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ABSTRACT

Methyl-CpG binding domain protein 4 (MBD4) is a DNA glycosylase that can remove 5-fluorodeoxyuracil
from DNA as well as repair T:G or U:G mismatches. MBD4 is a target for frameshift mutation with DNA
mismatch repair (MMR) deficiency, creating a truncated MBD4 protein (TruMBD4) that lacks its glycosylase
domain. Here we show that TruMBD4 plays an important role for enhancing 5-fluorouracil (5FU) sensitivity
in MMR-deficient colorectal cancer cells. We found biochemically that TruMBD4 binds to 5FU incorporated
into DNA with higher affinity than MBD4. TruMBD4 reduced the 5FU affinity of the MMR recognition
complexes that determined 5FU sensitivity by previous reports, suggesting other mechanisms might be
operative to trigger cytotoxicity. To analyze overall 5FU sensitivity with TruMBD4, we established TruMBD4
overexpression in hMLH1-proficient or -deficient colorectal cancer cells followed by treatment with 5FU.
5FU-treated TruMBD4 cells demonstrated diminished growth characteristics compared to controls,
independently of hMLH1 status. Flow cytometry revealed more 5FU-treated TruMBD4 cells in S phase than
controls. We conclude that patients with MMR-deficient cancers, which show characteristic resistance to
5FU therapy, may be increased for 5FU sensitivity via secondary frameshift mutation of the base excision
repair gene MBD4.

Abbreviations: 5FU, 5-fluorouracil; CRC, colorectal cancer; MMR, DNA mismatch repair; PCR, polymerase chain reac-
tion; MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt;
MBD4, Methyl-CpG binding domain protein 4; BER, base excision repair; MSI, microsatellite instability; I/D, insertion/
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Introduction

5-Fluorouracil (5FU) is the principal chemotherapeutic agent
used to treat patients with advanced colorectal cancer. 5FU-
based chemotherapy improves survival in patients with stage
III colon cancer and stage IT and III rectal cancer.'™ Although
5FU-based chemotherapy is the gold standard for advanced
staged colorectal cancer patients, individual patient tumor
response is low, but does have an impact on survival.” Retro-
spective and prospective studies of patients with colorectal can-
cer (CRC) indicate that those patients with intact DNA
mismatch repair (MMR) within their tumors have improved
survival with 5FU treatment, whereas patients whose tumors
lost DNA MMR with subsequent microsatellite instability
(MSI) do not have improved survival.®”

The DNA MMR system plays an important role in main-
taining DNA fidelity after DNA synthesis for cell replication.
DNA MMR has 2 recognition complexes for DNA alterations.
hMutSe, a heterodimer of the DNA MMR proteins hMSH2
and hMSHS, recognizes base-base mispairs and insertion/dele-
tion (I/D) loops less than 2 nucleotides,'®'! whereas I/D loops

more than 2 nucleotides are recognized by hMutSg, an
hMSH2-hMSH3 heterodimer.''"'” hMutSa not only recognizes
nucleotide mispairs but can also recognize altered nucleotides
that are intercalated or formed by chemotherapy, such as inter-
crosslinks induced by cisplatin and the adduct O4-methylgua-
nine.'"'® We and others have demonstrated that 5FU
incorporated into DNA is also recognized by hMutSe as well as
hMutSB,'”** and recognition of 5FU by these DNA MMR
complexes directly correlates with subsequent cytotoxicity.”’
On the other hand, temporary hAMLHI downregulation within
an acidic tumor microenvironment does not increase 5FU
resistance because certain base excision repair (BER) proteins
contribute to 5FU cytotoxicity in that acidic environment.*
Some groups have reported that thymine DNA glycosylase
(TDG) or methyl-CpG binding domain protein 4 (MBD4)
downregulation induces 5FU cytotoxicity, and single-strand-
selective monofunctional uracil-DNA glycosylase 1 (Smugl)
overexpression enhances 5FU resistance, with uracil-DNA gly-
cosylase (UNG) not involved in 5FU cytotoxicity despite its
ability to recognize 5FU within DNA.*>*® These previous
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Figure 1. Both normal MBD4 protein and TruMBD4 localize to the nucleus in colorectal cancer cells. (A) Upper row: light microscopy of human colon cancer cell lines HT29
(MMR-proficient, MBD447%A1%) HCT116 (hMLH1~", MBD4*'%4% and HCA7 (hMLH1~"", MBD4"*"*°); Second row: Indirect immunofluorescence microscopy utilizing anti-
MBD4 antibody with Alexa Fluor 594-conjugated secondary antibody (staining red); Third row: DAPI staining of nuclei; Fourth row: merge of second and third row images.
(B) Western blot of colorectal cancer cell nuclear lysates for MBD4 and TruMBD4 expression. Signals were detected by an LAS-4000 luminescent image analyzer (GE

