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Abstract

HIV patients are often plagued by sleep disorders and suffer from sleep deprivation. However, 

there remains a wide gap in our understanding of the relationship between HIV status, poor sleep, 

overall function and future outcomes; particularly in the case of HIV patients otherwise well 

controlled on cART (combined anti-retroviral therapy). In this study, we compared two groups: 16 

non-HIV subjects (seronegative controls) and 12 seropositive HIV patients with undetectable viral 

loads. We looked at sleep behavioral (macro-sleep) features and sleep spectral (micro-sleep) 

features obtained from human-scored overnight EEG recordings to study whether the scored EEG 

data can be used to distinguish between controls and HIV subjects. Specifically, the macro-sleep 

features were defined by sleep stages and included sleep transitions, percentage of time spent in 

each sleep stage, and duration of time spent in each sleep stage. The micro-sleep features were 

obtained from the power spectrum of the EEG signals by computing the total power across all 
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channels and frequencies, as well as the average power in each sleep stage and across different 

frequency bands. While the macro features do not distinguish between the two groups, there is a 

significant difference and a high classification accuracy for the scoring-independent micro 

features. This spectral separation is interesting because evidence suggests a relationship between 

sleep complaints and cognitive dysfunction in HIV patients stable on cART. Furthermore, there are 

currently no biomarkers that predict the early development of cognitive decline in HIV patients. 

Thus, a micro-sleep architectural approach could serve as a biomarker to identify HIV patients 

vulnerable to cognitive decline, providing an avenue to explore the utility of early intervention.

I. INTRODUCTION

Insomnia, a condition associated with chronic sleep disruption and associated daytime 

functional symptoms, is considered the most common and disabling sleep disorder, and one 

of the most common medical conditions that individuals with HIV encounter in the post 

cART era [1]. For those with HIV infection particularly, sleep quality may be of critical 

importance for maintaining optimal cognitive functioning, immune system regulation, pain 

processing, and medication adherence. Currently, the gold standard for discriminating 

between patients suffering from sleep disorders and healthy sleepers is through the 

Pittsburgh Sleep Quality Index (PSQI) measure. The PSQI is computed from a questionnaire 

that assesses sleep quality and disturbances, with a high PSQI indicating poor sleep quality 

[2]. As such, the score is subject to survey bias, and hence not entirely objective. Subjective 

assessments may lead to inaccurate diagnostics, which calls for a great necessity to 

implement a more objective, quantitative means for diagnosing sleep disturbances. A better 

understanding of the role that disrupted sleep, particularly insomnia, plays in cognitive 

performance fluctuations, often demonstrated by individuals with HIV, will help with 

treatment trial design and clinical management.

Spectral analysis is not a standard of care method for diagnosing or managing any sleep 

disorder. It remains a technique exclusively explored for its utility in further characterizing 

the underlying sleep neurophysiology in the research arena only. While some quantitative 

EEG methods have been utilized to better understand the basis of poor subjective sleep 

complaints notoriously reported in patients with fibromyalgia, chronic fatigue syndrome and 

insomnia, very few studies have evaluated sleep EEG in HIV patients demonstrating poor 

sleep quality [3]. Further, most previous HIV studies were done prior to introduction of 

cART therapy which has since significantly changed and extended the overall morbidity and 

mortality of HIV patients respectively. We are not aware of any studies that have attempted 

to operationalize spectral features as a diagnostic tool for sleep disorders such as insomnia, 

or as a predictive marker of those who may be at a higher risk for developing common 

comorbid conditions associated with HIV such as HAND (HIV Associated Neurocognitive 

Disorder).

One important diagnostic tool used to characterize sleep and diagnose sleep disorders is 

overnight polysomnography (PSG). At present, the traditional PSG measures are limited to 

diagnosing sleep apnea and involve costly human scoring with poor inter-scorer reliability. A 

polysomnogram collects, amongst other things, EEG data in a non-invasive way. The EEG 
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data is scored in a laborious and subjective process by sleep specialists who assign a sleep 

stage to every 30 second window of the EEG data based on (annotated) “blind-eye” 

estimation of the primary EEG frequency power per window. Clinicians then make a 

diagnosis based on the annotated data. Consequently, the standard procedure is currently 

heavily dependent upon human factors. Furthermore, the lack of utility of traditional PSG 

approaches for non-apnea sleep disorders has led to a reliance on, and general clinical 

acceptance of, purely subjective diagnostic criteria such as questionnaires and clinician 

interviews [1].

Analysis of EEG signals presents a possible alternative method to a more objective way of 

viewing PSG data. In this study, we compared seronegative controls to seropositive HIV 

patients. We looked at sleep behavioral (macro-sleep architectural) features and sleep 

spectral (micro-sleep architectural) features from the annotated EEG data. We found that 

while the behavioral features do not distinguish between the two groups, there is a 

significant difference (P ≪ 0.05) and a high classification accuracy for the scoring-

independent spectral features. This suggests that the behavioral features, that are subjective 

and prone to human factors, have limitations and do not appear to be useful for identifying 

sleep complications in HIV patients. Results generated from this study can potentially 

provide additional insight for investigators across the entire basic and clinical research 

spectrum, particularly because we believe that sleep disturbance represents a very significant 

confounder in the interpretation of overall function (particularly neurophysiological) in HIV 

patients.

