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Abstract

In this study, we used the Pittsburgh Sleep Quality Index to divide the subjects into two groups, 

good sleepers and bad sleepers. We computed sleep behavioral (macro-sleep architectural) features 

and sleep spectral (micro-sleep architectural) features in order to observe if the annotated EEG 

data can be used to distinguish between good and bad sleepers in a more quantitative manner. 

Specifically, the macro-sleep features were defined by sleep stages and included sleep transitions, 

percentage of time spent in each sleep stage, and duration of time spent in each sleep stage. The 

micro-sleep features were obtained from the power spectrum of the EEG signals by computing the 

total power across all channels and all frequencies, as well as the average power in each sleep 

stage and across different frequency bands. We found that while the scoring-independent micro 
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features are significantly different between the two groups, the macro features are not able to 

significantly distinguish the two groups. The fact that the macro features computed from the 

scoring files cannot pick up the expected difference in the EEG signals raises the question as to 

whether human scoring of EEG signals is practical in assessing sleep quality.

I. Introduction

In the modern world, sleep deprivation is a common occurrence in the general population. In 

the United States alone, about 40 million Americans suffer from a chronic sleep disorder [1]. 

Chronic sleep restriction has been shown to be associated with a variety of physiological 

consequences including increased heart rate and blood pressure [2], increased inflammation 

as measured by C-reactive protein [3], impaired glucose tolerance [4], and increased hunger/

appetite [5]. Insomnia is considered the most common and disabling sleep disorder [6] and is 

a condition associated with chronic sleep disruption and associated daytime function 

symptoms such as fatigue, difficulty concentrating, and mood disturbance [7].

Currently, the gold standard for discriminating between a patient suffering from a sleep 

disorder and a healthy sleeper is through the Pittsburgh Sleep Quality Index (PSQI). The 

PSQI is computed from a questionnaire that assesses sleep quality and disturbances, with a 

high PSQI indicating poor sleep quality [8]. As such, the PSQI is subjected to survey bias, 

and hence not entirely objective. Subjective assessments may lead to inaccurate diagnostics, 

which calls for a great necessity to implement a more objective, quantitative means for 

diagnosing sleep disturbances. One important diagnostic tool used to characterize sleep and 

diagnose sleep disorders is overnight polysomnography (PSG). At present, the traditional 

PSG measures are limited to diagnosing sleep apnea and involve costly human scoring with 

poor inter-scorer reliability. A polysomnogram collects, amongst other things, EEG data in a 

non-invasive way. The EEG data are subjected to a laborious and subjective “scoring” 

process by sleep specialists who assign a sleep stage to every 30-second interval of the EEG 

data. Clinicians then make a diagnosis based on the annotated data. Consequently, the 

standard procedure is currently heavily dependent upon human factors. Furthermore, the 

lack of utility of traditional PSG approaches for non-apnea sleep disorders has led to a 

reliance on, and general clinical acceptance of, purely subjective diagnostic criteria such as 

questionnaires and clinician interviews.

Spectral analysis is not a standard of care method for diagnosing or managing any sleep 

disorder. It remains a technique exclusively explored for its utility in further characterizing 

the underlying sleep neurophysiology in the research arena only. While some quantitative 

EEG methods have been utilized for some time to better understand basis of poor subjective 

sleep complaints notoriously reported in patients with fibromyalgia, chronic fatigue 

syndrome and insomnia, very few studies have evaluated sleep EEG in individuals 

demonstrating poor sleep quality. We are not aware of any studies that have attempted to 

operationalize spectral features as a diagnostic tool for sleep disorders such as insomnia [9].

Analysis of EEG signals present a possible alternative method to a more objective way of 

viewing PSG data. In this study, we used patients with extreme values of PSQI (very low vs. 

very high) to divide the subjects into two groups, good sleepers and bad sleepers. We looked 
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at sleep behavioral (macro-sleep architectural) features and sleep spectral (micro-sleep 

architectural) features from the annotated EEG data with the goal of utilizing current 

measures to create a more rigorous and quantitative means for the diagnostics of sleep 

disorders. We found that many of the scoring-independent spectral features are significantly 

different between the two groups, whereas none of the behavioral features or the scoring-

dependent spectral features is able to significantly distinguish good sleepers from bad 

sleepers. The fact that the behavioral features computed from the scoring files cannot 

identify the expected difference in the EEG signals calls into question whether human 

scoring of EEG signals is practical in assessing sleep quality.

II. Methods

A. Experimental Setup

1) Study Population—Our study population consisted of 15 patients without any sleep 

disorder and 21 patients suffering from one or more sleep disorders, many of which had 

insomnia. All participants were African American males older than 35 years old. The groups 

were age-matched and heterogeneous in that each group contained both seronegative 

controls and seropositive HIV participants (Table 1).

All of the seropositive HIV participants were recruited at Johns Hopkins Medical 

Institutions (JHMI) from an established HIV-research cohort at JHU [the Northeastern AIDS 

Dementia (NEAD)], Central Nervous System HIV Antiretroviral Therapy Effects Research 

(CHARTER) and other available seropositive HIV patient research cohorts. Control 

participants were recruited from other JHMI research cohorts, advertisements, and from 

personal referral of established participants. This study was approved by the JHMI IRB and 

all participants provided informed consent prior to enrollment. A full medical evaluation was 

conducted to ensure that each participant was medically, cognitively, and psychologically 

stable to participate. Seropositive HIV participants were required to have a relatively low 

HIV viral load (3000copies/ml), and those whose cART regimen included efavirenz were 

excluded from the study due to its potential sleep-altering effects [10]. Participants were also 

dropped from the study if they screened positive for recreational drug use during the 2-week 

protocol.

2) EEG acquisition—The study data was collected between August 2008 and April 2011 

for the HIV group and between May 2010 and April 2011 for the control group. The raw 

data was collected at a sampling rate of 500 Hz, which we downsampled to 80 Hz in our 

analysis. EEG signals were collected in a contralateral ear reference montage using 6 scalp 

electrodes and 2 ear electrodes (F3A2, F4A1, C3A2, C4A1, O1A2 and O2A1) (Fig. 1). A 

PSG was conducted in the Johns Hopkins Clinical Research Unit followed by 2-week-in-

home functional assessments with questionnaires and actigraphy monitoring of their sleep 

and wake activity. The PSG device model used was the same across all participants.

3) Sleep Stage Scoring—The EEG data was visually scored according to the 2007 

American Academy of Sleep Medicine (AASM) Manual for Scoring Sleep [11] by assigning 

a sleep stage to every 30 second epoch of the EEG data. The sleep cycle consists of five 

sleep stages, three non-REM stages; stage N1, stage N2, and stage N3, the REM stage, and 
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wake. A certified sleep specialist reviewed and finalized all of the studies, which were 

conducted and scored by a registered technician.

B. Data Analysis

1) Sleep Behavioral features—Three types of sleep behavioral features were computed 

from the scoring files: (i) sleep transitions, (ii) the percentage of time spent in each sleep 

stage, and (iii) the duration of time spent in each sleep stage. For each participant, a 5-by-5 

sleep transitions matrix was created. Each cell in the matrix had a nonnegative integer value 

representing the count of a specific transition. The direction of a transition flowed from row 

to column (i.e. cell (1,2) stands for the number of transitions from stage N1 to stage N2. The 

diagonal of the matrix represents being in a certain sleep stage and staying in that stage for 

the subsequent epoch). Once a transitions matrix was created, it was normalized by the sum 

of the matrix to eliminate bias due to total sleep time. From these normalized transitions 

matrices, the percentage of time spent in each sleep stage was calculated for each patient by 

summing across the columns. The output was a vector of length 5 with the values 

representing the percentage of time spent in each of the five sleep stages. Lastly, assuming a 

patient goes into a sleep stage, a distribution of the duration of time spent in that sleep stage 

can be extracted. The values of the duration distributions were all non-zero positive 

multiples of 30 due to the nature of the scoring process.

2) Sleep Spectral features—The sleep spectral features computed were the total power 

over the entire night, as well as the average power in each of the five sleep stages and across 

five equally sized frequency bands of 5 Hz between 0–25 Hz. The features were obtained by 

inspecting the power spectrum of the EEG signals over the entire night (~8.5 hours). The 

spectrogram of the EEG signal for each subject was computed using the mtspecgramc 

command from the Chronux toolbox in MATLAB (R2014b) [12]. This uses a multi-taper 

estimate scheme based on Slepian functions for calculating the power spectrum of the signal. 

A sliding window of 3 seconds was used, incrementing by 1 second per step. The time-

bandwidth product was 3, with 5 tapers used for estimation. The spectrogram was computed 

for the frequency of the signal ranging from 0–25 Hz.

From the log power spectrum for each patient, we computed the total average power over the 

entire night by averaging across all six channels and all frequencies of the signal. Although 

we observed nonstationaities in the data, we wanted to first test whether a very coarse metric 

would significantly differ between the two groups. Furthermore, we divided the log power 

spectrum into 5 bands of 5 Hz width (0–5 Hz, 5–10 Hz, …, 20–25 Hz) and calculated the 

average power in each frequency band. Finally we used the staging files to find the average 

power in each of the five sleep stages by averaging across all annotated 30 second windows 

for each sleep stage. All the measures were averaged across all channels since the channels 

all gave very similar results when observed separately.

3) Feature Visualization—We performed principal component analysis on the features 

for visualization purposes. Feature vectors were created by concatenating all cells of the 

transitions matrix. Other visualization methods include boxplots and histograms (Fig. 2).
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4) Likelihood Ratio Test—In order to test the accuracy of each feature to discriminate 

between good and bad sleepers, we derived a distribution for each subject group and then 

employed a likelihood ratio classifier. Distributions were created with a bin size of 20. The 

likelihood ratio test combines the priors of each group with the probability of being in that 

group derived from a distribution obtained by leaving one patient out at a time. The patient 

left out is the patient tested. It then assigns the patient to the group with a higher likelihood 

[13].

5) Testing for Significance—P-values were calculated for sleep behavioral features by 

bootstrapping with no replacements. We ran a total of 10,000 iterations. For the spectral 

features the p-values were calculated using a two-sample t-test assuming unequal variances.

III. Results

The difference between the two groups was statistically insignificant (P > 0.05) for all the 

behavioral features, with the exception of four sleep transitions, stage N3 to stage N1, stage 

N3 to stage N2, stage N2 to stage N3, and wake to wake, without correction. However, with 

a Bonferroni correction, all features became insignificant (Table 2). For the spectral features, 

the total average power over the entire night was significantly different (P = 0.0289) between 

the two groups. Furthermore, the total average powers in the frequency bands 15–20 Hz and 

20–25 Hz showed even more significant difference between the two groups (P=0.0103 and P 

= 0.0159, respectively). The average powers in the other frequency bands along with all 

scoring-dependent spectral features did not show a significant difference between the two 

groups (P > 0.05).

A. Accuracy of Likelihood Ratio Test

1) Sleep Behavioral features—Accuracy values for all sleep behavior features were too 

low to be considered a good classifier. Accuracy values ranged from 38.89% to 69.44% (Fig. 

3). Typically, a feature with accuracy above 70% is considered a good classifier.

2) Sleep Spectral features—The accuracy of the likelihood ratio test using the scoring 

independent spectral features ranged from 40.54% – 72.97% whereas the accuracy for the 

scoring dependent features ranged from 45.95% – 56.76% (Fig. 4). A feature with accuracy 

above 70% is considered a good classifier.

IV. Conclusion

Sleep disturbances are known to be highly correlated to serious health concerns. In this 

study, we objectively looked at human-scored components of PSG as well as those that are 

human-independent. We demonstrated that while scoring-independent spectral features of 

EEG data can be used to significantly discriminate good sleepers from bad sleepers, scoring-

dependent spectral features and sleep stage defined behavioral features are not able to 

identify the expected difference between the two groups. This brings up the issue of whether 

the costly and time-consuming scoring process is the best approach to analyzing data 

obtained through PSG. One possible feature we propose that yields a better separation 

between good sleepers and bad sleepers is average total power. Further research in this area 
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may lead to a less expensive, quicker, and objective measure that can assist physicians in 

making a diagnosis in the realm of sleep disorders.
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Figure 1. 
EEG electrode placements in PSG
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Figure 2. 
Normalized counts of all sleep transitions as a feature vector in PC space. There is little to 

no separation between good sleepers and bad sleepers (left). The average power across the 

frequency band 20–25 Hz is one of the features that is significantly different between the 

two groups and gives the highest accuracy of classifying subjects into groups of good 

sleepers and bad sleepers (right)
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Figure 3. 
The accuracy of the likelihood ratio classification for sleep transitions with P < 0.05 without 

correction (top), the percentage of time spent in each sleep stage (middle) and the duration 

of time spent in each sleep stage (bottom).
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Figure 4. 
The accuracy of the likelihood ratio classification for the scoring-independent spectral 

features (top). The highest accuracy was obtained using the average power across 20–25 Hz. 

The accuracy of the likelihood ratio classification for the scoring-dependent spectral features 

(bottom). None of these features were able to significantly discriminate good sleepers from 

bad sleepers.
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TABLE I

Patient population statistics

Subject statistics Good sleepers (n = 15) Bad Sleepers (n = 21)

Number of HIV
individuals

5 16

Number of controls 10 6

Age (P = 0.1249) 48.67 ± 6.35 52 ± 6.08

PSQI 3.33 ± 1.18 9.24 ± 2.91
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