Healthcare Bio-Sciences) utilizing a chemiluminescent solution.

findings indicate that dysfunction of BER molecules as well as
DNA MMR complexes may modify cellular 5FU sensitivity.

MBD4 is a methyl-CpG-binding DNA glycosylase
involved in the repair of mismatches arising from deamina-
tion of methyl-C in mammalian cells,” and has been shown
in vitro to excise 5FU from DNA as well as mismatched
thymine bases from oligonucleotide templates.’””" The
MBD4 coding sequence contains an Aj, repeat at codons
310-313 that can be subject to shortening frameshift muta-
tion [A;q to Ay] in MSI cancers, producing a truncated
MBD4 protein (TruMBD4) lacking its glycosylase
domain.’®?** Experimentally, TruMBD4 is known to inhibit
the glycosylase activities of normal MBD4 via a dominant-
negative effect, leading to a hypermutable state further
impairing DNA repair (i.e. possessing both MMR and BER
defects).” Although Abdel-Rahman et al. reported that
TruMBD4 overexpression alters sensitivity for cisplatin or
etoposide,® it is not known if 5FU sensitivity is modified
with TruMBD4. 5FU is highly important as the key therapy
for patients with advanced CRC. Here, we examined the
binding ability of 5FU in DNA by TruMBD4 and show
how TruMBD4 induces 5FU sensitivity independently of
the DNA MMR protein hMLHI, one of the potential bind-
ing partners of MBD4.

Results

Truncated MBD4 proteins accumulate in the nucleus of
colorectal cancer cells

We utilized HT29 (MMR-proficient, MBD4*'%4!%) HCT116
(hMLH17", MBD4*'%4%) and HCA7 (hMLH1~"", MBD4*%4%)
cells, and confirmed nuclear localization and expression of
both wild type MBD4 (expressed in HT29 and HCT116, but
not in HCA7) and TruMBD4 (expressed in HCT116 and
HCA?7, but not in HT29) as Bader et al. previously reported.*”
Indirect immunofluorescent analysis using polyclonal anti-
MBD4 antibody and Alexa Fluor 594-conjugated secondary

antibody showed that both wild type and TruMBD4 localized
to nucleus forming foci (Fig. 1A), indicating that TruMBD4
as well as wild type MBD4 can interact with genomic DNA.
Western blotting using nuclear lysate with the polyclonal anti-
MBD4 antibody showed that HT29 has only wild type MBD4
protein, HCT116 has both wild type and TruMBD4, and
HCA? has only TruMBD4 protein (Fig. 1B).***

Truncated MBD4 has a higher affinity for 5FU within DNA
and reduces the 5FU affinity of DNA MMR proteins

