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Abstract

The cholinergic system plays important roles in both learning and addiction. Medications that 

modify cholinergic tone can have pronounced effects on behaviors reinforced by natural and drug 

reinforcers. Importantly, enhancing the action of acetylcholine (ACh) in the nucleus accumbens 

and ventral tegmental area (VTA) dopamine system can either augment or diminish these 

behaviors. A threshold model is presented that can explain these seemingly contradictory results. 

Relatively low levels of ACh rise above a lower threshold, facilitating behaviors supported by 

drugs or natural reinforcers. Further increases in cholinergic tone that rise above a second upper 

threshold oppose the same behaviors. Accordingly, cholinesterase inhibitors, or agonists for 

nicotinic or muscarinic receptors, each have the potential to produce biphasic effects on reward 

behaviors. Pretreatment with either nicotinic or muscarinic antagonists can block drug- or food- 

reinforced behavior by maintaining cholinergic tone below its lower threshold. Potential threshold 

mediators include desensitization of nicotinic receptors and biphasic effects of ACh on the firing 

of medium spiny neurons. Nicotinic receptors with high- and low-affinity appear to play greater 

roles in reward enhancement and inhibition, respectively. Cholinergic inhibition of natural and 

drug rewards may serve as mediators of previously described opponent processes. Future studies 

should evaluate cholinergic agents across a broader range of doses, and include a variety of 

reinforced behaviors.
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Introduction

ACh is widely distributed in the central nervous system, where it functions as a signal for 

local circuits and projection neurons. Both types of cholinergic neuron are involved in brain 

learning and reward functions. Synaptic levels of ACh are regulated by choline 

acetyltransferase, the rate-limiting enzyme for formation of ACh, and cholinesterases that 

inactivate it. ACh activates two categories of receptor: nicotinic and muscarinic. Neuronal 

nicotinic ACh receptors (nAChRs) are a family of ligand-gated ion channels that are made of 

combinations of type 2 through 9 alpha subunits, and type 2 through 4 beta subunits, 

arranged to form a pentameric pattern. Different subunit combinations give rise to various 

types of nAChRs, which differ in sensitivity to nicotine, calcium conductance, and 

propensity to desensitize [1], discussed in greater detail below. In contrast, muscarinic 

receptors are members of the superfamily of G protein-coupled receptors. Five muscarinic 

subtypes have been cloned which function through either activation of phospholipase (types 

1, 3, and 5) or inhibition of adenylate cyclase to decrease the concentration of intracellular 

cAMP (types 2 and 4) [2]. Dopamine neurons express multiple types of muscarinic and 

nicotinic ACh receptors, and a dense mingling of dopaminergic and cholinergic neurons in 

limbic areas of the brain allows coordinated functioning of these neurotransmitter systems 

[3,4].

The cholinergic system is well known for its role in learning, memory, and attention. In 

general, cholinergic activation modifies these functions with an inverted-U dose-effect 

relationship [5,6]. Accordingly, nicotinic or muscarinic cholinergic antagonists can disrupt 

learning and memory in human or animal experiments, with this effect reversed by restoring 

ACh function [7,8]. Either cholinesterase inhibitors or cholinergic agonists with nicotinic or 

muscarinic selectivity can enhance learning under conditions in which cholinergic function 

is diminished, but disrupt the same behaviors when administered at higher doses [9,10], 

which can be associated with signs of yawning, tremor, involuntary jaw movements, and 

diarrhea in animals [11]. Overall, these findings are consistent with an optimal level of 

central cholinergic activity for learning and memory, with deviations in either direction 

capable of impairing learning and memory. Parallel to this, interaction of the ACh and 

dopamine systems to modulate drug-reinforced and drug-seeking behaviors can also be 

interpreted using an inverted-U dose-effect relationship.

Behavioral Significance of Striatal Acetylcholine Elevations

Augmented release of ACh in the striatum and nucleus accumbens has been observed under 

a number of qualitatively different conditions [12]. Locomotor activity in rats is correlated 

with dialysate levels of ACh in the striatum, hippocampus, frontal cortex [13,14]. Handling 

of rats increases extracellular ACh in both the nucleus accumbens core and shell, with 

repeated exposure to an open field further increasing values in the shell but not the core 

region [15]. Importantly, disruption of an established contingency that requires learning of a 

new pattern of responding appears to increase extracellular ACh. In the dorsal striatum, 

reversal of maze requirements for food reward caused pronounced increases in ACh which 

resolve as rats learn to maximize correct responding [16].
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Activation of cholinergic neurons has also been implicated in the rewarding effects of both 

natural and drug reinforcers [17]. Repeated exposure to different classes of abused 

substances can produce persistent increases in the activity of cholinergic neurons in the 

nucleus accumbens [18]. Psychostimulant-reinforced behavior can cause long-lasting 

decreases in levels of choline acetyltransferase in the nucleus accumbens [19]. During 

cocaine self-administration, greater increases in ACh occur in dialysate from the nucleus 

accumbens shell [20] or VTA [21], relative to neurotransmitter increases that occur in 

animals that receive drug noncontingently. This early-session accentuation also occurs in 

cocaine-trained animals evaluated during extinction (substitution of inert injections) [21]. As 

rats acquire reinforcement in a runway model, psychostimulant, opiate, or food induced 

elevations in ACh in the nucleus accumbens core increase over consecutive trials, while 

levels of dopamine do not change [22,23]. In these experiments, drug-induced increases in 

ACh also did not vary in magnitude for rats that received noncontingent injections.

ACh elevations have also been linked to satiety caused by feeding and aversive states [24]. 

