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De novo loss-of-function mutations in WAC cause a
recognizable intellectual disability syndrome and
learning deficits in Drosophila
Dorien Lugtenberg1,13, Margot RF Reijnders1,2,13, Michaela Fenckova1,2,13, Emilia K Bijlsma3, Raphael Bernier4,
Bregje WM van Bon1, Eric Smeets5, Anneke T Vulto-van Silfhout1, Danielle Bosch1, Evan E Eichler6,7,
Heather C Mefford8, Gemma L Carvill8, Ernie MHF Bongers1, Janneke HM Schuurs-Hoeijmakers1,
Claudia A Ruivenkamp3, Gijs WE Santen3, Arn MJM van den Maagdenberg3,9,10, Cacha MPCD Peeters-Scholte10,
Sabine Kuenen11,12, Patrik Verstreken11,12, Rolph Pfundt1, Helger G Yntema1, Petra F de Vries1,
Joris A Veltman1,2,5, Alexander Hoischen1, Christian Gilissen1, Bert BA de Vries1, Annette Schenck1,2,14,
Tjitske Kleefstra*,1,2,14 and Lisenka ELM Vissers*,1,2,14

Recently WAC was reported as a candidate gene for intellectual disability (ID) based on the identification of a de novo
mutation in an individual with severe ID. WAC regulates transcription-coupled histone H2B ubiquitination and has previously

been implicated in the 10p12p11 contiguous gene deletion syndrome. In this study, we report on 10 individuals with de novo
WAC mutations which we identified through routine (diagnostic) exome sequencing and targeted resequencing of WAC in

2326 individuals with unexplained ID. All but one mutation was expected to lead to a loss-of-function of WAC. Clinical

evaluation of all individuals revealed phenotypic overlap for mild ID, hypotonia, behavioral problems and distinctive facial

dysmorphisms, including a square-shaped face, deep set eyes, long palpebral fissures, and a broad mouth and chin. These

clinical features were also previously reported in individuals with 10p12p11 microdeletion syndrome. To investigate the role of

WAC in ID, we studied the importance of the Drosophila WAC orthologue (CG8949) in habituation, a non-associative learning

paradigm. Neuronal knockdown of Drosophila CG8949 resulted in impaired learning, suggesting that WAC is required in

neurons for normal cognitive performance. In conclusion, we defined a clinically recognizable ID syndrome, caused by de novo
loss-of-function mutations in WAC. Independent functional evidence in Drosophila further supported the role of WAC in ID.

On the basis of our data WAC can be added to the list of ID genes with a role in transcription regulation through histone

modification.
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INTRODUCTION

Intellectual disability (ID) is a heterogeneous disorder, both clinically
and genetically. To date, 4650 genes have been associated with ID
and novel genes are still being identified. The introduction of trio-
based whole-exome sequencing (WES) in individuals with ID has
proven to be a valuable approach for the identification of novel ID
genes, especially for those individuals who do not show a clinical
recognizable syndrome.1,2 In addition to the identification of muta-
tions in known disease genes, WES has facilitated the identification of
candidate ID genes. To establish the pathogenicity of mutations in
such candidate ID genes, it is essential to identify additional
individuals with an overlapping phenotype and a mutation in the same

gene.3–5 With increasing availability of WES in routine diagnostics6 as
well as technological advances facilitating targeted resequencing of
candidate ID genes in larger cohorts of samples,7 chances of finding
such additional individuals are increasing. Furthermore, supporting
evidence and insights into underlying mechanisms can be obtained
from functional studies in cell or animal models.8,9

Previously, we and others separately reported on an individual with
a de novo mutation in the 'WW domain-containing adapter with
coiled-coil' (WAC) gene using trio-based exome sequencing.1,10 The
mutations were reported as potential cause of disease, based on
mutation severity, protein function, its expression in fetal stages
and high expression in adult brain.1,10,11 WAC encodes a
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protein-regulating transcription-coupled histone H2B ubiquitination
and contains two evolutionary conserved domains, including an
N-terminal WW domain interacting with RNA polymerase II and a
C-terminal coiled-coil domain promoting the RNF20/RNF40’s E3
ligase activity for ubiquitination at active transcription sites.12,13

