minimizes the number of atlases needed by 

propagating the atlas segmentations to a template library constructed from a subset of the 

target images. Using this approach and manually segmented atlases of only 5 adult cerebella, 

Park et al. (2014) demonstrated good accuracy using voxel wise majority voting compared to 

“gold standard” manual segmentations in the identification of all lobules (mean Dice 

Similarity Coefficient [DSC] = 0.73; range 0.40–0.89) and the entire cerebellum (mean DSC 

= 0.93; range 0.90–0.94) in 20 adults (10 healthy controls; 10 patients with schizophrenia). 

Bogovic et al. (2013) demonstrated superior performance compared to SUIT atlas based and 

multi atlas fusion approaches using multiple object geometric deformable models. To the 

author’s knowledge, no multi atlas cerebellar segmentation pipeline is available that has 

been tailored to pediatric datasets and is based on training data from children. Further, the 

parametric generative model (Iglesias et al., 2012; Iglesias et al., 2013) has not been applied 

to cerebellar segmentation.

In this work, we present the probabilistic Cape Town Pediatric Cerebellar Atlas (CAPCA18) 

for improved labelling of cerebellar structures in children. The atlas was constructed in the 

already established age-appropriate NIHPD template space from manual tracings of 16 

cerebellar compartments in 18 healthy children (age range 9–13 years, 6 male) according to 

the nomenclature introduced in the MRI atlas of the human cerebellum (Schmahmann et al., 

2000). The probabilistic presentations of each compartment provide a quantitative measure 

of the spatial variability in that region. In addition, manually traced cerebella of the training 

subjects were used to implement multi atlas label fusion using both voxel wise multi atlas 

majority voting (MAMV) and multi atlas generative model based label propagation 

(MAGM) for comparison to atlas based segmentation. Segmentation accuracy compared to 

manual tracings was evaluated for the CAPCA18 atlas and each of the two multi atlas 

methods in an independent sample of 14 healthy children (age range 8.9–11.8 years, 10 

male).

2. Materials and Methods

High resolution T1-weighted structural images were acquired on a 3T Allegra (Siemens, 

Erlangen, Germany) MRI scanner using a magnetization prepared rapid gradient echo 

(MPRAGE) sequence (TR 2300ms, TE 3.93ms, TI1100ms, 160 slices, flip angle 12 degrees, 

1.3×1.0×1.0mm3, 6.03 minutes) in 18 healthy children (mean age 11.8±1.2 years) from the 

Cape Coloured community in Cape Town, South Africa who were recruited as typically 

developing controls for ongoing studies of Fetal Alcohol Spectrum Disorder (Jacobson et al., 

2008). A further 14 healthy children (mean age 10.5 ± 0.8 years) from the same community 

were scanned using a volumetric navigated (Tisdall et al., 2012) multiecho (ME) MPRAGE 

sequence (van der Kouwe et al., 2008) (128 sagittal slices, TR 2530 ms, TE 

1.53/3.21/4.89/6.57 ms, TI 1100 ms, flip angle 7 degrees, 1.3×1.0×1.3 mm3). All children 

were scanned according to protocols that had been approved by the Faculty of Health 

Sciences Human Research Ethics Committee at the University of Cape Town; parents of all 

children provided written informed consent and children provided oral assent.
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Image Preprocessing

The images were reoriented with the horizontal line defined by the anterior posterior 

commisure (ACPC orientation) and the sagittal planes parallel to the midline. The images 

were resampled to isotropic 1mm3 voxels using windowed sinc interpolation in Brain 

Voyager (Goebel et al., 2006). The resulting images were cropped to a fixed bounding box 

by removing the empty slices from the volume using a customised script written in 

MATLAB (www.mathworks.com). This process ensured removal of the neck and generated 

similarly oriented whole brain images.