To examine relative binding of TruMBD4 for 5FU within
DNA, we performed DNA pull down and “compete off” assays
(Fig. 2). TruMBD4 extracted from homozygous MBD4 frame-
shift mutated HCA7 cells (Fig. 3A, lower panel) as well as
MBD4 extracted from homozygous wild type MBD4 HT29 cells
(Fig. 3A, upper panel) bound oligomers containing 5FdU:G,
and was competed off by a 5FdU:G but not by a complemen-
tary paired oligomer (complementary oligomer not shown),
indicating higher affinity for 5FU within DNA over normal
c¢DNA. When we calculated the reduction (competed off) rate
determining the relative affinity level of MBD4/TruMBD4 pro-
tein for 5FU within DNA, the affinity level of TruMBD4 for
5FU was substantially higher than that of MBD4 (Fig. 3B). Sim-
ilarly, with heterozygous MBD4 mutated HCT116 cells that
express both MBD4 and TruMBD4, the 5FU binding affinity of
TruMBD4 was higher for 5FU than that for MBD4 (Fig. 3CD).
Overall, these results indicate that TruMBD4 binds to 5FU
incorporated into DNA with higher affinity than normal
MBD4 protein. We then examined how MBD4/TruMBD4
affects the binding of the DNA MMR recognition complexes.
The affinity level of hMSH3 (a component of hMutSg8) and
hMSH6 (a component of hMutSa) were substantially lower in
TruMBD4-expressed cells compared to normal MBD4-
expressed cells (Fig. 3EFG), suggesting that TruMBD4 alters
access to 5FU within DNA by the DNA MMR complexes. The
hMSH6 component affinity was higher for 5FU as compared to
the hMSH3 in wild type MBD4 as we have previously
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Figure 2. Schematic diagram for our DNA pull down assay.

reported.”>**** Our data showing high affinity of TruMBD4 for
5FU coupled with inhibition of the MMR protein complexes
for access and binding to 5FU within DNA suggest that
TruMBD4 may alter cellular 5FU sensitivity.

Truncated MBD4 overexpression enhances 5FU
cytotoxicity through S phase arrest independently of
hMLH1 status

To analyze 5FU sensitivity under TruMBD4-expressed condi-
tions, and to verify our data using natively-expressed TruMBD4
extracts, we constructed a TruMBD4-expression plasmid by
inserting the frameshift mutated MBD4 coding sequence into
pcDNA3 and amplified it utilizing competent E. Coli DH5c.
We then stably-transfected constructs into HT29 (hkMLHI-pro-
ficient and wild type MBD4) cells and selected TruMBD4-
expressed cell clones. TruMBD4 overexpression was confirmed
by Western blotting (Fig. 4A).

Comparing TruMBD4 overexpressed cells with control plas-
mid cells, we demonstrate reduced cellular proliferation with
5FU-treatment for TruMBD4 cells by 3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tet-
razolium, inner salt (MTS) (P< 0 .05; Fig. 4B) and clonogenic
assays (P< 0.01; Fig. 4C), confirming enhanced 5FU sensitivity
with TruMBD4. Fluorescent-activated cell sorting (FACS)
revealed that 5 uM 5FU-treated TruMBD4 cells slowed its cell
cycle accumulating cells in S phase (18.9% of cells pre-5FU
treatment vs 55.0% of cells post-5FU treatment; Fig. 5AB) as
compared to control cells (16.2% pre-treatment vs 24.3% post-
5FU treatment). Because TruMBD4 lacks its hMLH]1 binding
domain in addition to its glycosylase domain as was reported
previously,” we suspected that hMLH1 would not mediate the
TruMBD4-directed enhanced cytotoxicity. To confirm this
hypothesis, we additionally overexpressed TruMBD4 in hetero-
zygous MBD4 mutated HCT116 (hMLHI-deficient) cells,
increasing the ratio of TruMBD4 expression relative to normal
MBD4 protein (Fig. 6A). We demonstrate via clonogenic assay

that forced TruMBD4 expression induces 5FU sensitivity in the
absence of h(MLHI protein (Fig. 6BC), similar to cells proficient
for hAMLH1 (Fig. 4BC). These results suggest that TruMBD4
expression enhances 5FU cytotoxicity independently of
hMLH] expression.