In deprived rats, both ACh and dopamine in the nucleus accumbens increased in response to 

food or water [25]. For freely feeding rats, extracellular ACh in the nucleus accumbens 

increases and reaches a maximum as satiety occurs. In drug-dependent animals, withdrawal 

produced by blockade of opiate, nicotinic, or benzodiazepine receptors increases ACh 

concentration in the nucleus accumbens [26]. Exposure to a flavor that has been paired with 

lithium-induced illness increases ACh concentration in dialysate from the nucleus 

accumbens, and infusion of a cholinesterase inhibitor into the nucleus accumbens can 

produce conditioned taste aversions [27]. Aversive hypothalamic stimulation (AHS) releases 

ACh in the nucleus accumbens, and rats that lever press to terminate AHS decrease their 

concentration of ACh in accumbal dialysate [28]. Apparently, elevated levels of ACh in the 

nucleus accumbens can serve as a neural indicator of aversiveness, or as a signal that inhibits 

appetitive behaviors. In many instances, accumbal levels of dopamine change in an opposite 

direction to that of ACh in response to an aversive stimulus. For example, exposure to an 

aversively-conditioned flavor [27] or precipitated withdrawal [26] can cause decreases in 

dopamine that accompany increases in accumbal ACh. Taken together, these findings show 

that elevations of ACh occur in a variety of settings, with the common element being 

ecological significance.

A Threshold Model for Cholinergic Effects on Reinforced Behavior

Cholinergic influences can be broadly divided into treatments that either enhance or 

attenuate reinforced behavior. A two-phase model has been developed to explain seeming 

discrepancies between these competing actions. It is based on the following two opposing 

systems, described in Table 1 and shown schematically in Figure 1. Both thresholds are part 

of normal physiology, functioning in the absence of drug treatments. Short-term increases in 

VTA-accumbal cholinergic transmission that exceed a low-level threshold increase the 

probability of reward, but further increases above an upper threshold decrease its probability 

(reward enhancement and inhibition, respectively). Probability is the likelihood that an 

organism will choose a given behavior in the future. VTA-accumbal cholinergic transmission 

is defined as agonist activity at nicotinic and muscarinic receptors within these two brain 

regions.
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The model predicts that behavior which influences cholinergic activation through non-

pharmacologic mechanisms that are either psychological or physical can also modify the 

probability of reward through either threshold. Therefore, reward enhancement and 

inhibition encompass both psychological and pharmacological constructs. For example, 

behavior causing increases in endogenous cholinergic tone in the nucleus accumbens and 

VTA that are intermediate in magnitude, in the absence of drug treatments, are supported 

(positively reinforced). In contrast, alternative behavior causing larger and sustained 

increases of endogenous ACh in the same brain regions without drug exposure would be 

inhibited. Both scenarios can be mimicked by drug treatments leading to intermediate or 

large increases in cholinergic activation, respectively. As described by Solomon and Corbit 

[29,30], reward inhibition can be viewed as an opposing process that is a relatively delayed 

in onset and long-lasting. Reward enhancement and inhibition can occur through activation 

of nicotinic receptors, muscarinic receptors, or both classes of receptor, as is seen with 

administration of cholinesterase inhibitors. Desensitization of nicotinic receptors is one 

potential mediator of differential responding by cholinergic systems: phasic activation for 

brief periods increases the probability of reward, with an opposite effect after a period of 

prolonged receptor activation. This property allows the same molecule to produce different 

effects after dissimilar patterns of cholinergic activity.

In addition to ACh, dopamine and various other neurotransmitter systems work in concert as 

mediators of motivated behaviors. Because relatively few studies have attempted to decipher 

the influences of multiple neurotransmitters on reward behavior, the model focuses on the 

role of ACh. Positive and negative effects of dopaminergic tone may act additively with 

actions of ACh. More precise characterization of this interaction should be an important goal 

of future work.

In this review, relevant findings are interpreted in terms of the model and its potential 

mediators. For more comprehensive accounts of cholinergic influences on reward, the reader 

is referred to previous reviews by Williams and Adinoff [31], Sofuoglu and Mooney [32], 

and Mark et al. [33]. Key evidence for the threshold model is based on systemic treatments 

with cholinergic agonists and antagonists, which may involve more than one functional 

circuit. Therefore, the review is organized according to type of receptor (nicotinic or 

muscarinic) and or agent (agonist or antagonist).

Thresholds Mediated by Nicotinic Receptors

Background—As reviewed by Tuesta et al. [34], different subtypes of the nicotinic 

receptor underlie the reinforcing effects of nicotine, psychostimulants, and other drugs of 

abuse. Nicotine stimulates release of dopamine by direct activation of high-affinity nAChRs 

on both the cell bodies [35] and terminal fields [36,37] of midbrain dopaminergic neurons 

that project to the ventral striatum. VTA dopaminergic neurons express several types of 

nicotinic receptor subunit, including α3 to α7 and β2 to β4 [38-41]. The α4β2 subtype is the 

most abundant nicotinic receptor in mammalian brain [42], and variants of the CHRNA4 

gene encoding the α4 subunit are associated with altered nicotine dependence in humans 

[43]. In the striatum, high affinity α4β2* and α6β2* nAChRs are expressed on dopaminergic 
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and GABAergic neurons, where activation leads to calcium influx and greater excitability. 

This facilitates action potential firing and modulates dopamine release [44,45].

Homomeric α7 nAChRs are activated by both ACh and its ubiquitous breakdown product, 

choline [46]. In the VTA, receptors containing the α7 subunit are localized on glutamatergic 

axons that are distinct from cholinergic terminals, suggesting activation through diffusion of 

ACh or choline; a portion of these receptors are localized to cholinergic terminals in the 

nucleus accumbens [47]. Homomeric α7 nAChRs are typically activated only after relatively 

high agonist concentrations, in micromolar amounts [48]. In comparison, activity of α4β2* 

receptors is most often observed with only nanomolar concentrations of ACh or nicotine 

[49]. Although the α7-subunit may not form exclusively homomeric receptors in vivo, low 

agonist sensitivity also appears to be a property of native heteromeric receptors that include 

this subunit [50,51].

