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Abstract

A core question in cognitive science is how humans acquire and represent knowledge about their 

environments. To this end, quantitative theories of learning processes have been formalized in an 

attempt to explain and predict changes in brain and behavior. Here we connect statistical learning 

approaches in cognitive science, which are rooted in learners’ sensitivity to local distributional 

regularities, and network science approaches to characterizing global patterns and their emergent 

properties. We focus on innovative work that describes how learning is influenced by the 

topological properties underlying sensory input. The confluence of these theoretical approaches 

and this recent empirical evidence motivate the importance of scaling up quantitative approaches 

to learning at both behavioral and neural levels.
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Relating two approaches

From the earliest stages of development, the human brain is tasked with the monumental feat 

of building and efficiently accessing an enormously complex constellation of knowledge. 

Even the most mundane interactions with our environment require a rich understanding of its 

component parts as well as the scales at which they relate to form a larger system. Thus, 

knowledge can be represented at multiple levels, ranging from local associations between 

elements to complex networks built from those local associations. Until recently, a dominant 

approach to human learning has focused on micro-level patterns, often the pairwise 
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relationships between the constituents of sensory input. In the present review, we turn our 

attention to exciting advances in the application of network science to the study of broader 

architectural patterns to which human learners are sensitive.

One source of compelling support for locally-driven learning derives from demonstrations 

that infants can extract words from continuous speech based on the conditional probabilities 

between syllables [1]. Ongoing work continues to elucidate the power of statistical 

relationships exploited by both infants and adults, making “statistical learning” one of the 

most robust and deeply explored phenomena in the field of cognitive science [2–5]. An 

underlying rationale has been that local associations, like the conditional probabilities that 

facilitate word segmentation, assist in directing the learner to component parts of a cognitive 

system. Knowledge of these component parts not only opens up other informative cues to 

structure (for a review, see [6]), but also spurs the development of sophisticated 

representations of dependencies between higher-order units (e.g., [7]). While evidence has 

thus supported a key role for local computations in complex learning environments, 

intriguing counter-evidence suggests that statistical bootstrapping mechanisms may be 

overwhelmed by real-world cognitive systems (e.g., natural language [8]; but see [9,10]). As 

the issues of scalability in statistical learning are as yet unresolved, we stress here the value 

of also considering the global network structure that emerges from pairwise relationships 

between constituent elements in the environment.

Under a complex systems approach, the network structure of a system is studied by 

determining its component elements (nodes) as well as the relational links between them 

(edges). Once this scaffolding is constructed, it is possible to probe large-scale topological 

and dynamical properties over and above those present in the pairwise relations between 

elements. In fact, one defining characteristic of complex systems is that the explanatory 

power of their global architecture exceeds that of their local architecture [11]. Network 

science is increasingly applied to answer questions about the structure of immensely 

complex information: how might we represent or navigate spatial maps [12,13], object 

features [14], semantic concepts [15–17], and grammatical relationships [18]? It has also 

been effectively harnessed by cognitive neuroscientists to examine how structural and 

functional connections in the brain give rise to various cognitive capacities [19–25]. Despite 

these many advances, the integration of network science and cognitive science has tended to 

focus either on (1) the description of networks derived from the sensory world; or (2) the 

mechanisms by which the human brain engages with the sensory world, with little cross-talk 

between these two areas. Here, we focus on a related, but distinct line of questioning that 

may begin to bridge these branches of cognitive science. Namely, how can topological 

properties of sensory input drive the process of human learning?