Discussion

DNA MMR deficiency induces a hypermutable state for the
CRC cell™ that drives frameshift mutation of target genes
such as TGFBR2 and ACVR2, among others.*"*> MBD4 is one
frameshift mutation target gene that provides a very unique but
complex character for CRC, in that: (a) MBD4 excises 5FU
from DNA as well as mismatched thymine bases from oligomer
templates,”™*' (b) frameshift mutation of MBD4 by Ajp to Ay
deletion (codons 310-313) produce TruMBD4 lacking its gly-
cosylase domain in MSI cancers,”>>* and (c) wild type MBD4
interacts with hMLH1 at its glycosylase domain.”® We previ-
ously reported that MBD4, as part of BER, may salvage 5FU
cytotoxicity in DNA MMR-deficient CRC in an acidic tumor
microenvironment, but little was known how TruMBD4 affects
5FU cytotoxicity.”* Our study demonstrates that: (a) TruMBD4
has higher affinity for 5FU that is incorporated into DNA than
normal MBD4 protein, (b) TruMBD4 reduces the binding
affinity of DNA MMR complexes to 5FU within DNA, and (c)
TruMBD4 overexpression enhances 5FU cytotoxicity indepen-
dently of hMLHI1. Our study demonstrates an enhancement of
cytotoxicity from 5FU, the key drug used for patients with
advanced colorectal cancers, by the TruMBD4 protein that
arises from frameshift mutation as consequence of deficient
DNA MMR. Our finding may have implications for patients
with MSI CRC:s.

We demonstrated the nuclear localization of TruMBD4 by
immunofluorescence microscopy and Western blotting of
nuclear extracts. We originally hypothesized that expression of
TruMBD4 would affect the 5FU-directed DNA damage
response because: (i) TruMBD4 protein possesses its methyl
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Figure 3. TruMBD4 binds to 5FU incorporated into DNA with higher affinity than normal MBD4 protein, and reduces 5FU affinity of DNA mismatch repair proteins in DNA
pull down assays. (A) (Upper panel) Nuclear lysates from HT29 cells containing protein derived from wild type MBD4. As amounts of 5FdU:G competitor is increased rela-
tive to bound biotin-labeled 5FdU:G, the amount of MBD4 protein precipitated by biotin-labeled 5FdU:G is partially reduced, indicating some MBD4 protein was bound
(or stolen) by the 5FdU:G competitor. This was not the case with a control complementary competitor, indicating MBD4 specifically recognizes 5FU within DNA (not
shown). (Lower panel) Nuclear lysates from HT29 containing protein derived from frameshifted mutant MBD4 (TruMBD4). Here, as amounts of 5FdU:G competitor
increased relative to biotin-labeled 5FdU:G, the amount of TruMBD4 precipitated by biotin-labeled 5FdU:G DNA is markedly reduced, suggesting a relative higher affinity
for 5FdU:G as compared to normal MBD4 protein. (B) Bar graphs representing the reduction (competed off) rate by the protein for the 5FdU:G competitor, equating to
the relative affinity level of the protein for 5FU within DNA. The affinity level of TruMBD4 for 5FdU:G is markedly higher than that of normal MBD4 protein. (C) Nuclear
lysates from HCT116 cells containing both normal MBD4 protein and TruMBDA4. As amounts of 5FdU:G competitor is increased, both normal MBD4 protein and TruMBD4
are competed off, but at apparently different rates. (D) Bar graph representing the competed off rate for both normal MBD4 protein and TruMBD4 from HCT116 cells. The
relative affinity level of TruMBD4 was higher than normal MBD4 protein for the 5FdU:G competitor. (E, F) Nuclear lysates from HCA7 cells (E) and HT29 cells (F), demon-
strating the relative pull down and competition off binding by MBD4/TruMBD4, MSH3 (key component of the hMutS8 MMR recognition complex) and MSH6 (key compo-
nent of the hMutSae MMR recognition complex) for 5FdU:G. Note the relative difficulty for “compete off” bound reduction for MSH3 and MSH6 by the 5FdU:G competitor
when TruMBD4 is present, compared to the “compete off” reduction for MSH3 and MSH6 when normal MBD4 protein is present. (F) Bar graph representing the competed
off rate for MSH3 and MSH6 for the 5FdU:G competitor in the presence of normal MBD4 protein or TruMBD4. With normal MBD4 protein, MSH6 shows higher affinity for
5FU within DNA (as expected). However the binding affinity rates of both MMR proteins are markedly lower in TruMBD4-expressed cells than that of normal MBD4-
expressed cells.
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Figure 4. TruMBD4 enhances 5FU cytotoxicity in hMLH1-proficient cells. (A) Establishment of stable, TruMBD4-expressed HT29 cell clones as shown by Western blot (right
lane). Cells were transfected with a pcDNA3 plasmid (Invitrogen) encoding TruMBD4, and selected by G418. HCT116 lysates served as a positive control since it expresses
both normal MBD4 protein and TruMBD4 (left lane). HT29 cells transfected with an empty pcDNA3 plasmid served as negative control (middle lane). -actin served as a
loading control. (B) MTS assay. Cells were seeded at a density of 5000 cells per well into 96-well plates in culture medium treated with 5 uM, 10 uM;, 15 uM;, 20 uM of
5FU. After 5 d of growth, the number of viable cells was counted via the assay. (C) Clonogenic assay. Cells were plated in growth medium supplemented by 10% FBS and
containing various concentrations of 5-FU (0, 5, and 10 uM). After 10 d of growth, the culture plates were washed, fixed with methanol, and stained with 3% Giemsa.