II. Methods

A. Experimental Setup

1) Study Population—Our study population consisted of 16 seronegative controls and 12 

seropositive HIV patients. All participants were African American males older than 35 years 

old. The groups were age-, PSQI-, and BMI-matched (Table 1) and heterogeneous in that 

each group contained both “good sleepers” (PSQI ≤ 5) and “bad sleepers” (PSQI > 5) [2].

All of the seropositive HIV participants were recruited at Johns Hopkins Medical 

Institutions (JHMI) from an established HIV-research cohort at JHU [the Northeastern AIDS 

Dementia (NEAD)], Central Nervous System HIV Antiretroviral Therapy Effects Research 

(CHARTER) and other available seropositive HIV patient research cohorts. Control 

participants were recruited from other JHMI research cohorts, advertisements, and from 

personal referral of established participants. This study was approved by the JHMI IRB and 

all participants provided informed consent prior to enrollment. A full medical evaluation was 

conducted to ensure that each participant was medically, cognitively, and psychologically 

stable to participate. Seropositive HIV participants were required to have a relatively low 

HIV viral load (3000 copies/ml), and those whose cART regimen included efavirenz were 

excluded from the study due to its potential sleep-altering effects [4]. Participants were also 

dropped from the study if they screened positive for recreational drug use during the 2-week 

protocol.
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2) EEG acquisition—The study data was collected between August 2008 and April 2011 

for the HIV group and between May 2010 and April 2011 for the control group. The raw 

data was collected at a sampling rate of 500 Hz, which we downsampled to 80 Hz in our 

analysis. EEG signals were collected in a contralateral ear reference montage using 6 scalp 

electrodes and 2 ear electrodes (F3A2, F4A1, C3A2, C4A1, O1A2 and O2A1) (Fig. 1). A 

PSG was conducted in the Johns Hopkins Clinical Research Unit followed by 2-week-in-

home functional assessments with questionnaires and actigraphy monitoring of their sleep 

and wake activity. The PSG device model used was the same across all participants.

3) Sleep Stage Scoring—The EEG data was visually scored according to the 2007 

American Academy of Sleep Medicine (AASM) Manual for Scoring Sleep [5] by assigning 

a sleep stage to every 30 second epoch of the EEG data. The sleep cycle consists of five 

sleep stages, three non-REM stages; stage N1, stage N2, and stage N3, the REM stage, and 

wake. A certified sleep specialist reviewed and finalized all of the studies, which were 

conducted and scored by a registered technician.

B. Data Analysis

1) Sleep Behavioral features—Three types of sleep behavioral features were computed 

from the scoring files: (i) sleep transitions, (ii) the percentage of time spent in each sleep 

stage, and (iii) the duration of time spent in each sleep stage. For each participant, a 5-by-5 

sleep transitions matrix was created. Each cell in the matrix had a nonnegative integer value 

representing the count of a specific transition. The direction of a transition flowed from row 

to column (i.e. cell (1,2) stands for the number of transitions from stage N1 to stage N2. The 

diagonal of the matrix represents being in a certain sleep stage and staying in that stage for 

the subsequent epoch). Once a transitions matrix was created, it was normalized by the sum 

of the matrix to eliminate bias due to total sleep time. From these normalized transitions 

matrices, the percentage of time spent in each sleep stage was calculated for each patient by 

summing across the columns. The output was a vector of length 5 with the values 

representing the percentage of time spent in each of the five sleep stages. Lastly, assuming a 

patient goes into a sleep stage, a distribution of the duration of time spent in that sleep stage 

can be extracted. The values of the duration distributions were all non-zero positive 

multiples of 30 due to the nature of the scoring process.

2) Sleep Spectral features—The sleep spectral features computed were the total power 

over the entire night, as well as the average power in each of the five sleep stages and across 

five equally sized frequency bands of 5 Hz between 0–25 Hz.

The features were obtained by inspecting the power spectrum of the EEG signals over the 

entire night (~8.5 hours). The spectrogram of the EEG signal for each subject was computed 

using the mtspecgramc command from the Chronux toolbox in MATLAB (R2014b) [6]. 

This uses a multi-taper estimate scheme based on Slepian functions for calculating the 

power spectrum of the signal. A sliding window of 3 seconds was used, incrementing by 1 

second per step. The time-bandwidth product was 3, with 5 tapers used for estimation. The 

spectrogram was computed for the frequency of the signal ranging from 0–25 Hz.
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From the log power spectrum for each patient, we computed the total average power over the 

entire night by averaging across all six channels and all frequencies of the signal. 