In the subsequent sections, we offer examples of complex networks present in our everyday 

environment, focusing particularly on descriptive analyses of language networks. Next, we 

detail a growing body of experimental work that links topological properties of networks to 

knowledge acquisition. We then discuss the intersection between distributional approaches 

to learning, which offer insight into the acquisition of local statistical patterns, and network-

based approaches to learning, which offer complementary insight into the acquisition of 

higher-order patterns. Finally, we describe cutting-edge neuroimaging work that construes 
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the brain itself as a dynamical complex system, highlighting the importance of bridging 

internal network models of brain function with higher-order patterns in external networks

Complex networks are pervasive

Complex systems approaches rest on the premise, not tied to any particular domain, that the 

world can be decomposed into parts, and that those parts interact with one another in 

meaningful ways. Therefore, diverse facets of human knowledge can and have been studied 

under the lens of network science. Cognitive systems are generally thought to adhere to a 

complex network structure, a type of graph structure that is neither truly random nor truly 

regular [26]. Random graphs are collections of nodes that are linked by edges selected at 

random from a uniform distribution of all possible connections. Regular graphs are 

collections of nodes that share connections to the same number of neighbors, thus having 

equivalent degree. Falling between these two extremes (Figure 1), complex networks 

display their own set of unique properties including, but not limited to: community 
structure (nodes may pattern in densely connected groupings), skewed degree distribution 

(a few nodes may be densely connected, forming “hubs”), and distinctive mixing patterns 

(nodes may be more likely to share a link with other nodes that have either similar or 

dissimilar properties). As we will explore in detail in the following section, human learners 

are adept at exploiting topological properties such as these as they extract structure from 

sensory input (see Glossary).

In principle, network analysis of cognitive systems requires only that a given dataset be 

parsed into discrete elements (nodes) and that some relationships between those elements be 

specified (edges). In practice, this process presents a number of challenges, not least among 

them is determining the appropriate level of granularity of the elements or what exactly 

constitutes a relationship (for a thoughtful assessment of these topics, see [27]). 

Nevertheless, network-based approaches remain extremely powerful and have been 

successfully applied to a number of pressing questions. In the visual domain, complex 

network modeling techniques have been used to understand processes essential to scene 

perception such as texture and shape discrimination [28–30]. Moreover, the burgeoning field 

of social network analysis has offered unprecedented insight into how humans transmit 

information and interact with one another [31,32]. Perhaps more than any other branch of 

cognitive science, quantitative linguistics has adopted network-based approaches as a 

cornerstone methodology [33–36]. Across levels of the language hierarchy, graph theoretical 

methods have been applied to the study of phonological [37,38], semantic [39–41], and 

syntactic dependency systems [42,43]. In a phonological network, for example, the nodes of 

the graph correspond to the phonetic transcription of a word (e.g., as drawn from a 

dictionary), and edges are placed between words if they differ by no more than one phoneme 

(Figure 2). In this way, network approaches to cognitive systems tend to be built on existing 

distributional measures (in this case, phonological neighborhood density [44]). However, as 

discussed below, the higher-order architectural properties of these cognitive networks likely 

have their own set of consequences for learnability.
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Network topology influences learning and memory

Historically, complex network analyses of cognitive structures have had a descriptive focus. 

Naturally, the first step in understanding how networks structures develop [45–47] is to 

characterize existing topological properties (e.g., based on text or production-based corpora). 

Only recently has network topology been linked to empirical evidence of human learning. 

This relationship is typically examined in one of two ways: (1) by exposing adult learners to 

a set of tightly controlled stimuli and asking how they retain knowledge based on its 

underlying architecture; and (2) by extracting the network properties of adult speech and 

charting its influence on the trajectory of word learning in young children. Most of this 

empirical work has taken place in the language domain, likely because the topologies of 

language systems are richly characterized and also because mastery of a complex language 

system represents an unequivocal learning challenge [35].