Furthermore, the RNF20/40/WAC complex may have a role in cell
cycle checkpoint activation upon genotoxic stress.12

In addition, WAC has previously been implicated in ID based on
the finding that deletions of chromosome 10p12p11 result in a
contiguous gene deletion syndrome, for which the shortest deleted
region contains two genes, WAC and BAMBI. All individuals with a
deletion of at least these two genes were reported to have a
similar phenotype including ID, behavior problems and dysmorphic
features, supporting a disease cause of WAC heterozygous loss-of-
function.14–17

Although it may well be hypothesized that WAC haploinsuffiency
may explain the ID phenotype observed in the 10p12p11 contiguous
gene syndrome, and ID in individuals with mutations in this gene,
detailed evidence to support this hypothesis is lacking. In the present
study we aimed to identify additional individuals with de novo
mutations in WAC by using different sequencing strategies to define
the clinical spectrum associated with WAC haploinsufficiency. Finally,
to address the role of WAC in cognition, we investigated the role of
the Drosophila WAC orthologue in habituation, a form of non-
associative learning.

MATERIALS AND METHODS

Diagnostic exome sequencing
Individuals 1, 3, 4, 5 and 6 were ascertained through family-based WES in a
diagnostic setting using techniques as described before.1 All clinically relevant
candidate de novo mutations were validated using Sanger sequencing, and
subsequently tested for absence in parental DNA samples. Individual 1 was
previously reported as part of a large study assessing the clinical utility of WES,
in which she was also identified to have a second de novo mutation in MIB1.1

Individuals 7 and 8 were identified in a large multicenter study to establish the
contribution of de novo coding mutations to autism spectrum disorder.18,19

Apart from the de novo mutation in WAC these two patients were not reported
to have additional de novo mutations.19

Database searches for copy number variations disrupting WAC
We systematically searched for individuals with small deletions including WAC
in our in-house database and international databases such as the database of the
European Cytogeneticists Association Register of Unbalanced Chromosome
Aberrations (ECARUCA) and the Database of Chromosomal Imbalance and
Phenotype in Humans using Ensembl Resources (DECIPHER).20,21

Targeted resequencing of WAC
Upon identification of the de novo mutation in Individual 1, targeted
resequencing was performed on a cohort of 2326 patients with unexplained
ID using molecular inversion probes (MIPs) as described previously.7 This
cohort was selected from the in-house collection of the Department of Human
Genetics of Radboud University Medical Center (Nijmegen, The Netherlands)
containing patients with unexplained ID. Candidate loss-of-function mutations
as well as highly conserved missense mutations (PhyloP45) were validated by
standard Sanger sequencing approaches on DNA extracted from peripheral
blood. For assessing the de novo occurrence of validated mutations, DNA from
the parents was tested. This study was approved by the institutional review
board ‘Commissie Mensgebonden Onderzoek Regio Arnhem-Nijmegen’.

Deposition of genotypes and phenotypes in a locus-specific
database
All mutations and phenotypes reported in this publication are deposited in the
locus-specific database for WAC, under the realm of the Leiden Open Variation

Database (LOVD; http://databases.lovd.nl/shared/genes/WAC). Variant
information and phenotypes can be retrieved using the following submission
entries: Individual 1: #00054835; Individual 2: #00054836; Individual 3:
#00054837; Individual 4: 00054838; Individual 5: #00054839; Individual 6:
#00054848; Individual 7: #00054849; Individual 8: #00054850; Individual 9:
#00054851; and Individual 10: #00054852.