Nicotinic receptors exhibit a characteristic biphasic response to stimulation which is 

important for behavioral effects: brief, low levels of phasic stimulation can augment ion 

flux; but prolonged agonist exposure results in decreased responsiveness, termed 

desensitization [49]. Phasic events are those that are relatively brief, and resolve quickly. 

There is great variability in the degree to which the nicotinic receptors associated with 

individual neurons desensitize in response to agonist exposure. After more prolonged 

exposure to higher agonist concentration, recovery from desensitization typically requires 

longer periods. Certain subtypes of the nicotinic receptor are activated by phasic release of 

ACh but become desensitized after sustained ACh binding over seconds to minutes [52]. For 

VTA dopaminergic neurons, application of either micromolar concentrations of nicotine or 

rapid bursts of millimolar ACh desensitizes inward nicotinic currents [53]. At high firing 

rates under physiologic conditions, choline produced by ACh hydrolysis appears to be 

present at sufficient concentrations to cause homomeric α7 nAChRs to desensitize [54].

The firing of dopaminergic neurons in the VTA is also modulated by GABAergic and 

glutamatergic inputs that desensitize over different intervals after treatment with nicotine 

[55]. Because of enhanced glutamatergic transmission combined with inhibition of GABA 

release, there is a net facilitation of dopamine release that is thought to occur at micromolar 

concentrations of nicotine [56].

Nicotinic Agonists—Depending on the dose administered, systemic pretreatment with 

nicotine can have opposite effects on intravenous self-administration of cocaine in a rat 

model under a simple fixed-ratio-1 (FR-1) schedule in which each lever press resulted in a 

cocaine injection [57]. In this study, drug taking was enhanced by low-dose nicotine, but 

diminished after a higher dose. This biphasic effect of systemic nicotine on cocaine-

reinforced behavior can be interpreted in as reward enhancement and inhibition mediated by 

the two thresholds shown in Figure 1. Low levels of nicotinic activation by ACh or other 

nicotinic agonists favor State A being advanced to State B as a lower threshold is exceeded, 

increasing the probability of reward. If nicotinic activation continues to increase, and reaches 

higher levels that exceed an upper threshold, the probability of reward is diminished, 

corresponding to State C.
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Varenicline is a medication approved for use in smoking cessation that acts as a partial 

agonist at nicotinic α4β2* and α6β2* receptors, and a full agonist at α7 nAChRs [58]. In 

rhesus monkeys, varenicline can enhance cognitive function across a wide range of doses, 

0.001 to 0.3 mg/kg [59]. In some instances, it has been associated with biphasic effects on 

cocaine-reinforced behavior which are consistent with reward enhancement and inhibition 

by low- and high-doses, respectively. For example, pretreatment with 0.01 to 0.56 orally in 

rhesus monkeys potentiated the reinforcing effects of cocaine [60], while 1.0 and 2.0 mg/kg 

administered subcutaneously to rats attenuated cocaine self-administration [61]. However, 

low (0.1 and 0.3 mg/kg) varenicline doses also attenuated cue- and cocaine- induced 

reinstatement of non-reinforced responding in the latter study. Low varenicline doses (0.004 

and 0.04 mg/kg-hour) were reported to be ineffective in modifying cocaine reinforcement 

[62]. But, this protocol was not designed to detect increases in drug-reinforced responding, 

as monkeys self-administered at their limit of maximal available cocaine injections. 

Varenicline doses that attenuate cocaine-reinforced behavior in rats are well above those 

approved for clinical use. Consistent with this, varenicline treatment was found to be 

ineffective in facilitating abstinence from use of cocaine or opiates in treatment-seeking 

patients, but did decrease smoking in this population [63].

Knockouts and Antagonists—Nicotinic acetylcholine-receptor systems are important 

mediators of cognitive function. Pretreatment with the nonselective, noncompetitive 

nicotinic antagonist mecamylamine can impair learning and memory with threshold 

systemic doses of 1.0 to 5.0 mg/kg in rats [64]. For rats performing below criterion (less 

than 80% correct responses at baseline) on a food-reinforced, five-choice serial reaction time 

task [65], pretreatment with nicotine or an α4β2* agonist increased correct responding, and 

an α7-selective agonist was without effect. This may correspond to augmentation of 

nicotinic tone from a relatively low level to exceed a lower cholinergic threshold, causing 

reward enhancement. In rats that initially performed above criterion, mecamylamine 

pretreatment decreased accuracy. In addition to negative effects on learning and memory, 

nicotinic blockade may also decrease the value of food reinforcers, because cholinergic 

transmission falls short of its lower threshold. Systemic pretreatment with antagonists with 

α4β2* or α7 selectivity in this study did not alter responding [65], which may reflect 

involvement of other neurotransmitters.

After knock-out of the CHRNB2 gene which codes for the β2 nicotinic subunit, elderly mice 

exhibit impaired fear conditioning, diminished spatial learning, and elevations of basal 

plasma corticosterone [66,67]; implicating a role for endogenous ACh in learning and stress 

reactivity during aging. CHRNB2 deletion also disrupts nicotine-induced dopamine release 

by the ventral striatum [68], as well as nicotine self-administration [69]. In addition, 

intravenous self-administration of nicotine is prevented by deletion of either the CHRNA4 or 

CHRNA6 genes, which code for the α4 and α6 subunits respectively [70]. This same study 

showed that drug-reinforced behavior can be restored by re-expression of CHRNA4, 

CHRNA6, or CHRNB2 genes in the VTA. An additional experiment that used self-

administration procedures based on chronic rather than acute drug taking found similar rates 

of nicotine-reinforced responding in CHRNA4 knockout and wild-type strains [71]. 

Diminished reward after genetic knockout of subunits that make up high-affinity nAChRs 
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may be mediated by low levels of cholinergic transmission that fail to exceed a lower 

cholinergic threshold, preventing reward enhancement.