Manual Tracing

The cerebella of the 18 training subjects were manually traced in native space according to 

the revised nomenclature defined by Schmahmann et al. (2000) using Multitracer (Woods et 

al., 2003) software on a tablet PC by an expert neuroanatomist (CW) who was blind to the 

age and sex of the children. Although tracings were largely performed in the sagittal view, 

all three planes were used to ensure three dimensional (3D) continuity. Tracings performed 

in the coronal and axial planes appeared as dots in the sagittal view and were used to define 

lateral boundaries of structures. Tracings were performed at four times magnification. The 

following lobules of the cerebellum were traced on both the left and right hemispheres: 

lobules I–V, VI, Crus I, Crus II, VIIb, VIII, IX and X.

The right hemispheres of 10 randomly selected subjects were re-traced at a later time by CW 

in order to compute intra-rater reliabilities. Cerebella of 14 test subjects were traced by a 

different neuroanatomist (NB) using the same protocol. Inter-rater reliabilities for lobules of 

eight cerebellar hemispheres traced by both neuroanatomists were compared using intraclass 

correlation coefficients (ICC).

The midline slice was defined as the sagittal slice in which the cerebral aqueduct was most 

clearly visible. Left and right hemispheric subregions were traced separately. The anterior 

lobe comprises lobules I–V; lobule VI, Crus I and II, and lobule VIIb form the superior-

posterior lobe; and lobules VIII, IX and X comprise the inferior posterior lobe. For each 

lobule, the regions demarcated by the drawn contours as belonging to that lobule were 

masked on all relevant slices and combined to construct a 3D volume of each lobule. The 

resulting volumes and their surfaces were inspected visually to identify and correct tracing 

errors (examples shown in Fig.1) in an iterative way. The resulting masks define 16 

cerebellar compartments, 8 in each hemisphere, each of which was labeled with a unique 

integer value. Tracings for one hemisphere of one brain are shown in the sagittal plane in the 

right panel of Fig. 2, with the corresponding masked regions and their color representations 

shown in the middle and left panels, respectively. For each subject we also generated a 

cerebellar mask comprising the sum of the gray matter parcellations and the total cerebellar 

white matter.

Construction of the CAPCA18 Probabilistic Atlas

The T1-weighted images of the 18 training subjects were spatially normalized to the age-

appropriate NIHPD asymmetric template (Fonov et al., 2011) using discrete cosine non-

linear deformation. We used the SPM5 unified segmentation (Ashburner and Friston, 2005) 
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method that uses a mixture of Gaussian models to simultaneously perform spatial 

normalization, bias correction, and tissue classification. The tissue probability maps (gray/

white/cerebrospinal fluid (CSF)) of the template were used to classify tissues as gray matter, 

white matter and CSF. Further, all SPM’s default settings were used. Following alignment of 

the T1 images to the template, individual lobular masks and cerebellar masks of each subject 

were resampled into the template space using nearest neighbour interpolation.

Co-registered cerebellar masks were averaged in the NIHPD template space to generate an 

average cerebellar mask. In this work, we chose to set probabilities of voxels with values of 

0.3 or less equal to zero, as these voxels were part of the cerebellum in only 30% or fewer of 

the subjects, and values greater than 0.3 equal to unity. Using a threshold helps to reduce the 

effects of outliers and individual subject variance. The average of the whole brain images of 

the training subjects normalised to the NIHPD template space was multiplied by the 

resulting cerebellar mask to construct an average cerebellar image (Fig. 3A).

In a similar way, resampled lobular masks in normalised space were averaged across 

subjects to generate probability maps for each structure, where the value in each voxel 

location denotes the probability of a voxel belonging to said structure. Typically, there is 

spatial variability of individual cerebellar structures between subjects even after alignment to 

a reference template. The probability maps indicate the proportion of subjects in whom a 

specific lobule occupies a location in the reference space and as such also quantifies the 

spatial variability in different regions. This enables one to visualize both the spatial extent of 

individual sub-regions and their spatial variability. Fig. 3B shows the maximum probability 

map generated by combining the averaged lobular masks in normalised space. Each voxel is 

assigned a value equal to the maximum probability for that location. Further, voxels for 

which the maximum probability is 0.3 or less are set to zero as this indicates that these 

voxels belonged to a cerebellar lobule in 30% or fewer of the subjects in the initial dataset.