Central to the production and comprehension of language lies the construct of a mental 

lexicon. To interact successfully with our language environment, it is essential to develop, 

adapt, and efficiently access the conceptual, grammatical, and sound-based properties of 

words. Accumulating evidence suggests a key role for phonological (sound-based) network 

properties as they mediate various aspects of this process. Interestingly, the clustering 
coefficient of a word (construed in this case as a node in a phonological network) has been 

shown to predict how robustly that word is acquired [48]. The clustering coefficient 

indicates whether the neighboring nodes of a target word are also connected to each other. In 

Figure 2, we offer examples of words with high and low clustering coefficient. Words in the 

phonological neighborhood of beer (i.e., those that overlap but for a single phoneme) also 

tend to overlap with each other (e.g., hear-year-near-dear), resulting in a high clustering 

coefficient. In contrast, words in the neighborhood of silk (e.g., milk-sulk-silly-sink) do not 

share a strong phonological relationship with each other, resulting in a low clustering 

coefficient. One week after training on pseudoword-novel object pairings, adult participants 

were better able to match a pseudoword to its corresponding object if that pseudoword had a 

high clustering coefficient. Complementary results indicate that after training on the 

phonological neighbors of a target word (but not the word itself), learners tended to 

erroneously endorse target words with low clustering coefficient. In contrast, results from a 

different long-term memory task (in which target words were not withheld) indicated that 

low clustering coefficient conferred a recognition advantage; correct endorsement was 

higher when compared to words with high clustering coefficient [49]. These findings are 

complemented by word recognition studies that demonstrate a processing [50,51] and 

production [52] advantage for words with low clustering coefficient, suggesting that words 

with these properties are more rapidly accessed from the mental lexicon. Taken together, 

these results suggest that dense interconnectedness between nodes in a network can confer 

an advantage for learning, but a disadvantage for retrieval. The effect of network topology 

on a given cognitive process may therefore differ depending on the precise nature of the task 

at hand.

To be clear, the clustering coefficient of a target word represents only one well-studied 

example of topological influences on learning and memory. When analyzing phonological 

properties of caregiver speech, it was found that children under 30 months were most likely 
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to produce words with a high degree and low coreness (a measure of how deeply a node is 

embedded in a network) [53]. Larger scale architectural properties may also play a role in 

accessing the mental lexicon. One example of such a macro-level property is assortative 
mixing by degree. This network property encapsulates the phenomenon that words with 

many phonological neighbors (high degree) are linked to words that also have many 

phonological neighbors, while words with few phonological neighbors (low degree) are 

linked to words that share this property. While assortative mixing has not been examined in a 

learning context, its effects are observable in psycholinguistic studies of lexical access. 

When the sound quality of a word with high degree is degraded, listeners are most likely to 

misperceive that item as a different word with equally high degree [54]. Other higher-level 

patterns in the phonological network have been implicated in memory processes. For 

example, words drawn from so-called “giant components” exhibiting small-world 
properties such as a high clustering coefficient and short characteristic path length are 

recalled less reliably than words drawn from “lexical islands” that share no connection to the 

giant component [55].

Clearly, the network structure of the lexicon has been most commonly framed in terms of 

phonological patterns. Nonetheless, its semantic organization (i.e., how words are related to 

each other via their meaning or co-occurrence in a corpus) has also been shown to influence 

word learning. For example, the distinctness of an object’s features, such as shape and 

surface properties, has been shown to predict age of acquisition of the word corresponding to 

that object. Phrased another way, objects that are topologically disconnected from other 

objects in a semantic network are labeled at the youngest age [14]. Graph analytic 

techniques have also been successfully applied to model child output [56,57]. In one recent 

study, a semantic network was constructed such that a node in the network represented a 

word known by children of 15-36 months, and each edge represented co-occurrence 

statistics as derived from a database of caregiver speech [57]. Word knowledge of typically-

developing children exhibited characteristic small world properties, but the networks of late-

talking children exhibited this quality to a lesser degree. Thus, language acquisition is 

influenced not only by the network architecture of input, but also by differences in how that 

input is transformed to an individual’s own distinct network topology. More broadly, these 

developmental studies highlight the potential power of harnessing network science to better 

understand individual differences in core cognitive capacities (see also [58]). In the 

following section, we turn to the essential question of how the learner begins to build 

complex network representations.