Drosophila lines and maintenance
Fly stocks were kept on standard Drosophila diet (cornmeal/sugar/yeast) at
25 °C and 45–60% humidity at 12 h:12 h light/dark cycle. Inducible RNAi lines
targeting the Drosophila WAC orthologue CG8949 (vdrc48307, vdrc107328) and
corresponding genetic background control lines (vdrc60000, vdrc60100) were
obtained from the Vienna Drosophila RNAi Center.22 The s19 value, which
refers to the specificity of the dsRNA hairpin construct,23 is 1.00 for vdrc48307
with no off-target and 0.99 for vdrc107328 (two possible off-targets, CG11122
and CG11354).
RNAi was induced using the UAS-Gal4 system and the panneuronal driver

lines: elav-Gal4 w1118; 2xGMR-wIR; elav-Gal4, UAS-Dicer-2 or nSyb-Gal4 w1118,
UAS-Dicer-2; nSyb-Gal4..9,24 Flies were reared and tested at 25 °C (elav-Gal4)
and 28 °C (nSyb-Gal4) and 70% humidity. The ubiquitous actin-Gal4
driver w1118; P(w[+mC]=Act5c-Gal4)/CyO obtained from Bloomington
Drosophila Stock Center,25 was used to generate RNAi-mediated knockdown
for quantitative PCR (qPCR).

Analysis of CG8949 mRNA levels from larval brains by qPCR
RNA isolations (three biological replicates) from third instar larvae brains were
performed using Arcturus Picopure RNA Isolation Kit (Life Technologies,
Bleiswijk, The Netherlands). RNA was treated with DNase (DNAfree Kit,
Ambion, Bleiswijk, The Netherlands). First-strand cDNA synthesis was
performed using iScript cDNA Synthesis Kit (Biorad, Veenendaal, The Nether-
lands). Gene expression was analysed by real-time PCR (7900HT Fast Real-
Time PCR system, Applied Biosystems, Bleiswijk, The Netherlands). PCR
reactions were performed in a volume of 25 μl containing 150 nM primers and
GoTag Green Mastermix (Promega, Leiden, The Netherlands). Primer
sequences used for amplification of CG8949: 5′-TGGAATTACGACA
ACGATGG-3′ and 5′-TAACTGGCTTCCGAGGTAGG-3′. BetaCop was used
as reference gene, primer sequences: 5′-AACTACAACACCCTGGAGAAG
G-3′, 5′-ACATCTTCTCCCAATTCCAAAG-3′.

Light-off jump reflex habituation
The light-off jump reflex habituation assay was performed as previously
described.26 Habituation of the startle jump response towards repeated light-
off stimuli of 3–7-day-old individual male flies was tested in two independent
16-unit light-off jump habituation systems. A total of 32 flies (16 flies/system)
were simultaneously exposed to series of 100 short (15 ms) light-off pulses with
a 1 s inter-pulse interval. The noise amplitude of wing vibrations following
every jump response was recorded for 500 ms after the start of light-off pulse
and an appropriate threshold was applied to filter out the background noise.
Data were collected and analysed by a custom-made Labview Software
(National Instruments). High initial jumping responses to light-off pulse
decreased with the growing number of trials and flies were considered
habituated when they failed to jump in five consecutive trials (non-jump
criterion). Habituation was scored as the mean number of trials required to
reach the non-jump criterion (trials to criterion, TTC). Main effects of
genotype (mutant vs control), day and test system on log-transformed TTC
values were tested using linear model regression analysis (lm) in R statistical
software (R version 3.0.0 (2013-04-03)).27