From both MTS and clonogenic assays, TruMBD4 enhances 5FU-induced cytotoxicity.

CpG binding domain but lacks its glycosylase domain (render-
ing MBD4 incapable of removing 5FU from DNA), and (ii)
TruMBD4 protein lacks its predicted nuclear export signal
(codons 506- 511; LGLYDL) that is homologous to the murine
MBD4 protein, suggesting that TruMBD4 would accumulate in
nucleus.*

The effects of TruMBD4 appear to be different than wild
type MBD4 deficiency (or deletion), although both conditions
obviously lack MBD4s glycosylase function. In this study, we
show that TruMBD4 binds 5FU in DNA with higher affinity
than normal MBD4 protein. Prior demonstration regarding
5FU resistance was solely under MBD4-deficient conditions,
not truncated protein conditions. Sansom et al. demonstrated
resistance to 5FU treatment in intestinal crypts of Mbd4™'~
mice compared to wild type mice.*® Cortellino et al. also

showed Mbd4~'~ mouse embryonic fibroblasts are resistant to
5FU." In terms of damage response triggered by platinum che-
motherapeutic agents such as cisplatin, TruMBD4 enhances
cisplatin cytotoxicity but Mbd4~'~ mouse embryonic fibro-
blasts are resistant.”®*” In these experiments, Mbd4-null mice
were used to examine the Mbd4-deficient condition, but it is
impossible to observe the TruMbd4-expressed condition
because the mouse Mbd4 locus does not contain a coding poly
A microsatellite equivalent to human MBD4.***** In humans,
frameshift mutation of MBD4s polyadenine tract has been
identified in 20-43% of MSI CRCs and other MSI cancers**>*
and little is clinically reported about TruMBD4 effects within
CRC. Given this background, our results of higher affinity by
TruMBD4 to 5FU within DNA, coupled with inhibition of
DNA MMR binding of 5FU due to the presence of TruMBD4,
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Figure 5. TruMBD4 induces S phase cell cycle arrest upon 5FU treatment. (A) Using
fluorescence-activated cell sorting (FACS) analysis, empty plasmid transfected
HT29 cells expressing normal MBD4 protein showed a modest increase in S phase
cells after 5FU treatment (16.2% pre-treatment, 24.3% post 5FU treatment). (B)
TruMBD4-expressing HT29 cells, in response to 5FU treatment, demonstrated
marked increase in S phase cells (18.9% pre-5FU treatment, 55.0% post 5FU
treatment).

suggests that TruMBD4 plays an important role for 5FU cyto-
toxicity in CRC.