Local statistics underpin network architecture

The impact of local statistics

As introduced previously, statistical learning persists as an influential and well-supported 

theory of how learners extract structure from our external world. While we mainly focus on 

the effect of pairwise conditional probabilities, statistical learning fits into a broader 

distributional learning literature. In fact, longstanding interest in how we compute local 

contingencies can be traced to even earlier study of associative learning mechanisms in 

animals (e.g., [59]). As used to describe complex knowledge acquisition in humans, the term 
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distributional information encompasses the context in which elements in the environment 

appear together and with what regularity (e.g., frequency or probability). Sensitivity to 

distributional information is thus evident in charting the influence of patterns of co-

occurrence frequency (e.g., how often do groupings of elements appear together? [60], see 

also a related literature on “chunking” in finite-state grammar learning [61]), or the 

conditional probabilities between elements (e.g., what is the probability that a given element 

will follow another?). Manipulation of distributional statistics has also used to examine the 

acquisition of phonetic categories [62,63], phrase structure [64,65], and syntactic 

dependencies [66]. Outside of such learning contexts, the influence of distributional 

statistics is also observed in the processing of already familiar input. During natural 

language comprehension, for example, knowledge about grammatical dependencies result in 

a processing benefit for expected (probable) structures [67,68]. Likewise, processing costs 

associated with improbable structures can be overcome by sharply shifting their frequency in 

the immediate sensory environment [69]. Thus, the computation of statistical regularities is a 

continuous process that permeates both the acquisition of novel representations and the 

processing of familiar structures (for further discussion of the intersection between these 

capacities, see [65,70,71]).

While distributional sensitivity is often demonstrated via linguistic stimuli, we note that, 

outside the language domain, pairwise statistical patterns have been shown to drive the 

parsing of tonal groupings [72], visual events [73,74], and spatial scenes [75]. Evidence 

therefore points to statistical learning as a powerful domain-general mechanism, or one that 

can perform equivalent computations regardless of both input modality (e.g., auditory or 

visual; but see [76,77]). Despite its wide applicability, an important, growing area of 

research probes constraints on our distributional learning capacities (i.e., how might this 

learning mechanism break down in the context of multiple patterns [78,79]? At what levels 

of abstraction does it operate [80]? And how does learning interact with attentional 

processes [81,82]?).

Local statistics give rise to complex networks

While evidence suggests that associations can be computed hierarchically (e.g., to order 

words into phrases and phrases into sentences [66]; more generally, [83]), many learning 

studies involve the manipulation of non-hierarchical, pairwise statistical information such as 

co-occurrence frequencies or conditional probabilities. From a complex network perspective, 

this amounts to constructing dyads in the network. However, a notable recent study suggests 

that learners also capitalize on regularities that emerge from global network architecture 

[84]. Participants in this study viewed a continuous stream of images that was generated by a 

random walk through a graph with community structure (i.e., three distinct groupings of 

interconnected nodes). Each node of the graph corresponded to a unique image, and the 

random walk through the graph ensured that transition (conditional) probabilities between 

images in the sequence were uniform (i.e., not a cue to an event boundary, as in canonical 

segmentation studies, e.g., [1]). Despite the absence of pairwise probabilistic information, 

learners were able to segment groupings of images based solely on the community structure 

of the underlying graph, accurately detecting when the stream shifted from one cluster to the 

next. While this finding represents a tremendous step forward in our understanding of 
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macro-level topological influences on the learning process, we stress that this account is by 

no means incompatible with existing statistical learning accounts. Just as early segmentation 

tasks demonstrated that conditional probabilities were sufficient to drive word extraction (for 

further discussion of this point see [4]), the present task demonstrates that community 

structure is also sufficient to drive event segmentation. In real-world situations, learners 

likely exploit a combination of the local and global-level cues available to them.

