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The benefits of oxidative stress for tissue repair and regeneration

Florenci Serrasa,b

aInstitute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; bDepartament de Gen�etica, Facultat de Biologia, Universitat de
Barcelona, Barcelona, Spain

ARTICLE HISTORY
Received 9 February 2016
Revised 15 April 2016
Accepted 4 May 2016

ABSTRACT
Recent work has strengthened Drosophila imaginal discs as a model system for regeneration studies.
Evidence is accumulating that oxidative stress drives the cellular responses for repair and
regeneration. Drosophila imaginal discs generate a burst of reactive oxygen species (ROS) upon
damage that is necessary for the activation of the Jun N-terminal kinase (JNK) and p38 MAP kinase
signaling pathways. Moreover, these pathways are pivotal in the activation of regenerative growth.
A hypothetical mechanism of how the ROS are initiated, and how repair and regeneration is
activated is discussed here.
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Introduction

There is increasing interest in Drosophila imaginal
discs as a model to decipher the molecular basis of cell
renewal, tissue repair and regeneration. Imaginal discs
follow a rigid prescribed development program, which
could be highly sensitive to any disturbances. How-
ever, accumulating evidence reveals their capacity for
cell renewal and the recovery of the developmental
balance after severe experimental interference. This
developmental homeostasis allows animals to develop
quite normally, despite defective genes and hostile
environments.1 Taking advantage of this capacity,
imaginal discs are being used to examine the molecu-
lar basis of epithelial regeneration.

Several unsolved questions in regenerative biology
are currently being addressed using Drosophila
imaginal discs in combination with genetically engi-
neered tools; for example, clarification of the nature
of the overall physiological response to damage. A
paradigm within which to study this issue is the
delay of pupariation that occurs after damage. This
delay is known to facilitate the recovery of lost tis-
sue. Damaged discs communicate with the brain to
mediate the delay through a neural network acti-
vated by the Drosophila insulin-like peptide 8

(Dilp8) that controls the balance between growth in
the regenerating organ (imaginal disc) and growth
in the rest of the body.2-5 Recent analysis of the
transcriptome of regenerating discs has revealed the
cytokine IL-6 family member unpaired (upd) to
be highly elevated transcripts in damaged discs.6

While upd triggers the JAK/STAT signaling pathway
and thereby promotes regenerative proliferation,
dilp8 could retard pupariation thus allowing recov-
ery of the damaged zone. Interestingly, loss of func-
tion of hop, the fly tyrosine kinase JAK, abolishes
dilp8 up-regulation. In contrast, loss of function of
dilp8 does not abolish regenerative proliferation.
Thus, 2 roles of JAK/STAT have been reported: one
controlling local cell proliferation and the other
allowing regeneration by delaying development.6 An
implication of these findings is that a local or a sys-
temic response would have to be coordinated to
control regenerative growth.

Another classic issue in regenerative biology is
determination of whether genetic programs exist for
regeneration or whether regeneration is a recapitula-
tion of development. Regeneration implies regrowth
and therefore re-specification of cell fates.7-11 How-
ever, tissues must be protected from anomalous cell
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fate divergence. This issue has been recently
considered after isolating the gene taranis (tara) from
a genetic screen; the authors found that tara protects
cell fate from deleterious side effects of damage only
in regeneration context.12 Another recent evidence
supporting regeneration programs in imaginal discs is
the discovery of a regeneration-specific wingless (wg)
enhancer that functions only when regeneration is tol-
erated, but is epigenetically silenced when the capacity
to regenerate is abolished.13,14

In addition to those findings, another key question
in regenerative biology is to unveil the nature of the
earliest signals that initiate repair and regeneration.
Recent evidence emphasizes the role of oxidative stress
in regeneration. For example, the production of
reactive oxygen species (ROS) upstream in signaling
pathways required for regeneration has been reported
in Xenopus and zebrafish.15,16 In flies, ROS have been
shown to function as a wound chemoattractant for
macrophages.17,18 To understand the origin of ROS
production after injury, it has been shown that the
NADPH oxidase DUOX, which produces H2O2, is
activated by calcium.19 However, little is known of the
beneficial roles of ROS for tissue repair. For example,
the JNK 8,9,11,20-27 and p38 28,29 MAPK pathways that
respond to physical damage, cell death or stressors are
sensitive to oxidation. Oxidative stress is powered by
the production of ROS: highly reactive molecules
derived from oxygen. Moderate levels of ROS can sen-
sitize the fly haematopoietic progenitors to enter dif-
ferentiation through the JNK pathway.30 Thus, the
production of ROS could create a microenvironment
in which the JNK and p38 pathways can be activated,
leading to the onset of regeneration. A possible mech-
anism that would explain the ROS-dependent onset of
regeneration is discussed below.