Acquisition of nicotine- or cocaine- induced conditioned-place preference is attenuated by a 

β2* antagonist delivered either intracerebroventricularly or to the nucleus accumbens, but 

not the septum [72]. Place preference conditioned by nicotine in this study was also 

disrupted by deletion of either the CHRNA4 or CHRNA6 gene. Although an earlier study 

found that that nicotine-induced conditioned-place preference was supported after CHRNA4 

knockout, it used a different mouse strain, route of nicotine delivery, and conditioning 

procedure [71]. Effects of CHRNA6 deletion cited above could be overcome by high-dose 

nicotine, indicating a shift in its dose-response to the right [72]. In contrast, CHRNA4 

knockout prevented place preferences for each of the nicotine doses evaluated. Place 

preference after CHRNA6 knockout produced by high-dose nicotine was blocked by 

pretreatment with an antagonist for β2* nAChRs [72]. Cocaine-induced conditioned-place 

preference was disrupted after knockout of the CHRNA6 but not the CHRNA4 genes in this 

study. Because the magnitude of nicotine-induced place preference can be increased by 

CHRNA6 knockout, a role for reward inhibition by α6β2* receptors is implicated after 

nicotine but not cocaine treatment. The broad role of the β2* subtype in preferences 

occurring under different conditions suggests an important contribution to reward 

enhancement (but see further discussion below, regarding reward inhibition after prolonged 

nicotine treatment).

The magnitude of conditioned-place preference for low-dose nicotine is increased after 

knockout of the CHRNA7 gene, which codes for the α7 nicotinic subunit; but decreased by 

knock-in of the same gene [73]. This is opposite to genetic effects of β2* expression, and 

implicates a role for low-affinity α7 homomeric nAChRs in reward inhibition after acute 

treatment with nicotine. Consistent with this, there is a graded increase in the strength of 

nicotine-induced place preference across genetically different mouse strains, which 

correlates with lower levels of α7 subunit expression in the nucleus accumbens [73]. Genetic 

variation in α7 subunit expression may explain why earlier studies failed to identify an effect 

of CHRNA7 knockouts on nicotine-induced conditioned-place preference or intravenous 

self-administration [70,74]. Pretreatment with a nicotinic agonist selective for α7 nAChRs 

prevented conditioning of place preference by nicotine, with this effect blocked by an 

antagonist for α7 receptors [73]. Cocaine-induced conditioned-place preference was 

unaffected by α7-selective agents in these studies, which could be explained by activation of 

other nicotinic subtypes or muscarinic receptors.

When each dose of cocaine self-administered under FR-3 in rats was combined with 70 μg 

of mecamylamine, escalation of drug taking with exposure to daily extended (6 hour) access 

was prevented, with no effect on self-administration during one-hour sessions [75]. Systemic 

pretreatment with 1.0, 2.0, or 4.0 mg/kg of mecamylamine also decreased self-

administration of cocaine under FR-1 in rats, with only the highest dose decreasing food 

reinforcement [76]. This study is unusual in that mecamylamine pretreatment was 

administered daily over a seven-day period. Neither effects of single mecamylamine doses 

nor trends over daily sessions were reported, and it is unclear whether chronic exposure was 

used as a strategy to diminish variance or was required to enhance drug action. The 
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requirement for a higher mecamylamine dose to decrease responding for food pellets was 

interpreted as a demonstration of the selective involvement of ACh for cocaine-reinforced 

behavior. However, food reinforcement supported a three-fold higher level of responding 

than cocaine in this study [76]. Palatable rewards can surpass cocaine as a motivator [77]. 

Use of a palatable non-drug reinforcer associated with greater responding may have caused 

drug reward to be more susceptible to blockade of nAChRs, with food reinforcement to 

appearing to be resistant. According to the threshold model, behavior motivated by either 

reinforcer is attenuated because cholinergic transmission is prevented from reaching its 

initial lower threshold for reward that is achieved in vehicle-treated animals, blocking 

reward enhancement (Figure 1, compare conditions A and B). Consistent with this, 

laboratory measures of cue-induced craving in human cocaine addicts can be enhanced or 

attenuated by acute pretreatment with nicotine [78] or mecamylamine [79], respectively.

Nicotinic Mechanisms—Activation of midbrain dopaminergic neurons in the VTA by 

either local drug treatments or optogenetic stimulation can enhance reward behavior (see 

review by Ikemoto et al. [80]). The threshold model predicts that delivery of agonists with 

selectivity for either nicotinic or muscarinic receptors to the VTA can exceed the lower 

cholinergic threshold. Delivery of 50 nM or more of nicotine after smoking appears to 

activate dopaminergic neurons [81], corresponding to in vitro estimates of its EC50 (50% 

effective concentration) [82]. By preventing breakdown of ACh, cholinesterase inhibitors 

can function in a similar manner. For example, local infusion of either the nonselective 

agonist carbachol or the cholinesterase inhibitor neostigmine into the VTA can produce 

conditioned place preferences, which are blocked by muscarinic or nicotinic antagonists 

[83]. Cocaine-seeking behavior can also be blocked by delivery of antagonists with either 

muscarinic or nicotinic selectivity to the VTA [84]. These results implicate midbrain 

dopaminergic neurons in the VTA as mediators of reward enhancement.

Desensitization of nAChRs can be viewed as a ‘nuisance’ that occurs only after drug 

treatments under experimental conditions [49]. Alternatively, it may contribute to 

physiological processing in the normal and diseased brain [85]. Consistent with this, 

desensitization could limit or reverse nicotinic effects after sustained increases in 

endogenous or drug-induced ACh, by acting as an upper, inhibitory cholinergic threshold. 