Statistical learning and complex network approaches are therefore compatible, but the 

marriage of these two disciplines has the potential to offer additional insight into the 

acquisition of large-scale structural knowledge. As they are currently implemented, 

statistical learning approaches provide the building blocks of graph structure, while complex 

systems approaches can reveal higher order relational patterns over and above those captured 

by co-occurrence statistics. We suggest here that the types of local relationships typically 

manipulated in statistical learning paradigms (e.g., syllable, word, or phrase co-occurrence) 

are not only correlated with certain micro-level topological properties of complex networks 

(i.e., the degree of a target node), but themselves underpin macro-level properties such as 

community structure (Figure 3). For example, in quantitative linguistics, co-occurrence 

networks are generated from temporal adjacency between words in a given context have 

been used to probe broader topological properties of semantic systems (e.g., [85]). 

Moreover, because the edges of a network are interpreted as any relationship between two 

nodes, it is possible to build probabilistic information into the weights of an edge when 

modelling the graph structure of a system. While the densely clustered graph structure 

discussed previously [84] involved edges of equal weights (uniform transitional 

probabilities), a random walk on a weighted graph would result in the traversal of certain 

edges more than others, potentially leading to novel segmentation patterns. Thus, probability 

of co-occurrence can be used to determine the regularity with which graph edges are 

traversed (e.g., as a temporal sequence unfolds). Indeed, an important line of future work 

might explore how learning is influenced by topological properties of a complex network in 

addition to the specific sequence in which its edges are traversed. Preliminary evidence 

suggests that the impact of general topological properties outweighs algorithms dictating the 

order in which its constituent elements are revealed or retrieved [86].

Already statistical learning researchers are tackling new questions with concepts closely tied 

to network science: how does the sparseness or density of input influence generalization 

[87]? What latent structures support acquisition [88]? A more formal integration of network 

science methods with current statistical learning approaches will allow current experimental 

methods to be “scaled up” to unprecedented levels (see criticisms by [8]). While mounting 

evidence indicates that statistical learning mechanisms act on larger lexicons (and that these 

learning effects can persist over years [89]), increased communication between statistical 

learning and complex network science will likely offer additional insight into the influence 

of macro-level topological properties on this process. Network topology might also have far-

reaching impact on cognitive capacities that support or influence learning (e.g., attention, 

working memory, general intelligence, see [76]) . For a more detailed treatment of how 

network-based approaches might be applied to the study of learning, refer to the Outstanding 

Questions Box.
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The human brain is a dynamical complex system

As with all efforts to understand a cognitive process, probing how that process is 

implemented in the human brain must be considered in addition to patterns of human 

behavior. Particularly as related to linguistic functions such as processing and production, 

this integrative approach between brain and behavior has been applied with success [90]. 

With the advent of functional Magnetic Resonance Imaging (fMRI), similar strides have 

been made in increasing our understanding of the neural regions recruited during statistical 

learning (e.g., in segmentation tasks: [91–95]). However, this univariate approach is 

relatively coarse, revealing only areas that, on average, show increased neural activity above 

a significance threshold or related to a behavioral measure. To address this potential concern, 

we now survey one additional avenue of promising research: the study of the human brain 

itself as a dynamical complex system [19,21,23].

In functional brain networks, relationships arise from correlation or coherence in the neural 

response of pairs of neural areas (Figure 4). These relationships are taken to index how 

regions communicate with one another dynamically during a given task. Most relevant to the 

current review, advancements have been made in the application of complex system 

approaches to uncovering functional neural mechanisms of the learning process [96,97]. For 

example, graph theoretical techniques have been applied to track changes in modular 