Origin of ROS

Most ROS are generated as by-products during
mitochondrial electron transport or oxidation reac-
tions. ROS result from the sequential reduction of
oxygen through the addition of electrons. For exam-
ple, one-electron reduction of oxygen leads to the for-
mation of the free radical superoxide (O2

¡); while
two-electron reduction leads to hydrogen peroxide
(H2O2), which is not a free radical since all its elec-
trons are paired. Both products are very common
ROS in cellular environments.

A widely accepted rule in tissue homeostasis is that
an excess of ROS is generally counteracted by
ubiquitously expressed antioxidants. If the generation
of ROS exceeds the capacity of the antioxidants to
neutralize them, cells will undergo severe dysfunction
ending in cell death. However, low concentrations of
ROS may enhance cell survival and proliferation.
Many molecules involved in ROS-induced cellular
responses are known to be regulated by the intracellu-
lar reduction–oxidation state, which depends on the
balance between the levels of oxidizing and reducing
equivalents.

Wing imaginal discs damaged by physical injury or
genetic activation of apoptosis share rapid
production of ROS.31 Impairment of ROS production
by chemical means (vitamin C, N-acetyl cysteine or
trolox) or enzymatic antioxidants (Sod or Cat trans-
genes) can block regeneration.31 The activation of the
pro-apoptotic gene reaper (rpr) results in high levels
of ROS accumulation in dying cells. This has been
demonstrated through the use of ROS indicators
(CellROX and H2DCFDA) that are sensitive to gen-
eral oxidative stress. It is important, however, to dis-
cover how and where ROS are generated. Rpr localizes
in mitochondrial membranes and promotes mito-
chondrial fragmentation by binding to the pro-fusion
Marf protein.32-34 In insects, as in mammals, altera-
tions in mitochondria trigger the generation of ROS
which oxidize apoptotic cells. Thus, it is very likely
that in rpr-induced cell death, mitochondrial ROS
accumulate in dying cells. In addition, apoptotic cells
activate JNK and in turn JNK activates rpr,35 generat-
ing an amplification loop that not only ensures cell
death but that could be responsible for the burst of
mitochondrial ROS in dying cells.

Propagation of ROS to regenerating cells

ROS have also been found in living cells near dying
cells. We recently found that in surviving cells, ROS
are only detected with general indicators.31 This could
be due to the ROS being produced by oxidases that
are not mitochondrial. In Drosophila embryos, a cal-
cium wave induced upon wounding activates DUOX,
which contains a calcium binding EF-hand domain.19

Upon DUOX activation, H2O2 is produced and the
activity of DUOX is propagated through the cells near
the wound by the intercellular spreading of calcium
through gap junctions.19 Thus, it is possible that ROS
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found in living cells are provided by calcium-depen-
dent oxidases after a flash of calcium spreads from the
wound to the neighboring cells. Therefore, a possible
model for early damage response in discs implies that
mitochondrial ROS will originate in cells in which rpr
is expressed (dying cells in Fig. 1), and the intracellular
environment of oxidative stress can be spread directly
to nearby living cells, or indirectly by calcium flashes
produced by the mechanical stress generated between
the dying and healthy cells (Fig. 1). The stress
response could further propagate via aquaporins 36 or
gap junctions.37

The role of ROS in MAPK activation

ROS are beneficial for the regeneration process and
stimulate kinases that are activated by stress such as

p38 and JNK.31 A mechanism that would explain this
activation could be that the intracellular oxidative
environment fosters the liberation of intracellular
kinases upstream of the JNK and p38.38 For example,
inactive MAP3K apoptosis signal-regulating kinase-1
(ASK1) tends to form a complex with thioredoxin
(Trx); but under oxidative stress conditions, the sulf-
hydryl groups of Trx become oxidized, ASK1 is
released, and p38 and JNK activity is stimulated.39