Although classically viewed as involving rapid oscillation between active and inactive 

conformational states across milliseconds, more detailed models encompass multiple states 

that include long-term loss of nicotinic receptor function that can persist over 24 hours, and 

resolve at least partially through synthesis of new receptors [86]. In vitro studies of muscle-

type nAChRs have shown multiple desensitization states, with increased duration of agonist 

exposure associated with reductions in function over successively longer periods, described 

as ‘deeper’ desensitization states [87]. Deeper levels of desensitization may underlie reward 

inhibition that follows extended nAChR activation by drug treatments or sustained increases 

in endogenous ACh.

Delivery of mecamylamine to the VTA blocks increases in dopamine following systemic 

cocaine [33]. Cocaine-induced conditioned-place preference can be disrupted by either 

mecamylamine pretreatment, knockout of nAChRs containing the CHRNB2 subunit, or 

chronic intermittent nicotine treatment [88]. Disruption of cholinergic transmission by 
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antagonist pretreatment or gene knockout is likely to block reward enhancement, as 

cholinergic transmission is prevented from rising above its lower threshold. For mice with a 

genetically deleted CHRNB2 nicotinic subunit, changes in dopamine metabolism and 

immediate-early gene-product expression were also deficient, consistent with a role of this 

receptor subtype in dopaminergic neurotransmission underlying reward processes [88]. Low, 

ineffective doses of cocaine and nicotine did cause a place preference if administered 

together, suggesting that greater nicotinic activation by combined treatment did allow the 

lower cholinergic threshold to be exceeded.

Disruption of cocaine-induced conditioned-place preference by chronic intermittent nicotine 

treatment [88] can be explained by reward inhibition, as prolonged exposure to agonist 

causes nicotinic receptors to become refractory. The pattern of intermittent nicotine dosing 

used in this study was aimed at causing tolerance to nicotine’s physiologic effects, including 

reductions in nicotine-induced dopamine release [89,90], perhaps through nAChR 

desensitization. Similarly, systemic dopamine blockade and microinjection of nicotine to the 

VTA can produce a place preference in vehicle-treated rats, but are aversive after chronic 

infusion of nicotine by osmotic pump [91]. This dichotomy may reflect acute β2* reward 

enhancement by activation beyond the lower threshold in nicotine-naïve animals which 

potentiates drug-motivated behavior, and reward inhibition after prolonged nicotine levels 

that raise cholinergic transmission above its upper threshold.

Through low sensitivity to agonist, α7-containing nAChRs may act as a mediator of the 

upper cholinergic threshold, favoring reward inhibition after acute exposure to relatively 

high agonist levels. As noted above, activation of the α7 nAChR decreases acute nicotine 

reward [73], with an opposite effect of high-affinity β2* receptors [70]. Knockout of the 

corresponding CHRNA7 gene in mice prolongs nicotine-induced increases in extracellular 

dopamine in the nucleus accumbens [92]. This suggests that α7 receptors inhibit dopamine 

release, which is again opposite to the effect of β2* receptors [68]. After relatively high 

levels of ACh, choline, or nicotinic agonist; α7-mediated reductions in dopamine release 

may underlie reward inhibition, serving an auto inhibitory role [93]. This may occur through 

phosphorylation of β2* receptors, associated with attenuated nicotine-induced increases in 

the firing of VTA dopaminergic neurons [94].

After nicotine dependence is established, systemic treatment with an antagonist for β2* 

nAChRs elevates anxiety-like behavior [95], and infusion of a β2* antagonist to the VTA 

increases the amount of current required to initiate intracranial self-stimulation [96]. 

Requirement for greater amounts of current to elicit intracranial self-stimulation to the 

medial forebrain bundle in the lateral hypothalamus is an animal model of human anhedonia 

and depressed mood [97]. For either spontaneous or precipitated withdrawal, knockout of 

the CHRNB2 gene prevents increases in anxiety measures [98] and elevations in reward 

threshold [99]. In contrast, an antagonist for α7 nAChRs can decrease locomotor activity 

and cause tremor and other somatic signs of nicotine withdrawal in dependent animals [100]. 

After genetic deletion of the CHRNA7 gene, withdrawal-induced increases in nociception 

are lost; with anxiety, reward-threshold, and somatic measures remaining intact [98]. In 

nicotine-dependent mice, genetic disruption of either the α7 or β4 nicotinic subunit delayed 

the onset of spontaneous withdrawal [101]. In the same study, genetic disruption of the α7 
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subunit caused biphasic effects on antagonist precipitated increases in reward threshold, 

which were potentiated and diminished by low- and high doses of mecamylamine, 

respectively.

Anxiety, elevated reward threshold, and somatic changes associated with withdrawal form an 

unconditioned contingency with changes in nicotinic activity. Prompt relief from the 

negative effects of withdrawal occurs after nicotine treatment [95], and supports further drug 

taking through negative reinforcement. A similar effect would also occur after actions that 

re-elevate endogenous ACh; reinforcing associated behavior. The differential sensitivity of 

low- and high- affinity nAChRs suggests a hierarchy of effects on reward that modify 

behavior through delayed consequences. Relatively modest, but sustained increases in either 

ACh or exogenous agonist that activate high-affinity receptors containing the β2 subunit are 

associated with delayed increases in anxiety [98] with an elevation of reward threshold [99]; 

larger agonist doses or increases in either endogenous ACh or choline which activate low-

affinity homomeric receptors also produce heightened nociception, tremor, and other 

somatic effects [98,100]. In either case, behavior associated with nicotinic activation can 

either be punished by these effects, or allow negative reinforcement after relief of unpleasant 

consequences associated with reward inhibition. The key factor supporting motivation is 

short-term positive effects on mood, lowered reward threshold, and diminished somatic 

symptoms (reward enhancement); and delayed effects with an opposite (aversive) valence.