(community) organization as participants practiced a simple motor sequence [98]. In this 

case, it was observed that modularity shifted dynamically over time, and also that it was 

possible to predict future behavior based on characteristics of network configuration in a 

given scanning session. Specifically, flexibility, defined by the number of changes in the 

connectivity of nodes to higher-level communities, was a significant predictor of reaction 

time speed-up. Especially as indexed in frontal areas, flexibility has also been linked to 

performance on various memory tasks, such as those involving short-term contextual 

recollection [99] and working memory components [100]. Related work has demonstrated 

that the separability of a richly connected “core” of primary sensorimotor regions and a 

sparsely connected, flexible “periphery” of association regions increase throughout learning, 

a measure also found to predict individual differences in performance on a motor learning 

task [101]. Ongoing work examines other dynamical properties that may drive learning (e.g., 

network centrality [102] and autonomy of sensorimotor associations [103]).

As reviewed throughout this manuscript, a key line of research in cognitive science centers 

on the learnability of network structures that emerge from external input (e.g., via the 

topological features in language). We propose here that an equally important line of work 

examines how internal complex system dynamics give rise to learning, and indeed how 

acquired knowledge might be reflected in observable topological patterns in the human 

brain. While most complex network approaches to brain connectivity begin with brain 

parcellation according to cytoarchitectonic or other anatomical division (Figure 4), some 

approaches have examined network structure via voxel-to-voxel associations (i.e., where 

individual voxels correspond to a network node [104–107]). In contrast to whole-brain 

connectivity approaches, which focus on the coordination of large-scale cognitive systems, 

voxel-based analysis techniques introduce the possibility of examining network-based 

representations as they develop. We submit that how learners translate network architectures 
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in sensory input to network-based neural representations remains an essential, but open 

question. More generally, we propose that the field of cognitive science stands to benefit 

enormously from increased incorporation of network-based approaches, specifically because 

the adoption of these methods offers a hitherto absent framework upon which to unify 

behavioral, computational, and neuroscientific studies of learning.

Concluding remarks

Learners attain a complex and highly structured representation of the world. Currently, many 

quantitative approaches to learning hinge on sensitivity to local statistics such as co-

occurrence frequencies and transitional probabilities between adjacent elements. While local 

statistics are clearly one salient source of structural information, evidence reviewed here 

suggests that learners also perceive global organizational patterns. In fact, exciting new 

results suggest that learners can acquire knowledge of these large-scale patterns even when 

local statistics are relatively uninformative. Thus, as we deepen our understanding of the 

natural world as a complex system, we can harness descriptions of its large-scale 

organizational properties to then scale-up our approach to the study of learning. Moreover, 

just as we seek to understand how humans extract both local statistics and global 

architectural information, it is also useful to examine how micro- and macro-level brain 

dynamics support learning. In particular, an exciting avenue of future research will center on 

understanding how differences in network architecture of naturalistic stimuli lead to 

differences in learnability via unique neurophysiological mechanisms.
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GLOSSARY

Assortative mixing
A measure of whether nodes with similar properties (e.g., high degree), are more likely to 

share an edge

Clustering coefficient
The extent to which adjacent neighbors of a given node are also connected to one another. 

This measure may be calculated for an individual node, or on average across a network

Community structure
A graph property wherein nodes are densely connected in clusters that in turn share only 

weak connections with one another. Communities are commonly also referred to as modules

Coreness
A measure of how deeply a given node is embedded in a network. A node has high coreness 

if it is retained in the network after recursively pruning nodes with low degree

Degree
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The number of edges incident to a given node. A node has high degree if it is densely 

connected to many other nodes and low degree if it is only sparsely connected. Complex 

networks may have skewed degree distributions such that certain nodes are far more richly 

connected than others, forming hubs

Dyad
A pair of nodes sharing an edge

Edges
Links between the vertices in a network. If an edge is directed, then the order in which nodes 

are connected is meaningful (e.g., temporal order is important for a syntactic network, but 

not for a phonological network)

Nodes
Vertices, or connection points, which comprise a network

Shortest characteristic path length
A measure of network efficiency, it is, on average, the least possible distance between every 

pair of nodes when traversing along the edges of a network

Small-world network
A family of networks defined by short characteristic path length and a high degree of 

clustering
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TRENDS BOX

• Descriptive analytical approaches indicate that diverse facets of the 

environment adhere to a complex network structure.