It has been reported that MBD4 interacts with hMLHI, a
component of the DNA MMR complex hMutL«[38]. Although
TruMBD4 lacks the predicted hMLHI1-binding domain
(codons 406-580),>® we needed to confirm if TruMBD4
affected 5FU cytotoxicity independently of the hMLH1 status
because it has not been directly shown that TruMBD4 physi-
cally interacts with hMLH1. We observed that TruMBD4 indu-
ces cytotoxicity via MTS and clonogenic assays. This was first
shown using hMLHI-proficient HT29 cells. We further ana-
lyzed the effects of TruMBD4 on 5FU cytotoxicity using
hMLH]I-deficient cells with the understanding that there are 2
scenarios that can drive MBD4 frameshift mutations with
DNA MMR deficiency. One is the hkMLH1-deficient condition
(i.e., hMLHI silencing by hypermethylation of its promoter)
seen in almost all sporadic MSI CRCs,*>* and the other is
hMLH]I-proficiency with deficiency of a different MMR protein
(e.g. hMSH2 or hMSH6 mutation) as seen with Lynch syn-
drome cancers.”’ By showing similar 5FU sensitivity in
TruMBD4-overexpressed hMLHI-deficient as well as in
hMLH]I-proficient cells, we demonstrate that 5FU sensitivity
with TruMBD4 expression is independent of hMLH1.

Collura et al. clinically investigated beneficial molecular
markers among stage II/III colorectal cancer patients who
received 5FU-based chemotherapy, and identified that HSP110
T, mutation predicted excellent progression free survival, and
notably, the next best progression free survival was seen with
MBD4 mutation.”” Additional studies will need to examine the
context of MBD4 mutation and its modification of a clinical
response to 5FU-based chemotherapy for patients with stage
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IV CRC as well as in the setting of adjuvant chemotherapy for
stage II/III CRC patients.

In conclusion, TruMBD4 enhances 5FU cytotoxicity in MSI
CRC cells independently of hMLH]1. Our finding may have
implications in the approach to 5FU-based chemotherapy for
patients with MSI CRCs.

Materials and methods
Cell lines and cultures

The human colon cancer cell lines HT29 (MMR-proficient,
MBD4*%A1%) and HCT116 (hMLHI™'~, MBD4*%4%) were
obtained from American Type Culture Collection (Rockville,
MD, USA), and HCA7 (hMLHI™'~, MBD4***°) was kindly
provided by Minoru Koi, Ph.D. (Baylor University Medical Cen-
ter). Cells were maintained in growth medium containing 10%
fetal bovine serum (FBS).

Extraction of nuclear proteins and western blotting

We utilized 10° cells that were washed with cold PBS, and pro-
teins were extracted from nuclei by using a Nuclear Extraction
Kit (Cayman Chemical, MI, USA) following the manufacturer’s
instructions. The nuclear extract was mixed with 4 x protein sam-
ple buffer (4xNuPAGE’LDS Sample Buffer [Life Technologies,
NY, USA], 3% 2-mercaptoethanol) and heated for 10 min at
98°C. The proteins were then separated by electrophoresis on 4-
12% NuPAGE"Bis-Tris Mini Gels (Life Technologies, CA USA),
and transferred to Protoran™ Nitrocellulose membranes (GE
Healthcare Bio-Sciences, CA, USA) in a transfer apparatus (Life
Technologies). The membranes were blocked with 5% skim milk
and 0.1% Tween in Tris-buffered saline (TBS).

DNA pull down assay

We utilized 10° cells that were washed with cold PBS, and pro-
teins were extracted from nuclei by using a Nuclear Extraction
Kit (Cayman Chemical, MI, USA) following the manufacturer’s
instructions. For immobilization, Biotin-labeled dsDNA probes
(12.5 pmol) was mixed with 20 ;g Dynabeads® M-280 Streptavi-
din (Invitrogen) in washing buffer (5 mM Tris-HCl [pH7.5],
0.5 mM EDTA, and 1M NaCl) and incubated for 40 min at
room temperature utilizing a rotator. After the washing proce-
dure using Magnetic Rack (Magna GrIP™ Rack supplied by
Millipore, CA, USA), immobilized Biotin-labeled dsDNA probes
with or without unlabeled DNA probe (competitor) were added
in incubation buffer (50 mM Tris-HCI [pH7.2], 1 mM EDTA,
5% Glycerol, 0.01% NP-40, and 1mM DTT) followed by mixture
with 25 g of nuclear lysate, and incubated using a rotator for 1
hr at room temperature. After washing, precipitated proteins
were mixed with 30 uL 1xprotein sample buffer and boiled for
3 min, and the supernatant was collected for Western blowing.