RESULTS

Identification of individuals with de novo CNVs affecting WAC
After the identification of the de novo mutation c.139C4T
(NM_016628.3) leading to nonsense mutation p.(Arg47*) in Indivi-
dual 1 (as reported before1), we set out to find additional individuals
with mutations affecting WAC to obtain more evidence for its
involvement in ID. Systematic analysis of DECIPHER and ECARUCA,
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Figure 1 Individuals with WAC mutations. (a) Frontal and lateral photographs of individuals with de novo mutations in WAC. All individuals shared
overlapping facial dysmorphisms including a square-shaped face, long palpebral fissures, broad mouth and broad chin. Additional features included deep set
eyes, epicanthal folds and short philtrum in Individual 1 (photograph at the age of 19 years); low posterior hairline, broad forehead, simple ears,
hypertelorism, deep set eyes, low-set full eyebrows, synophrys, deep nasal bridge, flat nose, bifid tongue and broad gums in Individual 2 (photographs at the
age of 12 years and 23 years); brachycephaly, posterior ear creases, broad forehead, prominent antihelix, low-set full eyebrows, synophrys and prominent
teeth in Individual 3 (photographs at the age of 4 years and 9 years); prominent antihelix, frontal bossing, dental crowding, broad teeth and high palate in
Individual 6 (photographs at the age of 3 years and 20 years) and prominent antihelix and deep set eyes in Individual 9 (photographs at the age of 3 years).
Photographs were published with consent. (b) The genomic region involved in the 10p12p11 contiguous gene deletion region with the previously published
microdeletions, represented by gray horizontal bars.14–16 (c) Detailed view of the smallest region of overlap (SRO) and the deletion described in this study,
represented by a red horizontal bar. In addition, de novo mutations in WAC (NM_016628.3) reported in this study are shown according to their relative
position at protein level.

WAC haploinsufficiency causes an ID syndrome
D Lugtenberg et al

1147

European Journal of Human Genetics



two databases collecting clinically relevant copy number variants
(CNVs), for CNVs affecting WAC yielded one small deletion
(Individual 2; Figure 1). This deletion, hg19 chr10:g.(?_288422777)_
(28929097_?)del, disrupted the coding sequence of WAC by deletion
of exons 5-14 (NM_016628.3). The shortest region of deletion overlap
of the chromosome 10p12p11 contiguous gene deletion syndrome was
previously determined by nine deletions ranging in size between 0.99
and 10.66 Mb.14–17 Comparison of the deletion in Individual 2 to the
shortest region of deletion overlap indicates WAC as a only remaining
candidate gene for the ID phenotype (Figure 1b).

Diagnostic exome sequencing in individuals with
neurodevelopmental disorders to identify de novo point mutations
in WAC
In routine diagnostic trio-based exome sequencing for individuals
with unexplained ID, performed as described before,1 we
identified four additional individuals with de novo loss-of-
function mutations in WAC (NM_016628.3): c.329C4A,
p.(Ser110*) in Individual 3; c.1885_1886del, p.(Leu629fs) in
Individual 4; c.356dup, p.(Asn119fs) in Individual 5 and
c.1648C4T, p.(Arg550*) in Individual 6 (Figure 1c). In addition,
two more individuals with de novo mutations were identified by
trio-based exome sequencing of a large cohort of individuals
with autism spectrum disorder:18,19 c.523_524del, p.(Lys175fs) in
Individual 7 and c.1209_1212del, p.(His404fs) in Individual 8.
Whereas exome sequencing had identified a second de novo
mutation in Individual 1 (MIB1; NM_020774.2:c.521G4A;
p.(Arg174His)),1 no further clinically relevant de novo mutations were
identified in Individuals 3–8, leaving WAC haploinsufficiency as the
most likely candidate to explain disease.

Targeted resequencing ofWAC in an ID cohort identifies additional
de novo mutations
On the identification of multiple de novo loss-of-function mutations in
WAC, we performed targeted resequencing of this gene in a cohort of
over 2300 individuals with unexplained ID using MIPs as described
before.7 This cohort was selected from the in-house collection of the
Department of Human Genetics of Radboud University Medical
Center containing individuals with unexplained ID. All candidate
loss-of-function mutations as well as highly conserved missense
mutations (PhyloP45) were validated by standard Sanger sequencing
approaches. For assessing the de novo occurrence of validated
mutations, DNA from the parents was tested. This targeted screen
identified two additional de novo truncating mutations: c.1415del,
p.(Pro472fs) in Individual 9 and c.1648C4T, p.(Arg550*) in Indivi-
dual 10 (Figure 1c).