From the maximum probability map, we constructed an atlas of maximum likelihood 

labellings, which assigns to every voxel a label indicating the individual cerebellar structure 

located at that voxel most often. At the boundaries between structures, where a voxel may 

have equal probability of belonging to two different lobules, the label that occurs most often 

in a 3×3×3 mm3 region surrounding the voxel was assigned to the voxel (Fig. 3C).

CAPCA18 Atlas Based Segmentation

The images of the 14 test subjects were preprocessed using the same pipeline as the training 

subjects. The unified normalisation algorithm in SPM5 was applied to simultaneously 

perform tissue classification and normalisation of each subject’s whole-brain images to the 

NIHPD asymmetric template. Labels from our probabilistic CAPCA18 atlas were then 

resampled to subject space using the inverse of the deformation warps obtained during 

normalisation to obtain CAPCA18 based cerebellar segmentations for each test subject.

We computed for each test subject both individual lobular volumes and total cerebellar gray 

matter volume, and compared the percentage of total gray matter volume that each lobule 

occupies in children from our study with values previously reported in adults (Makris et al., 

2005).
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SUIT Atlas Based Segmentation

For comparison, automated atlas based segmentation was also performed using the SUIT 

cerebellar atlas available in SPM5 that was developed using adult data. Briefly, each 

subject’s images were cropped to the region of the cerebellum after co-registration to the 

ICBM152 template. Individual cerebella of the test subjects were normalised to the SUIT 

template to obtain deformation maps for each image. Manual editing was required around 

the anterior borders between the cerebellum and the temporal and occipital lobes for 8 of the 

test subjects. After editing the cerebellar cortex achieved 78% average overlap with the 

SUIT template, which is comparable with the 75% previously reported (Diedrichsen et al., 

2009). Normalisation was repeated after manual editing and the labels from the SUIT atlas 

were resampled to the cropped test subject space using the inverse of the deformation warps 

obtained during normalisation. Finally, labels were resampled to native test subject space 

using the suit_reslice command.

Comparison of CAPCA18 and SUIT Atlas Based Segmentation

Using Dice’s Similarity Coefficient (DSC; Dice et al., 1945) to quantify of spatial overlap 

with manual tracings, we compared cerebellar segmentation accuracy using our CAPCA18 

atlas and the SUIT atlas. SUIT labelling differs from the conventions followed in this paper, 

in that the vermis is defined as a single medial entity in SUIT, while it was not traced 

separately in our work and as such was included in our hemispheric regions. In order to 

avoid errors due to omission or inclusion of the vermal regions when comparing data from 

SUIT to manual tracings, the left and right SUIT hemispheric regions and the SUIT vermal 

region were combined for each lobule to define whole lobules and compared to whole 

lobules (left plus right) from manual tracings. To facilitate comparison of the two atlases, 

spatial overlap of CAPCA18 segmentations and manual tracings were also computed in 8 

whole lobules. In addition, we compared in each of the 14 test subjects the spatial overlap of 

the total cerebellar gray matter from manual tracing with that obtained using automated 

SUIT and CAPCA18 segmentations, respectively.

Multi Atlas Segmentation

The images of each of the training subjects and their respective label maps generated from 

the manual tracings are collectively referred to as the training atlases.

The whole brain images of the training and test subjects were processed using Freesurfer 

software (http://surfer.nmr.mgh.harvard.edu/). The processing steps included skull stripping 

(Ségonne et al., 2004), intensity normalisation (Sled et al., 1998), cortical and subcortical 

structure segmentation, surface generation and cortical thickness calculation (Dale and 

Sereno, 1993; Dale et al., 1999; Fischl et al., 1999). The surfaces were superimposed on the 

T1 weighted images and visually assessed for correctness of gray-white and gray-CSF 

boundaries. White matter boundaries were edited manually to ensure correct surface 

generation.

After processing with Freesurfer, the surfaces from the training subjects were used as the 

moving sources and the surfaces of the test subjects as the targets for pair-wise combined 

volume- and surface-based (CVS) registration of each training image to each target image. 
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The CVS registration tool (Postelnicu-Zöllei et al., 2009) achieves good correspondence 

between both cortical folding patterns and subcortical structures. We performed the complex 

registration on a high performance computer cluster facility which has 127 batch nodes, two 

quad-core Xeon 5472 3.0 GHz CPUs and 32 GB RAM. All nodes were running the 64-bit 

version CentOS 6. The pair-wise registration between the training and test surfaces yielded 

252 (18×14) registered outputs and their associated deformation warps.

