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The effect of phenotypic outliers and non-normality on
rare-variant association testing

Paul L Auer1, Alex P Reiner2 and Suzanne M Leal*,3

Rare-variant association studies (RVAS) have made important contributions to human complex trait genetics. These studies rely on

specialized statistical methods for analyzing rare-variant associations, both individually and in aggregate. We investigated the impact

that phenotypic outliers and non-normality have on the performance of rare-variant association testing procedures. Ignoring outliers

or non-normality can significantly inflate Type I error rates. We found that rank-based inverse normal transformation (INT) and trait

winsorisation were both effective at maintaining Type I error control without sacrificing power in the presence of outliers. INT was

the optimal method for non-normally distributed traits. For RVAS of quantitative traits with outliers or non-normality, we recommend

using INT to transform phenotypic values before association testing.
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INTRODUCTION

Although Genome-Wide Association Studies (GWAS) have been
successful in identifying associations between common variants and
complex traits and diseases, much of the heritability of these traits and
diseases remains unexplained.1 Recently, there has been a deepening
interest in evaluating the extent to which rare variants contribute to
variation in complex traits and diseases.2–9 This has motivated
development of statistical methods for testing rare-variant associations
at the gene level.10–16 Although these methods are useful for increasing
statistical power to detect associations relative to single-variant
analyses, valid well-powered statistical analyses are contingent on
careful examination of phenotypes and underlying assumptions. Here
we explore some commonly encountered issues with how phenotypes
are distributed and how these issues affect inferences from rare-variant
association tests.
One assumption underlying many rare-variant association studies is

that rare variants exert larger effect sizes than common variants. For
some traits, this hypothesis is borne out by genetic evidence.
For instance, the LDLR gene harbors multiple rare variants that
are strongly associated with circulating low-density lipoprotein
(LDL)-cholesterol levels.7 The genetic effects of these rare variants
are so strong that individuals carrying certain LDLR mutations appear
as outliers in population level summaries of LDL-cholesterol levels.7

Rare-variant association studies of complex traits are particularly
interested in phenotypic outliers because they may harbor rare variants
with strong genetic effects.
Furthermore, many rare-variant association tests rely on asympto-

tics that work best with normally (or approximately normally)

distributed phenotypes.12,16 However, many quantitative phenotypes

are not normally distributed in healthy populations (even after

controlling for confounders that may contribute to non-normal-

ity).17,18 We show that rare-variant association tests are uniquely

susceptible to biases caused by outliers and non-normality.

MATERIALS AND METHODS

Simulations
We considered two different types of trait distributions. To simulate outliers,
we generated a mixture of normal random variables by choosing 95% of the
values to be drawn from a standard N(0,1) distribution and the other 5% from
N(0, σ= 8). To simulate non-normal phenotypes that are similar to those
observed in genetic studies, we randomly generated highly skewed random
variables from the w2df¼2 distribution. As a secondary analysis, we simulated
phenotypes using a left-skewed Gompertz distribution and a mixture of χ2

distributions by drawing 95% of the trait values from a w2df¼2 and 5% from a
5w2df¼2 distribution. Histograms of simulated trait distributions are shown in
Supplementary Figure S5. Genotypes were drawn as 0, 1, or 2, from the
multinomial distribution, with probabilities derived from Hardy–Weinberg
equilibrium with specified minor allele frequencies.
Given our randomly generated genotypes, we also simulated heteroskedas-

ticity (unequal error variance between genotypes) by drawing the ith
phenotypic value Yi from N(0,1) if Xi= 0, from N(0,1.5) if Xi= 1, and from
N(0,2) if Xi= 2. In this manner, we simulated quantitative traits with no mean
shift in trait value between genotypes, but where the genotype predicts the
variance of the trait values.
We considered several different approaches for dealing with outliers.