WAC mutation spectrum in control individuals
Of all ten de novo mutations identified, nine are predicted to directly
result in nonsense-mediated decay of the RNA transcripts; the de novo
frameshift in Individual 4 is located in the last exon, suggesting it may
skip nonsense-mediated RNA decay. None of the de novo mutations
are reported in our in-house variant database containing exome
sequencing variants detected in 5031 individuals, nor in ExAC, a
large database collecting NGS variants in over 60 000 exomes as proxy
for variant allele frequencies in the general population.28 The latter,
however, does contain three other, presumable loss-of-function,
variants (by insertion–deletion events), each observed only once in
~ 100 000 alleles. Whereas these three variants have not been validated
by Sanger sequencing, thereby possible being sequencing artefacts

rather than true mutations, this observation may also reflect the very
mild end of the ID spectrum in the general population.

Clinical spectrum associated with WAC haploinsuffiency
Clinical evaluation of all individuals with de novo loss-of-
function mutations in WAC showed distinct phenotypic overlap
(Table 1; Supplementary Information (clinical descriptions); and
Supplementary Table S1). All, but one individual, had ID. The range
of ID observed ranged from mild-to-severe and was accompanied by
language and motor delay. In addition, individuals showed a variety of
neurological problems including hypotonia (6/9), with remarkable
manifestation in the oral region resulting in dysarthria, and behavioral
problems (10/10). The latter recurrently included autism (4/9), anxiety
(3/10), concentration disorder (4/10) and/or sleep disturbance (6/10).
Other overlapping features consisted of unexplained reduced vision
(3/9) and respiratory problems (7/9) with recurrent respiratory
infections reported most often (5/7). Notably, all individuals had
overlapping facial dysmorphisms consisting of a square shape of the
face, deep set eyes, long palpebral fissures, broad mouth and broad
chin (Figure 1a).

Panneuronal knockdown of the Drosophila WAC orthologue results
in learning deficit
To obtain independent evidence for the involvement of WAC in the
ID phenotype of the described individuals, we decided to study the
functional consequences of WAC knockdown using Drosophila as a
model. The Drosophila genome contains a previously uncharacterized
WAC orthologue named CG8949, not be confused with the unrelated
Drosophila WAC (wee Augmin) gene. CG8949 codes for several protein
isoforms, the longest one consisting of 876 amino acids, and shows the
highest expression in adult ovaries and the larval central nervous
system.29,30 WAC is 26% identical and 39% conserved over the
C-terminal 588 amino acids of the fly protein, with sequence similarity
distributed over the whole protein, further characterized by clusters of
short sequences of high conservation for the important functional
motifs of the protein.13

We investigated the role of the DrosophilaWAC orthologue in light-
off jump reflex habituation paradigm. Habituation is a simple form of
non-associative learning, in which an initial strong behavioral response
towards a repeated, non-threatening stimulus gradually wanes. It
provides a filtering mechanism, which is an important prerequisite for
higher cognitive functioning.31,32 Using the light-off jump reflex
habituation, we have previously identified learning deficits in number
of Drosophila ID models.9,24,26 Two independent inducible RNAi lines
targeting the Drosophila WAC orthologue CG8949 (vdrc48307 and
vdrc107328) and their corresponding genetic background control lines
(vdrc60000 and vdrc60100) were obtained (Vienna Drosophila RNAi
Center22) and fly stocks were kept under standard conditions.
Expression of CG8949 was specifically downregulated in neurons
using the UAS-Gal4 system.
The efficiency of ubiquitous RNAi knockdown was measured using

qPCR on RNA isolated from Drosophila brains of third instar larvae,
representing the tissue and developmental stage with the highest
expression of CG8949 allowing for an efficient detection of expression
differences. There was no significant CG8949vdrc107328-mediated
knockdown on CG8949 expression levels (88% remaining gene
expression; P= 0.16, student’s t-test; Supplementary Table S2). In
contrast, CG8949vdrc48307-mediated RNAi reduced levels of CG8949 to
58% remaining gene expression (Po0.01, Student’s t-test;
Supplementary Table S2).
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Flies were exposed to series of 100 short (15 ms) light-off stimuli
with 1 s interval between stimuli. Both control and CG8949vdrc48307