To obtain the final segmentation for each test subject, we combine all the registered atlases 

obtained by applying to each training atlas the deformation from the CVS registration of the 

corresponding training image to the relevant test image. Two different label propagation 

techniques were employed: multi atlas majority voting (MAMV) (Heckemann et al., 2006) 

and multi atlas generative model based label propagation (MAGM; Iglesias et al., 2012). 

Figure 4 shows the processing pipeline for our multi atlas based segmentation.

Majority voting assigns a label to each voxel of the test image by determining the label that 

occurs most frequently in the corresponding voxel on all the registered training atlases. All 

training images are weighted equally and it is assumed that each training atlas represents an 

accurate segmentation. The effects of independent noise associated with a particular label 

are reduced using this approach.

The generative model approach uses probabilistic modelling of segmentations from a set of 

segmented images to generate a second set of final segmentations. The model is independent 

of the intensity of the training images. The intensity of the test image and the respective 

deformed outputs are used to model the final segmentation of the test image. The 

mathematical formulation of the model was derived from the implementations by Sabuncu et 

al. (2010) and Iglesias et al. (2012). The model includes a single model parameter β, where β 

= 0 treats each voxel independently, β = ∞ corresponds to a single label map, and β = finite 

value yields the combined output. In our work we used β=0 to obtain the fused output from 

MAMV and β=0.3 for MAGM.

Comparison of Atlas Based and Multi Atlas Methods

Segmentation accuracy in the 14 test subjects was compared for CAPCA18, MAMV, and 

MAGM segmentation using both volumetrics and DSC scores as a measure of spatial 

overlap with manual tracings.

3. Results

Intra-rater reliabilities for 10 right hemispheres traced on two separate occasions by CW 

yielded ICCs ranging from 0.72 to 0.96 for different structures (Table 1). Only in the small 

lobules IX and X were ICCs below 0.85. Inter-rater reliabilities for lobules of 8 cerebellar 

hemispheres traced by two different neuroanatomists (CW, NB) show ICCs greater than 0.8 

in five of eight lobules traced. ICCs in VIIb and X were unacceptably low, indicating 

discrepancy between the raters, suggesting that these regions are difficult to trace reliably.

Table 2 gives the average lobular volumes as a percentage of total cerebellar gray matter 

volume for the 14 test subjects after automatic segmentation using the CAPCA18 atlas. The 
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average gray matter volume for our test subjects is 113.2 ± 11.5cm3, which compares 

favourably with gray matter volumes of 112.9 ± 18.9 cm3 reported by Makris et al. (2005) in 

adults. Crus I, Crus II and lobule VIIb together occupy 49.4% of the total cerebellar gray 

matter. For comparison, percentage lobular volumes reported by Makris et al. (2005) for 

adults are included in Table 2. Proportionally, lobules VI, VIIb and X comprise smaller 

fractions of the total cerebellar gray matter in children, while lobule IX is proportionately 

about 50% larger than in adults.

Figure 5 compares for the 14 test subjects DSC scores that quantify spatial overlap in 8 

whole lobules between manual tracing and automated segmentation using either the SUIT 

(red) or CAPCA18 (blue) atlases. CAPCA18 achieves significantly better (student’s T-test) 

DSC scores with respect to manual segmentations than SUIT in lobules I–V, VI, CrusI, VIII 

and IX, and overall exhibits lower variability in DSC scores. DSC scores drop below 0.6 in 

most subjects in lobules VIIb and X using both atlases.

In all but one of the test subjects, total cerebellar gray matter from CAPCA18 segmentation 

showed greater spatial overlap with manually traced total cerebellar gray matter than SUIT. 

On average, gray matter spatial overlap using SUIT before and after manual editing were 

75% and 78%, respectively, while it was 86% using the fully automated CAPCA18 atlas 

based segmentation.