Winsorising (WINS) is a technique that limits the influence of extreme values
by setting all outliers to a specified percentile of the observed data. We considered
a 95% winsorization, where we set all observations below the 5th percentile or
above the 95th percentile to the values observed at the 5th and 95th percentile,
respectively. We also evaluated deleting outliers (DEL), where all values below the
5th percentile or above the 95th percentile were removed. In comparison to
winsorising or deleting outliers, we also obtained empirical P-values by
permuting the quantitative trait values (PERMUTE) one million times. In
addition, we performed robust regression using the M-estimator (HUBER),19 as
implemented in the rlm() package in R (R Foundation for Statistical Computing,
Vienna, Austria). Finally, we performed the rank-based inverse normal transfor-
mation (INT), where all values of the trait are ranked, and the ranks are mapped
to percentiles of the standard normal distributions. Specifically, the transformed
value of the phenotype for the ith subject was:

Yt
i ¼ F�1ðri � 0:5Þ=n

where ri is the rank of the ith observation among a sample of size n, and Ф− 1
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Figure 1 QQplots of rare-variant associations with a quantitative phenotype under the null hypothesis of no association. INT is shown in black, WINS in red,
DEL in orange, PERMUTE in purple, K–W in brown, LOG-NORM in green, and HUBER in gray; ignoring outliers or ignoring non-normality is shown in blue.
Ignoring outliers leads to inflation of Type I error for single-variant analyses with MAF=0.005, all of the corrections successfully controls Type I error (a). For
non-normal phenotypes, ignoring, HUBER, and LOG-NORM lead to modest inflation of Type I error for single-variant analyses with MAF=0.005; all other
corrections control Type I error (b). The CMC approach for rare variants in MC4R, does not show inflation of Type I error when outliers or non-normality
are ignored (c, d, respectively). The SKAT approach for rare variants in MC4R shows modest inflation of Type I error in the presence of outliers (e) and
non-normality (f).
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denotes the standard normal quantile function. We also considered the natural
logarithm transformation (LOG-NORM), as well as the Kruskal–Wallis
non-parametric test (K–W; implemented with the kruskal.test() function
in R, R Foundation for Statistical Computing). Note that while WINS, DEL,
LOG-NORM, and INT can be considered trait transformations, PERMUTE,
HUBER, and K–W are procedures that do not transform the phenotype values.
For simulations of single-genetic variants, we considered minor allele

frequencies of both 0.005 and 0.05. We ran 100 000 iterations for both the
Type I error and Power simulations. Type I error and Power were evaluated
with simulated sample sizes n= 10 000 and n= 2000, respectively. For gene-
level tests of association, we chose a modestly sized gene (MC4R) and a larger
gene (ALK). Genotypes were simulated as previously described in Auer et al,20

with allele frequencies for non-synonymous variants taken from the
Exome-Variant Server.
We evaluated single-variant associations using simple linear regression for

every method except K–W. Gene-level associations were evaluated using the
combined multivariate collapsing (CMC) burden test,12 the burden of rare-
variants test20 (BRV, an adaptation of GRANVIL,21) and the sequence kernel
association (SKAT)16 variance components test. Due to computational inten-
sity, we did not evaluate the performance of SKAT under permutations. We
also did not attempt to generalize the SKAT method with an M-estimator, so
we do not report results for the HUBER method with SKAT. Note that SKAT is
incompatible with K–W, therefore we did not evaluate its performance. Gene-
level tests were implemented using a custom script in R for the CMC and BRV
tests, and using the SKAT() function in R.
To evaluate the power, we assessed statistical significance at α= 5× 10− 4

(this was the lowest significance level that we could implement across our
simulations in a reasonable amount of time). Genetic effects were generated
under the following additive genetic models: For single-variant analyses, we
simulated the ith phenotypic value as Yi=Xiβ+εi, where Xi denotes the

randomly generated genotype for the ith observation, β is the effect size and
εi is the randomly generated error term (either from the mixture of normals for
outliers or from a w2df¼2 for non-normality).
For gene-level tests, we used a similar model with Yi ¼

P

j
Xijbj þ εi,

where Xij is the randomly generated genotype for the ith observation at the

jth variant site, and βj is the effect at the jth variant site. We chose βj as a

0.1*Bernoulli(p) random variable (when simulating fixed effects) or as a

0.1*Multinomial(1,2,3,4,5,6,7,8,9,10)*Bernoulli(p) random variable (when

simulating variable effects). For the gene-level simulations, p was set to one

of 0.1, 0.25, 0.5, 0.75, or 1, corresponding to the percent of causal variants

within the gene.