knock-down flies showed good initial jump response; there
was no significant difference between the initial startle
response of CG8949vdrc48307 and control flies (t-test, P= 0.469).
Whereas, control flies quickly habituated to the repeated light-off
stimuli, CG8949vdrc48307 knock-down animals failed to adapt their
behavioral response and retained high average jump response
throughout the whole experiment (Figure 2). This defect was
statistically significant (fold-change= 5.93; P= 5.21 × 10 − 12). No
habitation defects were seen in the CG8949vdrc107328 knock-down
flies (data not shown), as was to be expected based on the
insufficient mRNA knockdown.

DISCUSSION

Here, we report the identification of a novel clinically recognizable
syndrome caused by haploinsufficiency of WAC. All but one
patient showed mild ID, with speech and motor delay, whereas
one had an overall more severe ID phenotype, epilepsy and
an absence, rather than delay, of speech. All patients had
neurological problems including hypotonia and a variety of
behavioral problems including autism, anxiety, concentration
problems, sleep disturbance and/or self-mutilation. Notably, all
patients had overlapping facial dysmorphisms consisting of square
shape of the face, deep set eyes, long palpebral fissures, broad
mouth and broad chin. Complementary experimental evidence in
Drosophila showed a role of the evolutionarily conserved WAC
proteins in cognitive processes and a role for the Drosophila WAC
orthologue in non-associative learning.
Previously, another individual was reported with a truncating

mutation in WAC10 who shows a phenotype similar to the
individuals reported in this study (Supplementary Table S1). Also,
a large-scale study aiming at the identification of genetic causes
underlying developmental disorders recently reported the identi-
fication of one de novo nonsense mutation in WAC but further
clinical details of this individual were lacking, hampering detailed

phenotypic comparison.33 Interestingly, three of our patients were
negative tested for RAI1, known to cause Smith–Magenis
syndrome.34 The coarse facial appearance as well as the ID with
variable behavior problems of the individuals with WAC mutations
have similarities with individuals reported with Smith–Magenis
syndrome.35

Interstitial deletions including WAC were previously described and
associated with ID.14–17 Wentzel et al.14 presented six individuals with
an interstitial deletion at 10p12p11, all sharing a region of overlap
including two genes: BAMBI and WAC. All individuals were reported
to have developmental delay, abnormal behavior and facial dys-
morphic features including a bulbous nasal tip, deep set eyes,
synophrys/thick eyebrows and full cheeks. This phenotype is highly
similar to the phenotype observed in the current individuals and
consistent with our finding that loss of WAC causes ID and the
characteristic facial dysmorphisms in 10p12p11 microdeletion syn-
drome (Supplementary Table S1). In this 10p12p11 microdeletion
syndrome, cardiac abnormalities have frequently been reported (7/9
individuals) and heterozygosity of two other genes, LYZL1 and SVIL,
has been suggested to contribute to the development of these cardiac
abnormalities.14 This is in line with the fact that in none of our
individuals cardiac abnormalities were present. Epilepsy has been
reported in two out of nine individuals with deletion of 10p12p11 and
is present in only one of our individuals (Individual 1). This more
severely affected individual carried also a de novo MIB1 mutation. This
variant has been reported twice in ExAC, containing NGS variants in
healthy controls of several ethnicities.28 Moreover, one missense and
one nonsense mutations in MIB1 were identified previously and
segregated each in two large dominant families with affected indivi-
duals with cardiomyopathy, but without ID.36 Therefore, a contribu-
tion of the second mutation in MIB1 as potential modifier of the more
severe phenotype is unlikely. The more severe phenotype may be
caused by other yet unknown potential genetic modifier(s) or reflects
the severe end of the clinical spectrum caused by WAC
haploinsufficiency.