Transfection of frameshift mutant MBD4

For isolation of stable truncated MBD4 overexpressed clone,
HT29 or HCT116 cells were transfected with a pcDNA3(for
HT29) or pcDNA 3.1(+) (for HCT116) plasmid vector
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Figure 6. TruMBD4 enhances 5FU cytotoxicity independent of hMLH1 status. (A) Establishment of stable, TruMBD4-expressed HCT116 cell clones as shown by Western
blot (right lane). Cells were transfected with a pcDNA3 plasmid (Invitrogen) encoding TruMBD4, and selected by G418. HCT116 cells transfected with an empty pcDNA3
plasmid served as negative control (left lane). B-actin served as a loading control. Note the marked increase in TruMBD4 expression relative to normal MBD4 protein
expression. (B, C) Clonogenic assay. Cells were plated in growth medium supplemented by 10% FBS and containing various concentrations of 5-FU (0, 5, and 10 uM). After
10 d of growth, the culture plates were washed, fixed with methanol, and stained with 3% Giemsa (B). Previously viable clonal colonies of at least 50 cells were counted.
The relative surviving fraction for each cell line was expressed as a ratio of the plating efficiency in treated cultures to that observed in the controls (C). The enhanced
TruMBD4-overexpressed HCT116 cells increased 5FU cytotoxicity over control cells (*P<0.05 at 2.5 M 5FU).

(Invitrogen) that encodes truncated MBD4 by using Nucleofecter
Kit R (for HT29) or V (for HCT116) (Lonza, Germany), and
selection was done using both 400 pg/ml of G418. After selec-
tion, colonies were pooled and cultured for following analysis.
The stable truncated MBD4 expression was confirmed by west-
ern blotting.

Cell growth assay

For the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-
phenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS)
assay, cells were seeded at a density of 5000 cells per well into
96-well plates in culture medium treated with 5 uM, 10 M,
15 uM, 20 uM of 5FU, respectively. After 5days, the number of
viable cells was counted by using a CellTiter 96° AQyeous One
Solution Cell Proliferation Assay Kit (Promega) according to
the manufacturer’s instructions. The kit detects mitochondrial
nicotinamide adenine dinucleotide dehydrogenase activity in
live cells by measuring reduction of the 3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tet-

razolium, inner salt (MTS). Measurement of the absorbance of
the formazan was carried out in 96 well microplates read at
490nm. For clonogenic assays, cells were plated on 60 mm (for
HT29) or 100mm (for HCT116) Tissue Culture Dish (Becton
Dickinson Labware, NJ) in Iscove’s modified Dulbecco’s

medium supplemented with 10% FBS and containing various
concentrations of 5-FU (0, 5, and 10 M), then incubated at
37°C and 5% CO,. After 10 d (for HT29) or 14days (for
HCT116) of growth, the culture plates were washed with PBS,
fixed with methanol for 15 minutes, and then rewashed with
PBS. The colonies were stained with 3% Giemsa (Sigma, St
Louis, MO) for 15 minutes and rinsed with water.

Fluorescence-activated cell sorting (FACS) analysis

For FACS analysis, cells were washed in phosphate-buffered
saline (PBS), incubated in PBS for 10 min, and then trypsinized
and fixed in 80% ethanol. The cells were washed again, resusu-
pended in 50 ug/ml propidium iodide and analyzed by using a
Beckman Coulter Epics XL (Beckman Coulter, CA, USA).

Statistical analysis

Comparisons were made using Student’s t-test: P values less
than 0.05 were taken as statistically significant.
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