Data analysis
To evaluate the various approaches for outliers and non-normality, we analyzed
Exome-Chip genotypes from the Women’s Health Initiative (WHI).22

Our analyses focused on association testing for both circulating platelet counts
(PLT) and white blood cell counts (WBC). These data have already been used
in a meta-analysis that reported several robustly replicated rare-variant
associations with PLT and WBC.3 Of the 161 808 participants in the WHI
who were eligible and consented to genetic research, 18 513 were included in
this analysis.
Blood counts were performed with automated hematology cell counters and

standardized quality assurance procedures. WBC and PLT were recorded
during the WHI baseline examination, conducted during 1993–1998. DNA
samples were genotyped using the Illumina HumanExome v1.0 SNP array
(Illumina, San Diego, CA, USA). Genotypes were assigned using GenomeStudio
v2010.3 (Illumina). Markers with a genotyping success rate of less than 99%
were excluded, as were samples with a genotyping success rate of less than 98%.
Crytpic relatedness was assessed using the PLINK IBS/IBD functionality.23

Table 1 Type I error probabilities at significance levels of 5×10−2, 5×10−3, and 5×10−4

SNV (outliers) CMC (outliers) SKAT (outliers) SNV (non-normal) CMC (non-normal) SKAT (non-normal)

(α=0.05)

(α=0.005)