Another mechanism could be the inactivation of
puckered, a MAP kinase phosphatase (MKP). There
are examples of oxidation of the catalytic cysteine by
ROS accumulation that lead to phosphatase inactiva-
tion, and the release of JNK.38 This mechanism, based
on capacity to regulate MKP, seems to respond to
ROS by protecting cells. It causes apoptosis when the
levels of ROS are high, which results in blocked MKP

Figure 1. Model for ROS stimulation of regeneration. Turning on cell death machinery can induce regenerative growth in the nearby
healthy cells in a ROS-dependent manner. In the dying cell Reaper inhibits the Inhibitor of Apoptosis (DIAP) which results in caspase-
dependent apoptosis. Reaper/caspase act near the mitochondria,34 where ROS are released. High levels of JNK (and p53) function
upstream the pro-apoptotic genes (e.g. reaper). Caspases, such as DRONC, can also activate JNK (and p53) which in turn results in reaper
expression.35 This can create an amplification loop that ensures cell death. ROS in dying cells can also promote JNK activity. Three non-
exclusive mechanistic scenarios can interplay to promote an early damage response in the regenerating cells: (1) Direct ROS propaga-
tion. ROS could propagate directly from dying cells to nearby cells which will induce a non-deleterious oxidative stress necessary for the
damage response.31 In the regenerating cell, oxidation of the sulfhydryl groups of Trx, result in the liberation of ASK1.45 Free ASK1 acts
upstream JNK and p38.45 Both p38 and JNK signals promote transcription of upd, which signals JAK/STAT to the phosphorylated dimer-
ization of the transcription factor STAT92E.31 Yki entrance into de nucleus is JNK dependent 41 and could promote upd transcription.44 It
is not known whether p38 control of upd/STAT92E is Yki dependent. Both, Yki and STAT92E promote survival and proliferation during
regeneration. (2) Mechanical effect upstream of ROS. Dying cells disrupt cell membranes, adhesion and junctions, and as consequence
cell membranes of the nearby healthy cells undergo mechanical stress that can originate Ca2C flashes, as found in wounds 19 . The
release of Ca2C is necessary for DUOX to convert water and oxygen in H2O2. These ROS could release ASK1 which in turn triggers p38
and JNK. (3) Damage response propagation. Ca2C or ROS can spread through gap junctions 37 to other healthy cells to recruit them for
the regeneration response. Also, aquaporins or water channels can transfer ROS from cell-to-cell.36 This mechanism can provide a fast
propagation of signals necessary to activate damage response an ultimately regenerative growth.
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and prolonged JNK activation. However, it protects
the cell from dying when the levels of ROS are low,
which results in active MKP and transient JNK
activation.40

The MAP kinases JNK and p38 in regenerative
growth

There is evidence of MAP kinases being involved in
cytoskeletal organization, cell shape changes, cell
death and proliferation. One possible role for JNK and
p38 is the expression of cytokines, which in turn stim-
ulate proliferation. As mentioned above, evidence
indicates that upd cytokines are transcriptionally acti-
vated in regenerating cells and that inhibition of the
JAK/STAT signaling blocks regeneration.6,25,31 Also,
mutations or chemical inhibitors of JNK or p38 inter-
fere with upd transcription and regeneration. In addi-
tion, the anomalies that result from neutralizing ROS
with antioxidants or with p38 inhibitors can be
reverted after ectopic expression of upd.31 Another
effector required for regeneration is the Hippo path-
way transcriptional co-regulator yorkie (yki), which is
known to be downstream of JNK.23,41-43 Evidence
points upd and yki as key genes in regenerative
growth, yet ectopic expression of yki can result in upd
transcription in wing discs,44 which positions yki
between JNK and upd.

Thus, these findings consolidate Drosophila imagi-
nal discs as a model for exploring epithelial plasticity,
homeostasis and regeneration. Moreover, advanced fly
genetic tools and the flow of information will allow
current topics in regeneration biology such as epige-
netic control, long non-coding RNA, micro RNA,
metabolism, and systemic responses to damage, to be
tested in vivo.
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