Table 3 presents average lobular volumes for the 14 test subjects using each of the automated 

segmentation methods compared to “gold-standard” manual segmentation. Volumes of 

lobules VIIb and X differed from manually traced volumes using all three methods. Further, 

left Crus I and IX were larger and left Crus II smaller using CAPCA18 atlas based 

segmentation compared to manual tracing. In all other regions, volumes from automated 

segmentation were similar to those from manual tracing for all three methods.

For comparison purposes, we present in Table 4 a comparison of mean whole lobular 

volumes (left and right hemispheres and vermis combined) in the 14 test subjects from 

segmentation using the SUIT atlas with volumes obtained from manual tracings. 

Hemispheric volumes from SUIT segmentation were significantly different to those from 

manual tracing in four of eight lobules (paired Student’s T-test), and tended to be larger, 

although below conventional levels of significance, in a further three lobules. Volumes were 

equivalent only in lobule VIII. Notably, one of the regions that SUIT overestimates is lobule 

VI, which is proportionately smaller in children than in adults, while lobule IX, which is 

underestimated with SUIT, is proportionately larger in children.

In Figure 6 we compare manual segmentation with automated segmentation for each of the 

three methods using spatial overlap, expressed as DSC scores. On average, spatial overlap 

between manual and automated segmentations are 70% or higher in all regions for all three 

automated segmentation methods, except lobules VIIb and X where it is between 50% and 

70%. Notably, these are the two regions where inter-rater reliabilities for manual tracings 

were unacceptably low. In right VI, VIIb, and X, and left I–V, VI, CrusI, CrusII, and X 

MAGM produced better spatial overlap with manual tracings than CAPCA18 segmentation, 

while MAMV produced better spatial overlap than CAPCA18 bilaterally in lobules VIIb and 
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X. The mean DSC score across all lobules for MAGM segmentation was 0.76 (range 0.55 – 

0.91), compared to 0.67 (range 0.40 – 0.84) and 0.73 (range 0.52 – 0.89) for CAPCA18 and 

MAMV segmentation, respectively. The mean DSC of the entire cerebellum was 0.86, 0.88 

and 0.90 for CAPCA18, MAMV and MAGM segmentation, respectively.

4. Discussion

We have presented the CAPCA18 probabilistic three dimensional cerebellar atlas for 

children with parcellations into 16 macroanatomic structures, as well as a pipeline for multi 

atlas segmentation that utilises the individual atlases of the 18 training children with either 

MAMV or MAGM based label fusion. We evaluated in 14 test children the segmentation 

accuracy of CAPCA18, SUIT, MAMV and MAGM compared to manual tracing. Overall 

MAGM segmentation yielded the best segmentation accuracy compared to manual tracing 

across all lobules.

Although manual delineation is extremely labour intensive, it is still considered the gold 

standard for volumetric assessment. Observer bias may, however, affect the results whenever 

a manual method is used. Prior studies of the cerebellum have emphasized the challenges 

associated with manual delineation of Crus II, lobules VIIb and VIII (Diedrichsen et al., 

2009; Bogovic et al., 2013) and that raters should consider different image features like size, 

depth of fissures, location of the fissure, starting and ending points of the fissure, and lobule 

boundaries when deciding where to draw boundaries. Our expert neuroanatomists completed 

manual tracing of individual lobules of a complete cerebellum in roughly 30–60 minutes. 

Intra-class correlation coefficients (ICCs) of individual lobules traced at two different times 

by the same tracer were greater than 0.8 in all lobules, except lobule X where it was 0.72, 

confirming the reliability and robustness of the tracing protocol used in this study. Inter-rater 

reliabilities below 0.5 in lobules VIIb and X indicate that these regions are difficult to trace 

reliably and may be prone to observer bias. Since the training data that were used in atlas 

construction were traced by one tracer, and the test data used for validation by the other, we 

expected poor performance of our automatic segmentation algorithm in these lobules.