Thresholds Mediated by Muscarinic Receptors

Background, Muscarinic Systems—GABAergic medium spiny neurons make up more 

than 90% of neurons in the striatum, and serve as its major output [102]. They are named for 

their far-reaching dendritic trees that contain numerous small spines, allowing them to 

receive extensive synaptic input. Glutamatergic input from various cortical and thalamic 

structures provides the major excitatory input to medium spiny neurons, presumably 

allowing temporal and spatial direction [103]. Though activation of type 1 and 2 dopamine 

receptors, activities of medium spiny neurons are modulated in a biphasic manner, in part by 

facilitation or suppression of glutamatergic transmission [104,105]. Medium spiny neurons 

also express both M1 and M4 muscarinic receptors [106]. In the nucleus accumbens, 

glutamatergic input is generally potentiated or inhibited by nicotinic or muscarinic (M1 or 

M4) receptors, respectively [107].

Muscarinic M5 receptors on dopamine neuron terminals enhance striatal dopamine release, 

whereas M2 and M4 autoreceptors on cholinergic interneurons inhibit ACh release and 

subsequent nicotinic-receptor-dependent dopamine release [108,109]. Within the VTA and 

substantia nigra, RNA for the M5 receptor is the predominant muscarinic subtype expressed 

[110]. In these brain regions, most neurons express message for both the M5 muscarinic 

receptor and the dopamine D2 receptor [111].

ACh in the striatum and nucleus accumbens is released by cholinergic interneurons that 

express choline acetyltransferase. Striatal cholinergic interneurons are presumed to be the 

tonically active neurons of electrophysiologic studies, which serve as mediators of stimulus-

reward associations [112]. They spontaneously produce wide action potentials at a frequency 

of 2 to 10 Hz in vivo, and comprise less than 2% of neurons in the nucleus accumbens [113]. 
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Even so, cholinergic interneurons are the major source of ACh in the nucleus accumbens. 

The density of their local projections implies an important role of ACh in modulating 

medium spiny neuron function, which is supported by electrophysiologic and optogenetic 

studies. With exposure to behaviorally relevant stimuli or reward, most cholinergic 

interneurons respond with a brief pause in firing of approximately 200 to 300 milliseconds 

duration, which may be preceded or followed by increased firing rates [114]. Excitatory 

cortical and thalamic inputs appear to play a role in initiating pause-excitation events that 

follow reward-predicting stimuli [115]. Pauses are associated with increases in firing by 

midbrain dopaminergic neurons [116]. In addition, about 25% of GABA-releasing neurons 

in the VTA project to the nucleus accumbens [117]. Stimulation of GABA projection 

neurons in the VTA can produce inhibitory effects that facilitate pauses by accumbal 

cholinergic interneurons, which are associated with enhanced discrimination of 

motivationally important stimuli [118].

Optogenetic stimulation of burst firing by VTA dopaminergic neurons is followed by 

increased firing and a subsequent pause of cholinergic interneurons in the nucleus 

accumbens shell [119]. In contrast, optogenetic stimulation of cholinergic interneurons in 

the striatum augments dopamine release through β2* nAChRs [120,121]. In the nucleus 

accumbens, release by this mechanism relies at least partially on glutamatergic AMPA (α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors, appears to be opposed by 

muscarinic activation, and is independent of midbrain dopaminergic cell bodies [122]. Direct 

optogenetic stimulation of cholinergic interneurons in the nucleus accumbens suppresses 

most adjacent medium spiny neurons (81%), while exciting a minority of cells (19%); with 

an opposite effect of optogenetic inhibition [123]. In this study, systemic treatment with 

cocaine markedly increased the firing rate on cholinergic interneurons. Optogenetic 

suppression or facilitation of cholinergic interneuron firing has no obvious effect on 

spontaneous behavior, but suppression did attenuate cocaine-induced conditioned-place 

preference. Reward-associated pause-excitation events in cholinergic interneurons appear to 

inhibit neighboring medium spiny neurons by nicotinic excitation of GABAergic neurons 

[124]. Because of their specific cortical, hippocampal, and amygdalar afferents, individual 

medium spiny neurons in the nucleus accumbens are thought to encode different stimulus-

action associations [125]. This allows selection of a certain action through inhibition of its 

corresponding medium spiny neurons.

Muscarinic Agonists—The threshold model predicts biphasic effects on reward 

behaviors, which are enhanced at low doses of muscarinic agonists, but suppressed by higher 

doses of the same agents. A recent study examined effects of the muscarinic agonist 

xanomeline, which is selective for both type M1 and M4 receptors, on cocaine- and food- 

reinforced behaviors [126]. Rats were allowed to choose reinforcement with either liquid 

food or different doses of cocaine. Daily treatment with xanomeline produced complex 

effects, generally shifting cocaine dose-effect curves to the right (suppressing responding for 

low doses of cocaine doses, while increasing drug taking for higher doses). For some 

cocaine-xanomeline dose combinations, behavior was reallocated from cocaine to food 

reinforcement. The net effect was that overall cocaine intake was augmented by lower 

xanomeline doses (1.8 and 3.2 mg/kg-day), with a trend for reduced intake in animals 
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receiving a higher dose of xanomeline (5.6 mg/kg-day). This pattern likely reflects reward 

enhancement and inhibition by low- and high- xanomeline doses, respectively. It resembles 

biphasic effects of nicotine, which can also potentiate or diminish cocaine-reinforced 

behavior when administered at intermediate or high doses, respectively [57].

The study by Thomsen et al. described in the preceding paragraph [126] is unusual because 

of the broad range of muscarinic agonist doses evaluated during chronic dosing, with 

cocaine also tested across a broad range of doses that supported self-administration behavior. 

Furthermore, drug and food were both available under fixed-ratio-5 (FR-5), in which 

reinforcement was provided after 5 or more lever presses. This design is highly relevant for 

evaluation of potential human treatments for substance abuse disorders. Most other studies 

have evaluated a narrower dose range cholinergic agents, which may correspond to one limb 

of a biphasic dose-response. For example, pretreatment with single 1.0 mg/kg doses of 

xanomeline or two other muscarinic agonists attenuated self-administration under FR-1 

across a broad range of cocaine doses in mice [127], implicating reward inhibition. 