(α=0.0005) MAF=0.05 MAF=0.005 MC4R ALK MC4R ALK MAF =0.05 MAF=0.005 MC4R ALK MC4R ALK

INT 4.9e-02

5.0e-03

5.0e-04

5.1e-02

5.1e-03

4.7e-04

4.9e-02

4.9e-03

5.1e-04

5.0e-02

5.0e-03

4.5e-04

5.1e-02

4.9e-03

5.2e-04

4.9e-02

4.9e-03

5.2e-04

4.9e-02

5.2e-03

4.1e-04

5.0e-02

5.2e-03

5.2e-04

5.0e-02

5.0e-03

4.7e-04

5.0e-02

5.1e-03

5.5e-04

4.9e-02

4.7e-03

5.6e-04

5.1e-02

4.9e-03

5.3e-04

WINS 4.9e-02

5.2e-03

5.0e-04

5.0e-02

5.1e-03

5.0e-04

4.9e-02

5.0e-03

5.2e-04

5.9e-02

4.9e-03

4.1e-04

5.0e-02

4.9e-03

6.1e-04

4.9e-02

5.0e-02

6.0e-02

NA NA NA NA NA NA

DEL 4.9e-02

4.8e-03

4.7e-04

5.0e-02

4.8e-03

4.0e-04

5.0e-02

5.4e-03

5.6e-04

4.9e-02

4.9e-03

4.6e-04

5.0e-02

5.2e-03

5.7e-04

4.9e-02

4.9e-03

5.8e-04

NA NA NA NA NA NA

IGNORE 4.9e-02

5.1e-03

6.e3-04

5.3e-02

7.6e-03

1.2e-03

5.0e-02

5.3e-03

5.6e-04

5.0e-02

5.1e-03

5.2e-04

5.3e-02

5.9e-03

8.4e-04

5.1e-02

5.0e-03

5.7e-04

4.9e-02

5.3e-03

6.1e-04

5.0e-02

5.6e-03

8.1e-04

5.0e-02

5.2e-03

4.7e-04

5.0e-02

5.2e-03

6.7e-04

4.9e-02

5.0e-03

6.3e-04

5.0e-02

5.3e-03

6.0e-04

PERM 4.8e-02

4.8e-03

5.3e-04

5.0e-02

5.0e-03

4.7e-04

4.9e-02

5.0e-03

4.9e-04

5.0e-02

5.0e-03

4.9e-04

NA NA 4.9e-02

5.2e-03

5.7e-04

5.1e-02

5.2e-03

5.2e-04

5.0e-02

5.1e-03

4.2e-04

5.0e-02

5.2e-03

6.5e-04

NA NA

LOG-NORM NA NA NA NA NA NA 4.9e-02

5.2e-03

6.3e-04

5.0e-02

5.6e-03

8.0e-04

5.0e-02

5.2e-03

4.5e-04

5.0e-02

5.2e-03

6.6e-04

4.9e-02

5.0e-03

6.2e-04

5.0e-02

5.3e-03

5.5e-04

K–W 4.9e-02

4.9e-03

4.3e-04

4.6e-02

4.5e-03

3.8e-04

4.9e-02

4.9e-03

5.8e-04

4.9e-02

5.0e-03

4.2e-04

NA NA 4.8e-02

4.7e-03

5.1e-04

4.6e-02

4.2e-03

3.8e-04

5.0e-02

5.0e-03

4.4e-04

4.9e-02

4.9e-03

5.0e-04

NA NA

HUBER 5.0e-02

5.1e-03

5.4e-04

5.0e-02

4.8e-03

3.2e-04

5.0e-02

5.1e-03

5.5e-04

4.9e-02

5.0e-03

4.6e-04

NA NA 5.1e-02

5.2e-03

5.1e-04

5.1e-02

6.1e-03

9.2e-04

4.9e-02

5.2e-03

5.0e-04

5.0e-02

5.4e-03

6.1e-04

NA NA

Abbreviations: CMC, combined multivariate collapsing; DEL, deleting outliers; INT, inverse normal transformation; NA, not applicable; PLT, platelet counts; WBC, white blood cell counts; WINS, winsorising.
Results are shown for single-variants tests, as well as the CMC and SKAT tests. Single-variant tests were conducted for MAFs of 0.05 and 0.005. The CMC and SKAT tests were conducted using
variant data from the MC4R and ALK genes. Results are shown for both outlier and non-normal distributions. Inflated Type I error rates are highlighted in bold.
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For each related or duplicate pair of samples, we excluded the sample with the
lower call rate. Samples with WBC 4200 (×109 cells/l) or PLT 41000 (×109

cells/l) were excluded from the analysis, as these values are biologically
implausible in healthy individuals.
Raw values for both PLT and WBC were regressed on age, genotyping batch,

and the first two principal components. Neither PLT nor WBC are normally
distributed. WBC is severely right skewed, and there are outliers for both PLT
and WBC (Supplementary Figure S8), making them excellent phenotypes
for illustrative purposes. The residuals from these regressions were either
transformed (using INT, WINS, DEL, or LOG-NORM), and the transformed
values were used for association testing, or the raw residuals were used for
association testing with the K–W, PERMUTE, or HUBER approaches.
For testing single-variant associations, we considered single-nucleotide

variants with a minor allele count 42. For gene-level association testing,
we considered all missense, nonsense, or splice variants with an observed minor
allele frequency ≤ 1%. Gene-level association testing was conducted with the
CMC, BRV, and SKAT methods.

RESULTS

Simulations
When there are outliers in the data, tests for rare-variant associations
(both for single variants and for gene-level tests), suffer from inflated
Type I error rates unless a correction is applied (Figure 1 and
Supplementary Figure S1). We compared WINS, DEL, PERMUTE,
INT, HUBER, and K–W to performing linear regression with outliers
included (IGNORE). Ignoring outliers leads to inflation in Type I

error for single-variant analyses, SKAT, and CMC (Figure 1 and
Supplementary Figure S1, Table 1). Each method (WINS, DEL,
PERMUTE, INT, HUBER, K–W) effectively controlled Type I error
(Figure 1 and Supplementary Figure S1, Table 1).
For data generated under a non-normal distribution, we compared

INT, LOG-NORM, PERMUTE, HUBER, and K–W, to ignoring
non-normality. When quantitative traits follow a distinctly non-
normal distribution, we observed modest inflation of Type I error
for single-variant analyses, SKAT, and CMC when non-normality is
ignored. INT, PERMUTE, and K–W uniformly controlled Type I error
across simulation settings. LOG-NORM and HUBER were
only effective in some circumstances. (Figure 1, Supplementary
Figures S1 and S2, Tables 1 and 2). The results were similar when
we simulated non-normal trait distributions that also contained
outliers (Table 2).
Although not the primary aim of our study, we also considered the