Fissures in an average child brain are not as clearly distinguishable as in an average adult 

brain and the shape and ratio of gray matter (GM) to white matter (WM) also differs, with 

differences ranging from 4 to 23% (Fonov et al., 2011). As a result, improved co-registration 

and segmentation results are expected using a cerebellar atlas for children. The CAPCA18 

atlas provides both a measure of inter-subject variability in different cerebellar structures and 

assigns to each voxel a unique label according to the label most often found in that location 

in the training data. To our knowledge, this is the first pediatric cerebellar atlas that can serve 

as a better spatial prior to analyze cerebellar morphometry in children.

The average percentage gray matter volume occupied by each lobule in the cerebellar 

hemispheres was compared with values previously reported by Makris et al. (2005) to 

examine potential relative size differences in children compared to adults. It was found that 

lobule IX is proportionately larger in children, while lobules VI, VIIb and X are 

proportionately smaller. The increased volume in lobule IX in children may be due to 

increased gray matter around the posterior lobe of the cerebellum. It has been shown 
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previously when deforming pediatric brains to the adult ICBM152 nonlinear template that 

gray matter around the posterior lobe is increased in children (Fonov et al., 2011).

Spatial overlap of CAPCA18 segmentations with manual tracings was greater than 73% 

bilaterally in lobules I–V, VI, crus I, crus II, VIII and IX. These values are comparable with 

DSC scores that have been reported in other studies (Bogovic et al., 2013; Park et al., 2014). 

Notably, lobules VIIb and X, which yielded low DSC scores (50–70%), are the smallest 

cerebellar lobules, comprising only 1.2% (lobule X) and 6.9% (lobule VIIb) of the total 

cerebellar gray matter, so that even small differences will result in low Dice coefficients. 

These are also the regions that are difficult to trace reliably as evidenced by their poor inter-

rater reliabilities. The accuracy of structure segmentation depends on its spatial location and 

the tissues surrounding the structure. The inferior part of lobule VIIb comprises a very thin 

layer of gray matter and the inclusion of additional white matter during manual tracing of 

this structure in the training subjects may explain the low accuracies of automatic 

segmentation in this region.

Bogovic et al. (2013) who used an automatic classification of cerebellar lobules algorithm 

that employs an implicit multi-boundary evolution (ACCLAIM) approach, obtained greater 

spatial overlap with manual tracings than we did with CAPCA18 only in lobules VI 

(ACCLAIM 0.72–0.83; CAPCA18 0.69 – 0.77) and IX (ACCLAIM 0.78 – 0.88; CAPCA18 

0.72 – 0.86). The ACCLAIM method, however, relies on good contrast between CSF and 

GM and high spatial resolution (0.828 × 0.828 × 1.1mm3) and as such may perform less 

well in our pediatric data.

Average spatial overlap of the whole cerebellar cortex in the test images with manual gray 

matter segmentations was 86% with CAPCA18, compared to 78% after normalisation to the 

SUIT template. Further, CAPCA18 segmentation yielded higher or similar DSC scores than 

SUIT in all lobules when compared to manual tracing. Our finding that SUIT underestimates 

the volume of lobule IX is consistent with those of another recent study (Park et al., 2014) 

and may, in part, be due to the fact that lobule IX is proportionately larger in children than in 

adults. In contrast, CAPCA18 obtains good spatial overlap with manual tracing in lobule IX 

and volumes are more similar (albeit bigger on the left) to those from manual segmentation. 

These findings suggest that our pediatric cerebellar atlas helps to reduce bias and 

segmentation errors that may result from using an atlas constructed from adult data.

Consistent with previous studies, multi atlas segmentation consistently performed better than 

CAPCA18 atlas based segmentation. There were no regions where CAPCA18 yielded better 

DSC scores than either MAMV or MAGM. Using MAGM segmentation, we obtained a 

mean DSC score across all lobules of 0.76 (range 0.55 – 0.91) and 0.90 (range 0.86–0.93) 

for the entire cerebellum. These values are in excellent agreement with those reported 

recently by Park et al. (2014) in adults (across all lobules mean DSC = 0.73, range 0.40– 

0.89; entire cerebellum mean DSC = 0.93, range 0.90–0.94).