Responding for the maximally reinforcing cocaine dose was attenuated by about two-thirds. 

Although food-reinforced behavior was not modified by pretreatment with M1-selective 

agonists, food pellets supported a higher response requirement than cocaine injections in this 

study as well as the earlier report by Thomsen et al. [126], again raising question as to 

whether this effect was selective for drug reward. Systemic pretreatment with nonselective 

muscarinic agonists or a partial agonist attenuated cocaine self-administration behavior in 

mice [128], again corresponding to reward inhibition. Lower agonist or cocaine doses which 

may have produced conditions leading to enhanced drug reward were not evaluated in this 

experiment.

Muscarinic Antagonists—If muscarinic receptors contribute to reward enhancement by 

augmenting cholinergic transmission above the lower threshold shown in Figure 1, 

preventing this action should disrupt behavior supported by natural or drug reinforcers. 

Pretreatment of rhesus monkeys during a single session with the muscarinic antagonist 

atropine increased self-administration of cocaine, with no effect observed after pretreatment 

with methylatropine which has limited brain penetration [129]. Enhanced responding under 

these conditions may correspond to a short-term increase in drug-seeking behavior that 

would have extinguished if it were evaluated over additional sessions or under a schedule 

with a greater response requirement. Consistent with this interpretation, cocaine combined 

with the nonselective muscarinic antagonist scopolamine, maintained lower rates of drug-

reinforced responding in Rhesus monkeys evaluated under either a FR-25 or progressive-

ratio schedule [130]. Systemic treatment with a relatively high 5.0 mg/kg dose of 

scopolamine attenuated cocaine-induced reinstatement by approximately one-half, with 0.5 

mg/kg being ineffective [131]. Although not statistically significant, the 5.0 mg/kg dose of 

scopolamine also decreased responding during a sucrose-induced reinstatement procedure 

by more than one-third. It should be noted that a wide variety of memory-related tasks are 

impaired by scopolamine [132]. Scopolamine doses that exceed 0.1 mg/kg can 

nonselectively diminish performance by modifying attention, stimulus discrimination, and 

motor activity [133]. Anxiety, associated with peripheral effects of decreased salivation and 

pupillary dilatation, has been implicated.
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In rats performing the runway task described above, microinjection of atropine or 

mecamylamine into the nucleus accumbens core blocked opiate reward (consistent with 

blockade of reward enhancement), without affecting performance maintained by sweetened, 

condensed milk [22,23]. Although not statistically significant, run times were more than 

100% prolonged in atropine-treated food-reinforced rats in the study by Crespo et al. [23], 

relative to vehicle- or mecamylamine- treated animals. These longer values may reflect a 

role for accumbal muscarinic receptors in supporting food-reinforced behavior. Greater 

preferences for sucrose over cocaine reward in rodents [77] is an additional consideration 

that again makes it difficult to evaluate the relative selectivity for drug and food rewards. 

There is a need for further research that focuses on evaluating a broader range of alternative, 

non-drug reinforcers, which support different levels of responding.

Microinjection of scopolamine into the nucleus accumbens core attenuated non-reinforced 

responding for either cocaine or sucrose (again consistent with blockade of reward 

enhancement); but injection into the nucleus accumbens shell unambiguously attenuated 

responding for only cocaine [131]. An additional study reported that blockade of muscarinic 

but not nicotinic receptors in either the nucleus accumbens core or shell decreased sucrose-

reinforced behavior [134]. Importantly, delivery of a muscarinic antagonist dose to the 

nucleus accumbens core that attenuated liquid food intake also produced flavor- and place- 

aversions [135]. Comparable effects were not observed after blockade of NMDA, dopamine 

D1, or opiate receptors. Rather than cognitive impairment, these results are more consistent 

with muscarinic blockade decreasing the reinforcing attributes of food or causing a “general 

hedonic suppression”.

Infusion of a muscarinic antagonist into the VTA of rats attenuated cocaine-induced 

increases in VTA dopamine by more than 50% [21]. With access to self-administration 

under FR-1, rats increased their rate of lever pressing and contingent injections, allowing 

them to maintain VTA elevations of dopamine that were comparable to animals not treated 

with an antagonist; use of a nicotinic antagonist was ineffective. After cocaine self-

administration was completed, dopamine levels dropped more rapidly in rats pretreated with 

the muscarinic antagonist. The authors concluded that blocking muscarinic input to the VTA 

increased cocaine intake; this increase offset the reduction in cholinergic input, resulting in 

the same VTA dopamine levels as were seen in the absence of the ACh antagonists. Put 

another way, rats worked to maintain dopaminergic output from the VTA at an intermediate 

level by increasing lever pressing in the absence of muscarinic activation to this brain region 

that would normally enhance dopamine release [136] and drug reward. This appears similar 

to increases in cocaine-reinforced behavior under FR-1 after atropine treatment in monkeys 

[129]. An important message is that acute interventions under simple response requirements 

that decrease central mediators of reward via changes in cholinergic tone may actually 

increase drug motivated behavior. Presumably, evaluation under chronic conditions using a 

higher response requirement, such as multiple lever presses to obtain a drug injection, would 

lead to decreases in cocaine self-administration after cholinergic antagonist treatment that 

prevents reward enhancement.

Antagonists with selectivity for the M1 muscarinic receptor may exhibit greater selectivity 

for disrupting memory without modifying attention or food motivation [137]. In rats, 
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infusion of a muscarinic agonist into the nucleus accumbens shell decreases cocaine self-

administration behavior, with this effect blocked by pretreatment with an antagonist for the 

M1 muscarinic subtype [138]. This effect may be mediated by cholinergic transmission that 

exceeds an upper cholinergic threshold, causing locally- mediated reward inhibition in this 

brain region. Alternately, muscarinic agonists may also facilitate reward if administered at 

low enough doses, as cholinergic transmission rises above a lower cholinergic threshold.