Furthermore, we divided the log power spectrum into 5 bands of 5 Hz width (0–5 Hz, 5–10 

Hz, …, 20–25 Hz) and calculated the average power in each frequency band. Finally we 

used the staging files to find the average power in each of the five sleep stages by averaging 

across all annotated 30 second windows for each sleep stage. All the measures were 

averaged across all channels since the channels gave very similar results when observed 

separately.

3) Feature Visualization—We performed principal component analysis on the features 

for visualization purposes. Feature vectors were created by concatenating all cells of the 

transitions matrix. Other visualization methods include boxplots and histograms (Fig. 2).

4) Likelihood Ratio Test—In order to test the accuracy of each feature to discriminate 

between the two groups, we derived a distribution for each subject group and then employed 

a likelihood ratio classifier. Distributions were created using histograms with a bin size of 20 

values. The likelihood ratio test combines the priors of each group with the probability of 

being in that group derived from a distribution obtained by leaving one patient out at a time. 

The patient left out is the patient tested. It then assigns the patient to the group with a higher 

likelihood [7].

5) Testing for Significance—P-values were calculated for sleep behavioral features by 

bootstrapping with no replacements. We ran a total of 10,000 iterations. For the spectral 

features the p-values were calculated using a two-sample t-test assuming unequal variances.

III. Results

The difference between the two groups was statistically insignificant (P > 0.05) for all the 

behavioral features, with the exception of one sleep transition, stage N3 to stage N2, without 

correction. However, with a Bonferroni correction, all features became insignificant (Table 

2). For the spectral features, all features except average power across 10–15 Hz were 

significantly different between the two groups with the greatest separation in the average 

total power over the entire night (P = 2.2046·10−4). Even though all spectral features were 

significantly different between the two groups, scoring independent features had a much 

better separation between the groups compared to scoring-dependent spectral features.

A. Accuracy of Likelihood Ratio Test

1) Sleep Behavioral features—Accuracy values for all sleep behavior features were too 

low to be considered a good classifier. Accuracy values ranged from 7.14% to 67.86% (Fig. 

3). Typically, a feature with accuracy above 70% is considered a good classifier.

2) Sleep Spectral features—Even though all spectral features were significantly 

different between the two groups, a likelihood ratio classification using the scoring-

independent features yielded much higher accuracy values ranging from 54.05%–78.57%, 

whereas the accuracy ranged from 32.43% – 54.05% for the scoring-dependent features 

(Fig. 4).
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IV. Conclusion

It is well known that HIV patients often complain of sleep disturbances and suffer from 

sleep deprivation. However, not much research effort has been directed at examining the 

correlation between sleep disturbances and cognitive function. Nonetheless, it is reasonable 

to conclude that there is an underlying neurophysiological sleep factor contributing to the 

cognitive dysfunction observed in HIV patients despite a well-controlled viral load. In this 

study, we attempted to identify a sleep feature that could potentially act as a predictor for 

identifying HIV patients most vulnerable to future cognitive decline. Our results showed that 

behavioral features obtained from human-scored EEG data have limitations and are not able 

to capture a significant difference between the two groups. On the other hand, we 

successfully observed a spectral difference through objectively analyzing the EEG data of 

controls and HIV patients who are PSQI-matched (i.e. the spectral difference is not simply 

reflecting a difference between good and bad quality sleep). Thus, we conclude that HIV 

correlates with a change in the brain that manifests in greater spectral power in overnight 

sleep EEG, and from the preliminary analysis presented above, we propose the average total 

power over the entire night as a promising biomarker. This may provide insights into why 

HIV patients present with greater levels of mild cognitive impairment and dementia later in 

life despite having controlled viral loads and further research in this area can potentially 

have great impact in the clinical management and treatment design for individuals with HIV.
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Figure 1. 
EEG electrode placements in PSG.
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Figure 2. 
Normalized counts of all sleep transitions as a feature vector in PC space. There is little to 

no separation between controls and HIV participants (top). The total average power over the 

entire night gives the most significant difference between the two groups and yields the 

highest accuracy of classifying subjects into controls and HIV participants (bottom).
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Figure 3. 
The accuracy of the likelihood ratio classification for sleep transitions with the three lowest 

p-values without correction (top), the percentage of time spent in each sleep stage (middle) 

and the duration of time spent in each sleep stage (bottom). Not enough data was available to 

calculate the accuracy for stage N3 for this feature.
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Figure 4. 
The accuracy of the likelihood ratio classification for the scoring-independent spectral 

features (top). The highest accuracy was obtained using the average total power over the 

entire night. The accuracy of the likelihood ratio classification for the scoring-dependent 

spectral features (bottom). All features had a low classification accuracy.
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TABLE I

Patient population statistics

Subject statistics Controls (n = 16) HIV patients (n = 12)

Age (P = 0.1677) 51.06 ± 6.23 47.92 ± 5.45

PSQI (P = 0.1740) 4.63 ± 2.09 5.92 ± 2.61

BMI (P = 0.1317) 29.66 ± 6.52 27.61 ± 5.86
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