In the present work our training set comprised 18 cerebella that had been manually traced by 

an expert neuroanatomist as part of interlinking studies. The cost and time required to 

perform manual tracings in more children exceeded the resources that were available for the 
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current project. Further, this number is comparable to the number of subjects that have been 

used in similar works – SUIT used 20 subjects. Park et al. (2014) demonstrated that only 5 

atlases could provide accurate segmentation when combined with their MAG-eT Brain 

algorithm to generate more templates. Since our 18 training subjects yielded, in children of 

similar age and from the same population, segmentation accuracies that were comparable to 

those reported in other studies, we deemed the current number to be sufficient. In future 

studies we will need to evaluate whether this holds true when our algorithms are applied to 

different populations and different ages. Aljabar et al. (2009) demonstrated that using a 

subset of atlases, selected from a database of 275 based on image similarity or age, markedly 

improved spatial overlap with manual tracings compared to using a random subset of atlases. 

Further, the authors reported that simply using larger and larger numbers of atlases (after 

selection by image similarity or age) leads to lower accuracy in the resulting segmentation. 

Approximately 20 atlases produced near maximal accuracy across all structures examined in 

their study. While the availability of an independent sample of manually traced cerebella 

were important in the present study to validate the performance of our automated methods, 

we could increase our multiple atlas database to 32 by combining data from the 18 training 

and 14 test subjects in future studies.

It has been noted previously that direct comparison of quantitative segmentation results 

across publications are difficult and not always fair due to inconsistencies and discrepancies 

in the manual segmentation protocol, the quality of the imaging data, and differences in the 

patient populations (Wang et al., 2012). Despite these limitations, the present work 

demonstrates that cerebellar segmentation using the CAPCA18 atlas combined with multi 

atlas based methods consistently achieved greater segmentation accuracy in the present 

pediatric data set than the SUIT atlas derived from adult data.

We used publicly available SPM software to construct the CAPCA18 atlas, which ensures 

that our atlas can be easily used for both segmentation and localisation in morphometric and 

functional imaging studies, respectively.

For the test subject data used in the current study no manual editing was required when 

performing CAPCA18 segmentation. It is, however, important to check the images 

generated after initial preprocessing as well as after each intermediate step to ensure that no 

errors are introduced in the pipeline when computing the deformations between the atlas and 

test subjects.

One limitation of the present study is that the number of boys and girls were not equal in 

either the training or test data sets. In the training data set there were twice as many girls as 

boys, while 71% of the test subjects were boys. This could have introduced bias into the 

atlas, which may have resulted in poorer segmentation performance in the test subjects. We 

examined gender differences by comparing lobular volumes from manual tracings in boys 

and girls. Although lobular volumes in both hemispheres were equivalent between boys and 

girls (all p’s > 0.1) in this small sample, we expect that the atlas may be improved if the 

training data set had equal numbers of boys and girls.
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Further, segmentation performance was evaluated in this work using volumetrics and DSC 

scores. DSC scores are, however, only comparable if they pertain to structures with similar 

surface-to-volume ratios (Rohlfing et al. 2004). While DSC scores are therefore adequate for 

comparing segmentation performance within a structure, they are suboptimal for identifying 

structures that are segmented less accurately than others and a surface distance measure, 

such as the symmetric Hausdorff distance, could provide additional insights.

5. Conclusion

This paper presents the probabilistic CAPCA18 atlas, and multi atlases constructed from the 

training data, that can be used to automatically segment the cerebella of children into 16 

lobules. CAPCA18 segmentation, MAMV and MAGM label fusion were validated in 14 test 

subjects from the same age and ethnic group as the children whose data were used in the 

construction of the atlas. Although CAPCA18 segmentation consistently performed better 

than SUIT segmentation, MAGM yielded the greatest spatial overlap with manual tracings. 

CAPCA18 is the first pediatric cerebellar atlas and will be a useful tool in structural and 

functional imaging studies in children. Future work will focus on improving the accuracy of 

individual parcellations and validating the atlases in a larger number of subjects, different 

populations, and different age groups. Combining patch based segmentation with multi atlas 

label fusion methods can potentially improve the segmentation accuracy.
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Highlights

The probabilistic Cape Town Pediatric Cerebellar Atlas (CAPCA18) 

provides accurate assignment of 16 hemispheric regions.