Figure 2 Knockdown of the Drosophila WAC orthologue CG8949 affects non-associative learning in the light-off jump reflex habituation paradigm. Jump
responses of 3–7-day-old individual male flies were induced by repeated light-off pulses (100 trials) with a 1 s inter-trial interval. CG8949 knockdown flies
(CG8949vdrc48307; genotype: 2xGMR-wIR/+; UAS-CG8949vdrc48307/elav-Gal4, UAS-Dicer-2) are plotted in red and genetic background control flies are plotted
in dark gray. Habituation was scored as the mean number of trials required to reach the non-jump criterion (TTC). Main effects of genotype (mutant vs
control), day and test system on log-transformed TTC values were tested using linear model regression analysis.27 (a) Average jump response across 100
light-off trials. (b) Mean TTC of CG8949vdrc48307 (TTC=38.39, n=54) vs mean TTC of control flies (TTC=6.47, n=49). Quantification of average jump
responses revealed that flies with pan-neuronally induced CG8949 knockdown habituated significantly slower (***Po0.001, linear model regression
analysis).
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Human WAC encodes a protein containing a WW domain-
containing adapter and a coiled-coil region. WAC is an evolutionary
conserved protein, but its exact function is still unknown. Protein–
protein interaction studies suggest a role in the regulation of histone
H2B ubiquitination and gene transcription.12 Interaction of WAC via
the coiled-coil domains with RNF20 and RNF40 activates UBE2A-
mediated H2B ubiquitination. On the basis of this interaction, RNF20
and RNF40 could be considered as candidate genes for ID. Interest-
ingly, de novo mutations in both genes have been described in
individuals with autism and unrelated unaffected siblings.19 A clear
relation to a clinical phenotype, if any, remains to be established. RNA
polymerase II recruits WAC to active transcription sites by binding to
the WW domain. On the basis of sequence homology it has also been
suggested that WAC is involved in RNA processing or transcription.13

Besides co-localization of WAC with splicing factor SC35 in nuclear
speckles, there is, however, currently no further evidence for a role in
RNA splicing. The localization of WAC in the nucleus supports its
suggested function in gene transcription via UBE2A histone H2B
ubiquitination. Although WAC and UBE2A lack a direct interaction,
they are both likely to function within a protein complex important
for histone H2B ubiquitination and transcription regulation.12

Interestingly, for UBE2A, microdeletions and point mutations
have been associated in males with an X-linked inherited clinical
syndrome characterized by ID, seizures, absent speech, urogenital
and skin anomalies. Recent work on Drosophila has uncovered a
novel role of UBE2A in clearance of defective mitochondria from
the synaptic compartment and in synaptic plasticity.37 On the
basis of the suggested interaction of WAC and UBE2A being part
of the same complex, and their clinical phenotypes both including
ID, we experimentally addressed whether CG8949, like fly UBE2A,
is required for synaptic vesicle cycling, mitochondrial functioning
and morphology.37 We found all these processes unperturbed in
our Drosophila model (Supplementary Figure S1). Despite the
unavailability of the second CG8949 knockdown fly as an inde-
pendent confirmation of the habituation phenotype, our data
supports the role of WAC in cognition by the deficit in non-
associative learning.
In summary, we describe a clinically recognizable syndrome

owing to loss-of-function mutations in WAC, which is character-
ized by mild ID, hypotonia, behavioral problems and facial
dysmorphisms consisting of square shape of the face, deep set
eyes, long palpebral fissures, broad mouth and broad chin.
Complementary experimental evidence in Drosophila showed a
role of the evolutionarily conserved WAC proteins in cognitive
processes and a role for the Drosophila WAC orthologue in non-
associative learning. WAC is a component of the evolutionary
conserved histone H2B ubiquitination complex, regulating gene
transcription. On the basis of our results, WAC can be added to the
growing list of genes involved the H2B ubiquitination complex
leading to cognitive defects.
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