Pretreatment with the M1 selective muscarinic antagonist biperiden alone does not cause 

either preference or aversion [139], but can attenuate the expression of cocaine-induced 

conditioned-place preference [140], consistent with blockade of reward enhancement. 

Conditioning of place preferences with cocaine is also diminished if biperiden is 

administered 5 minutes after exposure to cocaine pairings, implicating interference with the 

process of memory consolidation [141]. Both effects relied on a higher biperiden dose (10 

mg/kg) associated with decreased response rate and diminished short-term memory, but 

without negative effects on attention or food-reinforced responding [137]. Lower doses of 

biperiden were ineffective in modifying expression of place preference [140]. In humans 

with cocaine-use disorder, biperiden administered over eight weeks (2 mg three-times-daily) 

improved treatment compliance and decreased craving intensity when combined with group-

based counseling [142]. However, single 2 mg doses of biperiden cause broad declines on a 

subset of cognitive measures in humans, which include episodic memory, immediate recall, 

motor learning, and visual-spatial performance [143].

Morphine- and cocaine- induced conditioned-place preference are attenuated by either 

genetic disruption of the M1 muscarinic receptor or combining drug treatments with an 

antagonist for the M1 receptor [144]. In these studies, knock-out or antagonist treated 

animals correspond to State A in Figure 1, with wild-type and vehicle treated animals 

corresponding to State B in which activation of the M1 receptor allows ACh to facilitate 

food- or drug- reinforced behaviors.

Knock-out of the M5-muscarinic receptor decreases drug-induced place preference across a 

broad range of morphine doses, and also attenuates morphine-induced dopamine increases in 

the nucleus accumbens [145,146]. After knock-out of the M5-muscarinic receptor, mice self-

administered some but not all cocaine doses at approximately one-half the rate of wild-type 

animals [147]. During conditioned- place preference testing, cocaine-induced increases in 

preference were also approximately one-half the magnitude of wild-type animals. A 

subsequent evaluation using more highly inbred M5-deficient mice observed lower rates of 

acquisition for cocaine self-administered under FR-1, but no differences in cocaine-

experienced mice [148]. The same study found that lower break points were achieved by 

M5- deficient mice under a progressive-ratio schedule for 0.03 or 0.32 mg/kg per injection of 

cocaine (reductions of approximately 50 and 25%, respectively). Although no differences in 

food-reinforced behavior were observed for either fixed- or progressive- ratio schedules, 

food reinforcement supported a two-fold higher rate of responding. Accordingly, activation 

of M5 muscarinic receptors appears to preferentially contribute to reward enhancement, 

apparently through activation of VTA dopaminergic neurons. Nonetheless, M5-deficient 

mice did not differ in cocaine self-administration under many of the conditions evaluated 

(i.e., a full range of cocaine doses evaluated using FR-1, and the higher two of four cocaine 
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doses tested under a progressive-ratio schedule) [148]. It may be that nicotinic signaling 

alone in the VTA can support drug-reinforced behavior in the absence of the M5 muscarinic 

receptor in these instances.

Electrical stimulation of laterodorsal tegmental (LDT) nucleus cholinergic neurons increases 

dopamine release through an initial rapid phase (over approximately 2 minutes) which is 

dependent on VTA nAChRs, and a late phase (8 to 50 minutes post stimulation) which is 

dependent on M5-muscarinic receptors [149]. Infusion of M5-antisense mRNA causes a 

reversible rightward shift in the stimulation frequency required to maintain electrical brain 

stimulation [150]. Intra-VTA infusion of muscarinic or nicotinic antagonists causes a similar 

shift in the frequency required to maintain electrical brain stimulation [151]. Based on these 

effects, activation of M5 muscarinic receptors on VTA dopaminergic neurons are believed to 

facilitate natural or drug reward, as cholinergic transmission exceeds its lower threshold. 

Because pharmacologic agents with M5-selectivity are not available, it is unclear whether 

reward inhibition can be produced by agonists with selectivity for this subtype.

Muscarinic Mechanisms—As cited above, low doses of the muscarinic agonist 

xanomeline augmented cocaine intake by up to 40.1% [126] In comparison, low doses of 

nicotine can enhance the amount of self-administered cocaine by approximately 120% [57]. 

Accordingly, nicotinic mechanisms appear to play a greater role in reward enhancement 

through the low-level threshold than that of the muscarinic system. This may be facilitated 

by more rapid nicotinic effects on ion flux, compared with slower muscarinic modulation of 

phospholipase and adenylate cyclase. Such a dichotomy echoes the time course of LDT 

activity cited above, with dopamine release stimulated over a several-minute rapid phase 

mediated by the nicotinic receptor, and a more prolonged phase produced by muscarinic 

receptors [149]. Nonetheless, both nicotinic and muscarinic agonists appeared to have the 

potential to produce either reward enhancement or inhibition in the studies cited above. 

Conclusions on the role of muscarinic receptors must again be qualified by the limitation 

that no direct agonists for the M5 receptor are currently available, with this subtype 

implicated in muscarinic reward-enhancing actions [148].

In striatal slice experiments performed in mice lacking different muscarinic receptors, 

potassium- evoked release of dopamine is modulated in a biphasic manner. The authors infer 

that dopamine release is stimulated by activation of either type M4 or M5 receptors, inhibited 

by M3 receptors, and unaffected by knock-out of M1 or M2 receptors [152,153]. Augmented 

release of dopamine is most consistent with reward enhancement, with reward inhibition 

expected after attenuation of neurotransmitter release. However, administration of an M4 

positive allosteric modulator strongly attenuates cocaine-induced increases in dopamine 

measured in the striatum by microdialysis, as well as cocaine self-administration [154]. 

Similarly, knockout of type M4 muscarinic receptors appeared to facilitate dopamine efflux, 

augmenting cocaine- or amphetamine- induced locomotor activity [155]. