
ARTICLE

Estimating time to the most recent common ancestor
(TMRCA): comparison and application of eight
methods

Jin Zhou1 and Yik-Ying Teo*,1,2,3,4,5

Investigating how an ancestral population diverges to give rise to distinct subpopulations remains a fundamental pursuit in

population genetics. There is broad consensus for the ‘Out-of-Africa’ hypothesis that states that modern humans arose

∼200 000 years ago in Africa and spread throughout the continent ∼100 000 years ago. This was followed by several waves of

major population dispersals across the globe, although the exact nature of the population divergence remains debatable. Existing

methods to estimate population divergence time differ in their methodological frameworks and demographic assumptions, and

require different types of genetic data as input. These fundamental differences often result in the methods producing

inconsistent estimates of the population divergence time, further confounding attempts to robustly uncover the history of human

migration, especially when most population genetic studies do not employ multiple methods to estimate the time to the most

recent common ancestor (TMRCA). Here, we chose eight popular methods for estimating TMRCA and evaluated their robustness

and accuracy in correctly identifying the true TMRCA through a series of simulations that mimicked different evolutionary

scenarios. We subsequently applied all eight methods to estimate the population divergence time between Southeast Asian

Malays and South Asian Indians using deep whole-genome sequencing data.
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INTRODUCTION

Population divergence is the process where populations of the same
ancestry accumulate genetic mutations independently over a period of
time, producing sufficient genetic distinction between these popula-
tions as a result of an extended period of reproductive isolation. The
inference of the divergence time between populations has been of
fundamental interest in the study of population evolution. Although
there is a general consensus around the origin and expansion of
modern humans in Africa, dated respectively at ∼ 200 000 and 100 000
years ago, there have been several conflicting theories on the exact
nature of modern human dispersal across the globe.1,2 The availability
of genome-wide data by technologies ranging from genotyping to
next-generation sequencing provides the unprecedented opportunity
to study the demographic changes and migration patterns of modern
humans shaped by the environment and subsequent evolutionary
process of genetic drift and natural selection.3,4 Valuable new insights
have been derived from large complete genome sequencing surveys of
populations in Africa,5,6 Asia,7,8 Europe,9 and the Americas.10

Many of the existing population genetics inference and methodol-
ogies have been built on the foundation of the coalescent theory,11–13

although these can be generally classified according to the type of
genetic data used as input and the assumptions about population
demography (Table 1). For example, one class of methods for
estimating the time to the most recent common ancestor (TMRCA)
considers multiple neutral loci each of ∼ 1000 bases only in multiple
populations, such as MIMAR14,15 and GPho-CS.16 Another class of

methods infers the TMRCA from full chromosomal information, such
as CoalHMM,17 PSMC,18 and MSMC.19 The third class of methods
essentially infers the TMRCA on the extent of linkage disequilibrium
(LD), population diversity measured by the FST parameter and
population allele frequency, such as the approaches by Hayes and
colleagues (abbreviated subsequently as T-LD),20,21 by McEvoy and
colleagues (abbreviated subsequently as T-FST),22 and DADI.23 These
methods differ by the type of input data required (sequence-level
information or summary statistics), and by the assumption around the
presence of genetic recombination during migration.23

These different methods can also be classified by the statistical
framework used in the design of the methods. Notably, MIMAR and
GPho-CS are Markov chain Monte Carlo (MCMC)-based methods
that implement an MCMC algorithm to model the posterior
distribution of the TMRCA parameter, and possess the advantage of
incorporating greater complexity in the model to allow for recombi-
nation and gene flows through migration. However, such methods are
typically computationally expensive and scaling up to allow whole-
genome sequences to be considered as input remains intractable.
Conversely, methods such as CoalHMM, PSMC, and MSMC adopt a
hidden Markov model (HMM) framework that assumes a Markovian
behaviour when considering recombination events. This reduces the
computational burden and has been extended to allow the whole-
genomic sequence to be analysed. T-LD and T-FST derive the TMRCA
by computing statistics measuring the extent of LD or FST, whereas
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DADI infers the TMRCA between two populations from a diffusion
approximation of the allele frequency spectrum.
In this paper, we perform a comparison of eight popular methods

used to estimate TMRCA (T-LD, T-FST, MIMAR, GPho-CS, DADI,
CoalHMM, PSMC, and MSMC), to gauge their relative performance as
measured by the robustness and accuracy of the TMRCA estimates in
order to identify the best performing method. This is achieved through
a series of simulations under four different population demography
scenarios: (1) simple-isolation model, (2) isolation–migration model,
(3) bottleneck–nonbottleneck model, and (4) bottleneck–bottleneck
model. The simple-isolation model is the simplest that assumes a
random mating ancestral population that splits instantaneously into two
descendant populations with no subsequent gene flow. The isolation–
migration model extends the simple isolation model by allowing for
migration after the population split. The bottleneck–nonbottleneck
model simulates the demographic history of African and non-African
populations, where studies have suggested the presence of demographic
bottlenecks in non-African populations but not in African
populations.24–26 The bottleneck–bottleneck model simulates the demo-
graphic history of non-African and non-African populations. These
eight methods are subsequently applied to estimate the TMRCA
between Southeast Asian Malays and South Asian Indians, with deep
whole-genome sequencing data from these two populations.

MATERIALS AND METHODS

Simulating demographic models
We simulated genetic sequences for two populations under four different
demographic scenarios (Figure 1) with the ms program,27 where 10 iterations

were generated for each scenario. In each iteration, 1001 sequences of length
10 Mb are generated, comprising one sequence from an outgroup population
and 500 sequences each from the two target populations. Our simulations were
specifically designed to evaluate the ability to estimate the TMRCA for two
populations that diverged between 20 000 and 60 000 years ago, and we assumed
the outgroup population to have diverged from the two target populations
4 100 000 years ago. We assumed a mutation rate per site per year (m) of 10− 9, a
generation time of 25 years, and a recombination rate of 5×10− 9. The four
demographic models are: (1) simple-isolation model that assumed an ancestral
population with an effective population size (Ne) of 10 000 that split into two
populations 20 000 years ago with the same effective population size of 10 000;
(2) isolation–migration model that assumed the same set-up as the simple-
isolation model except with the addition of migration (migration rate=0.01%)
between the two populations immediately after the split; (3) bottleneck–
nonbottleneck model that assumed an ancestral population with Ne=5000 that
split into two populations 60 000 years ago such that one population has an
Ne=5000 and the other population has Ne declining exponentially from 5300 to
1000 at t= 23 000 years ago, and increasing exponentially to 10 000 at present;
(4) bottleneck–bottleneck model that assumed an ancestral population with
Ne=5000 that split into two populations 40 000 years ago such that both
populations have an Ne=1000 immediately after the split, and that increased
exponentially to 10 000 at present. Our simulations produced an average of
98 175 SNPs in the simple-isolation model, 98 705 SNPs in the isolation–
migration model, 57 677 SNPs in the bottleneck–nonbottleneck model, and
62 920 SNPs in the bottleneck–bottleneck model. The correct mutation rate is
given to each model for converting TMRCA from coalescence unit to years.

Estimating TMRCA of Southeast Asian Malays and South Asian
Indians with whole-genome sequencing data
In order to estimate the TMRCA of Southeast Asian Malays and South Asian
Indians, whole-genome sequencing data for 96 Malays from the Singapore

Figure 1 Four scenarios of demographic model. Illustrate the four demographic scenarios considered in our simulation study. An ancestral population
diverged into two populations (population_1 and population_2) at time Tsplit. N1, N2, and Na are the effective population size of population_1,
population_2, and the ancestral population, respectively. (i) Simple-isolation model: ancestral population split into two populations at 20 Kya. (ii) Isolation–
migration model: a symmetric migration rate is added after the split. (iii) Bottleneck–nonbottleneck model: ancestral population split into two populations at
60 Kya after which population_2 has constant effective population size and population_1 experienced a bottleneck. (iv) Bottleneck–bottleneck model:
ancestral population split into two populations at 40 Kya, after which both population_1 and population_2 have population size declined instantly and
afterwards increased exponentially.

Comparing TMRCA estimation
J Zhou and Y-Y Teo

1197

European Journal of Human Genetics



Sequencing Malay Project (SSMP)22 and 36 Indians from the Singapore
Sequencing Indian Project (SSIP)23 were used. These individuals were sequenced
on the Illumina HiSeq 2000 at a target depth of 30-fold (Illumina, San Diego,
CA, USA), where the alignment and variant calling were performed with
CASAVA and SAMtools for the Malay data, and with CASAVA and GATK for
the Indians. The consensus calls were used as input for T-LD, T-FST, DADI, and
MIMAR, whereas PSMC, MSMC, GPho-CS, and CoalHMM used the variant
calls obtained from their individual analysis pipeline. For T-LD, T-FST, and
DADI, all 96 Malays and 36 Indians were used to estimate the TMRCA. To avoid
any effect of uneven sample sizes, we randomly selected 36 Malays to match the
36 Indians for the analysis with MIMAR. For the analysis with PSMC, MSMC,
CoalHMM, and GPho-CS, one individual each from SSMP (SS6002734) and
SSIP (SS6003427) were randomly selected. The analyses were performed
independently across 22 autosomal chromosomes that were subsequently used
to derive the mean and 95% confidence interval (CI) for the TMRCA estimate.
A fixed mutation rate of 5×10− 10 per site per year was assumed.

Evaluating performance of TMRCA estimation
The estimation of the TMRCA by each of the eight methods is evaluated using
the simulation data with two metrics: (1) the mean error rate (expressed in
percentage) and (2) the corresponding 95% CI across the 10 iterations in each
of the four demographic scenarios. The error rate for the ith iteration is defined
as Ti�T0

T0
´ 100%, and Ti, i= 1,…,10 represents the TMRCA estimated in the ith

iteration, and T0 represents the simulated population divergence time.

Technical details in the analysis of TMRCA
Comprehensive information to how each of the eight methods has been
implemented can be found in the Supplementary Methods online. This
includes the specific parameter settings that we have assumed for each of the
methods, the specific data input considered, as well as the command lines used
to implement each of the methods. All simulation data for the four
demographic models, as well as the command line inputs and customized
scripts for executing or implementing the eight methods, are also available
online for download at http://www.statgen.nus.edu.sg/~tmrca/tmrca.html.

RESULTS

Comparisons of eight methods with simulations
We compared the performance of the eight different methods for
estimating TMRCA with 10 sets of simulated data from each of four

demographic settings that assumed a: (1) simple-isolation model,
(2) isolation–migration model, (3) bottleneck–nonbottleneck model,
and (4) bottleneck–bottleneck model. The two simulated populations
were designed to diverge 20 000 years ago for the simple-isolation and
isolation–migration models, 60 000 years ago for the bottle-
neck–nonbottleneck model, and 40 000 years ago for the bottle-
neck–bottleneck model. The performance of the eight methods was
then measured using two metrics: (1) the mean error rate (MER) and
(2) the corresponding 95% CI (see Materials and methods for details),
where MER closer to zero with narrower confidence intervals
spanning zero is more desirable, across all four scenarios.
We separated the evaluation of the eight methods according to the

type of input data considered, such as: (1) genotyping data,
(2) sequencing data across tens of thousands of short loci, and
(3) whole-genome sequencing data.
Three methods (T-LD, T-FST, and DADI) are applicable when only

chip-based genotyping data are available. We observed that T-FST and
DADI yielded more accurate TMRCA estimations in the setting
assuming a simple-isolation model between two populations
(Figure 2 and Supplementary Table 1), with the former exhibiting
the lowest MER of − 0.5% (95% CI: − 5.5%, 4.4%) and the latter
exhibiting a MER of − 1.2% (95% CI: − 4.2%, 1.8%). T-LD yielded a
higher MER (−8.9%, 95% CI: − 13.3%, − 4.6%). However, in the
setting assuming an isolation–migration model, all three methods
performed poorly with moderate MERs (9.7–24%) but with corre-
sponding confidence intervals that were significantly distant to zero. In
the setting assuming a bottleneck–nonbottleneck model, although all
three models yielded MERs 410%, the confidence intervals for T-LD
and DADI encapsulated zero, with that for T-LD narrower than that
for DADI. T-FST yielded a significant underestimation of the TMRCA
with the MER of − 46.3%, and worryingly exhibited a tight 95% CI
(−48.9%, − 43.6%). For the bottleneck–bottleneck scenario, only the
95% CI from T-LD encapsulated zero MER, whereas DADI yielded a
gross overestimation of the TMRCA (MER= 110.0%, 95% CI: 98.6%,
121.4%). In an ideal situation where DADI was implemented knowing
what the underlying demographic model was, the error rates and the

Figure 2 Mean error rate (MER) and corresponding 95% confidence interval of the eight methods. Mean error rate and 95% confidence interval are obtained
from 10 iterations. Except MIMAR-prior and DADI-prior, the estimations are obtained with simple isolation model. MIMAR-prior and DADI-prior show the
results obtained with prior knowledge of the demographic model for scenarios (ii), (iii), and (iv) of Figure 1.
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variability of the TMRCA estimations were reduced, although this did
not yield estimates that were close to the true TMRCA except for the
isolation–migration model.
When sequence data are available for short regions in the genome,

GPho-CS produced TMRCA estimates with moderate error rates for
three scenarios (except the isolation–migration model; MERs o24%),
where the corresponding confidence intervals for the simple-isolation
and bottleneck–nonbottleneck encapsulated zero MER (Figure 2).
Another MCMC-based approach, MIMAR, yielded relatively smaller
MER and variability than GPho-CS (MERs o16%), although the
estimates tend to be consistently over (simple-isolation) or under
(bottleneck–nonbottleneck and bottleneck–bottleneck). Intriguingly,
implementing MIMAR with prior knowledge of the underlying
demographic model yielded considerably poorer estimates for the
isolation–migration and bottleneck–nonbottleneck scenarios, and only
improved the estimate for the bottleneck–bottleneck scenario.
For the three HMM-based methods that allow whole-genome

sequence data, CoalHMM and MSMC yielded comparable
performance where each of the two methods yielded confidence
intervals that encapsulated zero for three scenarios and where the
corresponding MERs were also small. CoalHMM appeared to be most
uncertain in the simple-isolation model, whereas MSMC performed
poorer in the isolation–migration scenario. Compared with these two
methods, PSMC exhibited greater variability and MERs across all four
demographic models.

Estimating TMRCA for Southeast Asian Malays and South Asian
Indians
The eight methods were applied to whole-genome sequencing data for
96 Southeast Asian Malays and 36 South Asian Indians, where data
from the 22 autosomal chromosomes were analysed independently by
each of the eight methods and combined subsequently to derive
the mean and 95% CIs of the estimates (Figure 3). DADI was
implemented assuming both the simple-isolation model (DADI.SI)
and the bottleneck–bottleneck model (DADI.BB). The analyses with
the different methods yielded a broad range of TMRCA estimates,

with GPho-CS reporting the lowest estimate of 6594 (95% CI: 5652,
7537) years ago (ya), to T-FST reporting the highest estimate of 59 429
ya (95% CI: 56 242, 62 615). Our previous simulation results suggested
that T-LD, CoalHMM, and MSMC were likely to yield the most
robust estimates regardless of the underlying demographic model, and
it was reassuring that the TMRCA estimates for Malays and Indians
from these three methods were comparable (T-LD= 24 173 ya,
CoalHMM= 17 546 ya, MSMC= 27 508 ya, Supplementary Table 2).
PSMC also yielded a comparable estimate of 20 715 ya (95% CI:
20 011, 21 419), whereas the remaining methods yielded estimates
exceeding 30 Kya.

DISCUSSION

Estimating the TMRCA between two populations has always been a
topic of great interest in population genetics, and there are presently a
number of methods that leveraged on different genetic features and
are built on a variety of statistical frameworks to perform this
estimation. We set out to compare the accuracy and robustness of
eight of these methods with a series of simulations that assumed
different underlying demography between two diverged populations.
The results of our simulations suggested that T-LD, CoalHMM, and
MSMC were more likely to deliver estimates that were robust to a
variety of background demography. The consistency in performance
and accuracy across different demographic models is important, as
often one does not know a priori what the underlying demographic
model between two populations will be. The high variability in the
TMRCA estimates observed in either the simulations or the analysis of
the Malay and Indian data by some of the methods (such as DADI and
GPho-CS) is worrying, as this suggests that the derived point estimates
by these methods are susceptible to fluctuations even though the
independent inputs were essentially from the different chromosomes
of the same individuals.
In general, HMM-based methods tend to be more computationally

efficient compared with MCMC-based methods. For example, the
analysis of the Malay and Indian whole-genome sequencing data using
HMM-based methods such as CoalHMM, PSMC, and MSMC can be

Figure 3 Malay–Indian TMRCA estimation by the eight methods. Illustrate the point estimation and corresponding 95% confidence interval of TMRCA for
Southeast Asian Malays and South Asian Indians by the eight methods. DADI.SI and DADI.BB show the estimates of DADI with isolation model and
bottleneck–bottleneck model, respectively.

Comparing TMRCA estimation
J Zhou and Y-Y Teo

1199

European Journal of Human Genetics



completed in hours on a standard Linux-based processor, whereas
MCMC-based methods such as MIMAR and GPho-CS required
several days to a few weeks to complete the same analysis across 22
chromosomes. The computational burden also means that MCMC-
based methods could not model recombination effectively, and the
analysis was necessarily restricted to short segments. Conversely, the
computational dexterity of HMM-based approaches allows both
recombination events to be modelled and for full chromosomal data
to be analysed.
A key challenge in the implementation of PSMC and MSMC is in

the selection of the thresholds for the effective population size and
cross-coalescence rate respectively to determine divergence time
(Figure 4). Presently, there are no recommended or default thresholds
for these two approaches, and the TMRCA estimates are sensitive to

the choice of the thresholds. For example, the TMRCA estimate for
the PSMC analysis of the Malay and Indian data changes from 20 715
ya to 36 824 ya if the threshold on the effective population size changes
from 1 000 000 to 50 000.
GPho-CS produced a considerably lower TMRCA estimate for the

Malay and Indian whole-genome sequencing data, and this may be
because of two reasons: (1) GPho-CS has previously reported lower
accuracy to infer recent events16 and (2) GPho-CS relied on a different
mutation rate. Presently, the method calibrates the mutation rate from
the number of mutation events from an outgroup species to which the
divergence time has to be assumed.16 By including a chimpanzee
sequence in the model and assuming the divergence time from
chimpanzee to be 6.5 Mya, this produced an average mutation rate
of 6.96× 10− 10 that is only 70% of the default mutation rate of 10− 9

Figure 4 Malay–Indian TMRCA estimation by PSMC and MSMC. Illustrate the estimation of TMRCA by (a) PSMC and (b) MSMC on whole-genome
sequencing data for the 22 autosomal chromosomes from Southeast Asian Malays and South Asian Indians. Both the effective population size (a) and the
cross-coalescence rate (b) are modelled as step functions. The divergence time for the two populations is defined for (a) PSMC as the time when the
effective population size increases to infinity that, in practice, is implemented as a threshold such as 100 000 in our study; (b) MSMC as the most recent
time when the cross-coalescence rate decreases below an arbitrarily selected threshold that in our study the threshold is selected as 0.5.
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for the chimpanzees. Although this may be a reasonable calibration
given the exclusion of CpG and regions under selection, this is based
on the assumption that chimpanzees and modern humans exhibited
identical mutation rates per site per year and generation time. A recent
study suggested revising the mutation rate to 5× 10− 10 per site per
year for studies on modern human evolution,28 the value we have used
for the genome-wide average mutation rate. As such, a comparable
mutation rate for neutral sites should thus be lower than 5× 10− 10.
We scaled the mutation rate used in GPho-CS to correspond 70% of
5× 10− 10 that produced a point estimate of 13 188 ya (95% CI:
11 304, 15 074). However, this highlights the dependency that TMRCA
estimation has on the parameters assumed.
Our simulation analyses with the different methods have assumed a

constant mutation rate that reduced the complexity by not having to
calibrate mutation rates and instead focussed on the inference of
TMRCA measured in coalescent unit (time scaled by 2Nref

e u). This was
similarly the case in the inference of the TMRCA between Malays and
Indians, a common assumption in evolutionary studies. However, we
highlight the possibility that the choice of mutation rates can bias the
estimation of divergence time, especially as (1) evolutionary rates may
actually be time dependent and (2) the evolutionary rate estimate can
depend on the timescale of measurement.29 A comprehensive char-
acterization of time-dependent biases in evolutionary rate is likely to
be important but regretfully beyond the scope of the current study.
We have evaluated eight statistical methods commonly used in

population genetics to estimate TMRCA. The performance of these
methods varies according to the parameter settings assumed, as well as
the background demographic model producing the split of the two
populations. Our simulations have considered only four relatively
simple demographic scenarios, and incorporating more complex
demographic and migration models were beyond the scope of this
study. The effective population size is confounding in TMRCA
analysis, and an accurate effective population size is crucial for
estimating divergence time. Among those methods, DADI, PSMC,
and MSMC have higher resolution in effective population size.
However, a note of caution is that the divergence times estimates
differed depending on the methods used. Taken together, we
recommend the T-LD, CoalHMM, and MSMC methods for TMRCA
estimation when using genome-wide SNP or whole-genome sequen-
cing data respectively.
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