In a pediatric dataset (age 9–12 years), automated CAPCA18 atlas based 

segmentation performs better than SUIT segmentation.

Multi atlas based label fusion using the 18 training atlases improves spatial 

overlap with manual tracings, compared to CAPCA18 segmentation.
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Fig. 1. 
Illustration of CrusII volumes for the 18 training subjects with tracing errors in two 

(indicated by the black arrows), which were manually corrected by the expert 

neuroanatomist.
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Fig. 2. 
Cerebellar lobules and their color representations. Left and right hemispheric structures are 

represented using the same colors and unique labels. The image on the right shows manually 

traced contours in the sagittal view for one subject, while the middle panel shows the 

corresponding masked regions and their color representations on the left.
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Fig. 3. 
A. Average cerebellar image in normalised space, R-Right, L-Left; B. Maximum Probability 

maps of individual structures; bright colors (white) indicate voxels with high probability and 

darker (red) colors indicate voxels with lower probability. C.Maximum likelihood labellings 

superimposed on the average image generated after spatial normalization with the NIHPD 

(7.5–13.5 years) asymmetric template. The colors represent the lobules of the cerebellum as 

per the color look up table in Figure 2. The coronal slices range from MNI coordinates −75 

to −33.
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Fig. 4. 
Flow chart showing the processing pipeline for multi atlas based segmentation. Every image 

in the training set is registered to the individual test subject’s image, whereafter the resulting 

deformation is applied to each training atlas. Two different label fusion strategies are used to 

propagate labels from the registered training atlases to the image of the test subject.
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Fig. 5. 
Box-and-whisker plots of Dice coefficients that quantify spatial overlap in 14 test subjects of 

manual tracing with automatic segmentation using either the SUIT (red) or CAPCA18 (blue) 

atlases for eight whole lobules and total cerebellar gray matter (GM). †p<0.1; *p<0.05; 

**p<0.01; ***p<0.001
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Fig. 6. 
Box-and-whisker plots of Dice coefficients in the right hemisphere (top row) and left 

hemisphere (bottom row) that quantify spatial overlap in 14 test subjects of manual tracing 

with each of three automated segmentation strategies, (1): CAPCA18 probabilistic atlas 

based segmentation (magenta); (2): multi atlas majority voting (MAMV; green); (3): multi 

atlas generative model (MAGM; blue). †p<0.1; *p<0.05; **p<0.01; ***p<0.001.
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Table 1

Intra-rater reliability for tracings repeated in 10 right hemispheres by an expert neuroanatomist, and inter-rater 

reliability for lobules traced in 8 hemispheres by two different neuroanatomists.

Cerebellar Lobules ICC Intra-rater ICC Inter-rater

I–V 0.91 0.92

VI 0.87 0.83

Crus I 0.85 0.81

Crus II 0.89 0.69

VIIb 0.85 0.43

VIII 0.96 0.88

IX 0.83 0.87

X 0.72 0.46
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Table 4

Comparison of mean and standard deviation (SD) of volumes of cerebellar lobules obtained from manual 

tracing and SUIT segmentation in 14 test subjects.

Cerebellar Lobules Cerebellar hemispheric volumes

Volume from Manual Tracing (cm3) Volume from SUIT Segmentation (cm3) t

I–V 12.8 (2.1) 14.3 (2.5) −1.6†

VI 13.5 (2.0) 18.3 (3.0) −5.9***

Crus I 23.0 (1.8) 20.0 (4.4) 2.5*

Crus II 19.9 (1.7) 15.0 (4.2)   3.8**

VIIb 6.7 (0.9) 7.5 (1.9) −1.5†

VIII 14.7 (2.2) 14.0 (3.2) 0.8

IX 8.6 (1.2) 5.8 (1.2) 5.3***

X 0.8 (0.1) 0.9 (0.2) −1.6†

Values are Mean (SD);

†
p<0.1;

*
p<0.05;

**
p<0.001;

***
p<0.0001
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