Type I error control under heteroskedasticity. Similar to the results
reported in Beasley et al.24 we found that none of these methods
(WINS, DEL, PERMUTE, INT, HUBER, K–W, LOG-NORM) were
effective at controlling Type I error when genotype predicts the
variance of the trait values (Supplementary Figure S2).
The methods we considered for controlling Type I error in the

presence of outliers and non-normality demonstrated varying perfor-
mance in their power to detect associations. When outliers are present
in the data, DEL, and PERMUTE suffer a dramatic loss of power for
single-variant analyses with MAF= 0.005; HUBER, INT, K–W, and
WINS were very similarly powered in this circumstance (Figure 2).
The same was true for the CMC, BRV, and SKAT rare-variant
tests (Figure 2, Supplementary Figure S6). We simulated different
proportions of causal variants, as well as both fixed and random
genetic effects for variants within a gene region. Changing these
parameters did not affect the primary conclusion: that HUBER, INT,
K–W, and WINS were all most powerful in detecting associations in
the presence of outliers (Supplementary Figures S3).
For non-normally distributed phenotypes, HUBER, K–W, and INT

were most powerful in detecting associations across our simulation
settings (Figure 2, Supplementary Figures S3 and S4, S6 and S7).
Similar to the results for outliers, LOG-NORM and PERMUTE
suffered a loss in power (Figure 2, Supplementary Figures S3 and
S4, S6 and S7). Note that because HUBER and K–W are incompatible
with SKAT, INT is the most powerful method for detecting associa-
tions using SKAT in the presence of a non-normally distributed
phenotype.
Finally, we compared the power of the various approaches when

phenotypes were simulated with error terms from the N(0,1)
distribution. In this instance, one would expect that running a simple
regression and ignoring any outliers or non-normality (IGNORE)
would be most powerful. Indeed, we found that for MAF of 0.005 and
0.05 across a range of effect sizes, IGNORE was most powerful
(Table 3). In comparison to IGNORE, the INT, PERM, HUBER,
and LOG-NORM approaches did not suffer any notable loss of power;
K–W, WINS, and DEL all displayed marked loss of power.

Data analysis
Both PLT and WBC were analyzed for association at both the variant-
and gene-level. For PLT and WBC, INGORE, LOG-NORM, and
HUBER were ineffective at controlling Type I error for variants with
MAF o5% (Supplementary Figure S9). INT, PERMUTE, and K–W
most closely followed the diagonal line on the qqplots. For variants
with MAF4 5% it is difficult to visually establish Type I error control
from qqplots, because these are both highly polygenic traits with

Table 2 Type I error probabilities at significance levels of 5×10−2,

5×10−3, and 5×10−4

SNV (gompertz) SNV (right tail+outliers)

(α=0.05)

(α=0.005)

(α=0.0005) MAF=0.05 MAF=0.005 MAF=0.05 MAF=0.005

INT 5.1e-02

5.2e-03

4.5e-04

5.0e-02

5.1e-03

5.3e-04

5.1e-02

5.2e-03

5.7e-04

5.0e-02

5.0e-03

4.3e-04

WINS NA NA 5.0e-02

4.9e-03

5.6e-04

4.9e-02

5.0e-03

5.3e-04

DEL NA NA 5.0e-02

4.9e-03

5.3e-04

5.0e-02

5.1e-03

4.4e-04

IGNORE 5.1e-02

5.1e-03

4.6e-04

4.9e-02

5.2e-03

6.7e-04

5.0e-02

5.5e-03

7.9e-04

4.8e-02

9.2e-03

2.6e-03

PERM 5.1e-02

5.1e-03

4.7e-04

4.9e-02

5.1e-03

5.8e-04

5.1e-02

5.1e-03

5.8e-04

5.0e-02

5.1e-03

4.1e-04

LOG-NORM 5.1e-02

5.1e-03

4.8e-04

4.9e-02

5.2e-03

6.7e-04

5.0e-02

5.2e-03

5.6e-04

4.8e-02

8.1e-03

1.9e-03

K–W 4.9e-02

4.7e-03

4.8e-04

4.5e-02

4.4e-03

4.8e-04

4.9e-02

5.0e-03

4.7e-04

4.6e-02

4.2e-03

3.2e-04

HUBER 5.1e-02

5.1e-03

6.1e-04

4.9e-02

5.2e-03

5.9e-04

5.0e-02

5.4e-03

6.3e-04

5.0e-02

5.7e-03

7.3e-04

Abbreviations: CMC, combined multivariate collapsing; DEL, deleting outliers; NA, not applicable;
PLT, platelet counts; WBC, white blood cell counts; WINS, winsorising.
Results are shown for single-variant tests that were conducted for MAFs of 0.05 and 0.005.
Results are shown for a left-tailed distribution that was simulated using the Gompertz distribution,
as well as a right-tailed distribution (w2df¼2) with outliers added. Inflated Type I error rates are
highlighted in bold.
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Figure 2 Power plots of rare-variant associations with a quantitative phenotype. Power is shown on the y axis, INT is shown in black, WINS in red, DEL in
orange, PERMUTE in purple, K–W in brown, LOG-NORM in green, and HUBER in gray; ignoring outliers or ignoring non-normality is shown in blue. For
single-variant analyses with MAF=0.005 and outliers, permutations and deletion of outliers suffer from a dramatic loss of power (a). Of note PERM displays
the lowest power of all methods. When the phenotype violates normality, INT, HUBER, and K–W demonstrate the highest power to detect an association (b).
For a and b, effect sizes (ie, beta values) are taken in terms of trait SD’s. For the CMC test in ALK, INT, HUBER, and K–W demonstrate the highest power
with phenotypic outliers (c) or non-normal trait values (d). For the SKAT approach in ALK, INT, and WINS had the highest power to detect associations with
phenotypic outliers (e); INT had the highest power to detect associations with non-normal trait values (f). For variants in ALK, we ran simulations with 10,
25, 50, 75, and 100% causal variants. All causal variants had the same effect size (ie, beta value) of 0.25 trait SD’s.
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hundreds of underlying common variants. For the gene-level tests
(CMC, BRV, and SKAT), INT, DEL, WINS, PERM, and HUBER
demonstrated control of Type I error as displayed by qqplots that
closely followed the identity line (Supplementary Figure S10).
To evaluate the power of these approaches to detect associations, we

considered a number of true positive associations that have been
robustly replicated in multiple studies. The CXCR2 gene harbors
multiple rare, missense variants that are associated with WBC, show
signal in gene-level tests of association, and are represented on the
Exome-Chip.3 In addition, we considered three different variants that
are each strongly associated with PLT (rs41303899 (TUBB1),
rs3184504 (SH2B3), and rs148636776 (SH2B3)).3 As displayed in
Table 4, INT shows the strongest signal for association between WBC
and a burden of rare variants in CXCR2, although almost all of the
methods detect the association at gene-level exome-wide significance
(5× 10− 6). For PLT, the P-values appear similar across approaches,

with the exception of PERM which shows the weakest signal for
association (Table 4). Taken together, these results suggest that INT
and WINS effectively control Type I error while picking up on
true associations in a large-scale real data analysis of rare-variant
associations.

DISCUSSION

Although it has become a common approach for the analysis
of GWAS data,25 there are reservations about the impact of INT on
the results from association testing.24 Both Beasley et al.24 and
Buzkova26 investigated the effect of INT when there is heteroskedas-
ticity and demonstrated that Type I error was not well-controlled. Not
surprisingly, they also report that for normally distributed traits, INT
is less powerful than using untransformed data. Our results for large
sample sizes and rare variants are consistent with these observations.
Beasley et al.24 noted, ‘The intricacies of the differences among the
power functions of the t-test and the t-test performed on INTs with
different sample sizes, effect sizes, and error distributions need further
investigation.’
In standard regression analyses, normality is often assessed on the

residuals rather than the raw trait values.27 Indeed, covariates with
large effects may induce a multi-modal trait distribution, which
disappears after adjustment. In our analyses, we adopted the following
approach: (1) regress the trait values on the set of covariates,
(2) transform the residuals from this regression; and (3) test for
association between the transformed residuals and the genetic variable
of interest. Although this method suffers from a loss of power when
covariates are correlated with the genetic variable of interest,28,29 in the
absence of such pathological correlation, we have found this to be a
convenient and flexible approach for genetic association testing.
There are a number of considerations when deciding whether an

untransformed phenotype is suitable for rare-variant association
testing. As we did for the Exome-Chip analyses of WBC and PLT,
outliers should be checked for biological plausibility. QQplots offer a
powerful method for assessing normality. After regression of trait
values on covariates, the ranked residuals can be plotted against the
percentiles of a normal distribution. Although visually detecting
deviation from the diagonal line is often sufficient, the Shapiro–Wilk
test for normality30 is a more formal approach. Because it is not a
strict assumption of these methods, minor deviation from normality
can be tolerated. We recommend using a combination of a formal
approach (such as the Shapiro–Wilk test) along with visual inspection
of qqplots to assess whether the trait is ‘normal enough’ to conduct
rare-variant association testing without a transformation (INT, WINS,
DEL, and LOG-NORM) or alternate approach to testing (K–W,
PERMUTE, and HUBER).
Under a variety of simulations, we found that INT effectively

controlled Type I error and was the most powerful method, or very

Table 3 Power results at significance levels of 5×10−4

(β=0.1)

(β=0.5)

(β=1.0) MAF=0.005 MAF=0.05

INT 1.5e-03

0.11

0.80

1.8e-02

1.0

1.0

WINS 1.1e-03

8.9e-02

0.74

1.7e-02

1.0

1.0

DEL 7.6e-04

2.5e-02

0.24

7.e3-03

0.93

1.0

IGNORE 1.5e-03

0.11

0.80

1.8e-02

1.0

1.0

PERM 1.4e-03

0.10

0.79

1.6e-02

1.0

1.0

LOG-NORM 1.4e-03

0.11

0.80

1.8e-02

1.0

1.0

K–W 8.8e-04

7.6e-02

0.71

8.4e-03

1.0

1.0

HUBER 1.1e-03

0.10

0.76

1.5e-02

1.0

1.0

Abbreviations: CMC, combined multivariate collapsing; DEL, deleting outliers; INT, inverse
normal transformation; PLT, platelet counts; WBC, white blood cell counts; WINS, winsorising.
Results are shown for single-variant tests that were conducted for MAFs of 0.05 and 0.005
under a standard normal phenotypic distribution with effect sizes (β)=0.1, 0.5, and 1.0 SD’s.

Table 4 P-values from the analysis of WHI Exome-Chip data for rare-variant associations with WBC and PLT

Trait gene/variants test/MAF INT WINS DEL IGNORE PERM LOG-NORM K–W HUBER

WBC CXCR2 SKAT 1.1e-05 2.3e-04 8.8e-05 1.3e-03 NA 1.1e-03 NA NA

CMC 7.3e-07 1.4e-05 6.0e-06 1.0e-04 1.3e-03 8.6e-05 9.7e-07 2.1e-06

BRV 7.2e-07 1.4e-05 5.7e-06 9.9e-05 1.7e-03 8.3e-05 5.8e-06 2.2e-06

PLT rs41303899 0.0016 1.2e-04 1.7e-04 1.3e-05 9.2e-04 1.5e-03 3.3e-04 9.5e-05 2.2e-04

rs3184504 0.4976 3.7e-14 1.0e-13 9.8e-15 2.9e-13 9.9e-07 1.0e-13 6.9e-13 1.2e-13

rs148636776 0.0005 5.8e-03 3.4e-03 2.2e-02 4.0e-03 7.5e-03 4.8e-03 9.2e-03 4.4e-03

Abbreviations: CMC, combined multivariate collapsing; DEL, deleting outliers; INT, inverse normal transformation; NA, not applicable; PLT, platelet counts; WBC, white blood cell counts; WINS, winsorising.
Because we performed at most 1 million permutations, PERM cannot take on values o9.9e-07.
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close to the most powerful method. For phenotypic outlier WINS and
INT had comparable Type I and Type II error rates. However,
phenotypic data may be both non-normal and contain outliers.
In these cases, WINS only deals with the outliers, leaving the non-
normality issue un-addressed. The INT is the only single approach we
investigated that effectively deals with both outliers and non-normality
simultaneously. Interestingly, PERMUTE was poorly powered in the
presence of outliers or non-normality. Although PERMUTE is a gold
standard method for controlling Type I error in genetic association
studies, we recommend only using PERMUTE if the trait is
approximately normally distributed and contains few, if any, outliers.
Unlike previous investigations,24 we evaluated power and Type I

error at low alpha-levels. In addition, because many genome-wide
genetic studies are using large sample sizes (even for rare-variant
investigations)3,6 our simulations featured large sample sizes as well.
Rather than focusing our attention only on single-variant tests of
association, we also investigated how aggregate rare-variant association
tests (such as SKAT, CMC, and BRV) behave in the presence of
phenotypic outliers or non-normality. For large-scale genome-wide
studies for both common and rare variants, we recommend using INT
or WINS as an effective means of correcting for trait outliers and INT
for addressing non-normality.
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