• Recent advances offer insight into how learners might acquire and 

access network representations. Specifically, higher-order topological 

properties of networks have been shown to facilitate learning.

• Emerging neuroimaging techniques construe the brain itself as complex 

system, revealing how network dynamics support learning.

• We suggest that network science approaches are compatible with 

statistical learning approaches to knowledge acquisition. That is, local 

statistical regularities extracted from sensory input form the building 

blocks of complex network structures. Broader architectural properties 

of network structures might then explain learning effects beyond 

sensitivity to local statistical information.
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OUTSTANDING QUESTIONS

• To what extent is network-based learning constrained? Are the richly 

studied topological properties that influence learning in the language 

domain also drivers of learning with non-linguistic stimuli?

• A central finding from the statistical learning literature is that learners 

are sensitive to non-adjacent, in addition to adjacent, dependencies. 

How might the learner exploit adjacent and long-distance relationships 

between dyads to build representations of complex networks?

• A key point here is that learners are sensitive to local distributional 

patterns as well as higher-order topological properties, and that these 

two accounts are fundamentally compatible. How might learning 

unfold when these sources of information are explicitly at odds? For 

example, in a segmentation context, how might a learner determine 

event boundaries when elements are densely clustered, but share only 

weak connections (i.e., co-occur infrequently)?

• How can empirical data, machine learning techniques, and complex 

systems approaches to neural representations be more tightly inter-

linked? To what extent are the topological properties of sensory input 

reflected in neural patterns? As complex systems approaches to brain 

activity evolve, can computational models of cognition be given a 

firmer biological basis?
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Figure 1. 
Visualization of networks types. Regular networks, also known as lattices, are collections of 

nodes with equivalent degree (left panel). Random networks are collections of nodes that are 

linked by edges selected at random from a uniform distribution of all possible connections. 

Here we show a random network generated from an Erdős–Rényi model with an edge 

probability of 0.3 (right panel). In the center panel, we display a complex network with 

community structure, much like a network that could be derived from a learner’s language 

environment.
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Figure 2. 
Sample (not exhaustive) phonological networks of two English words, beer and silk, that 

differ in their clustering coefficient. Note how the phonological neighbors of beer tend also 

to be phonological neighbors of each other, resulting in a high clustering coefficient. In 

contrast, the phonological neighbors of silk are not phonological neighbors, resulting in a 

low clustering coefficient.
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Figure 3. 
Co-occurrence (bigram) statistics underpin network topology. When four pseudowords 

(tudaro, bikuti, pigola, budopa) are concatenated together to form a continuous stream of 

syllables, evidence from Saffran et al. (1996) indicates that these words can be segmented 

via the dip in transitional probabilities at word boundaries. Here, we show that the co-

occurrence between syllables can also be used to construct a weighted graph (black lines 

indicate a high bigram frequency and red lines indicate a low bigram frequency). A 

community detection algorithm consisting of a series of short random walks through this 

graph will then reveal robust cluster structure corresponding to each word in the stream 

(shown in green, pink, purple, and blue).
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Figure 4. 
Evolution of complex network structure in the brain. To investigate topological properties of 

task-based functional connectivity, the brain is first parcellated into anatomically defined 

nodes, in this example using the Harvard-Oxford structural atlas (1). Next, the moment-to-

moment activity within each of these regions is extracted at different points during a 

scanning session (2). To construct the edges between brain regions (nodes of the network), 

the correlation or coherence between any two time series is computed, forming a pairwise 

adjacency matrix at each time point (3). These matrices can then be used to probe the 

temporal dynamics of a functional brain network over the course of a given task (4).
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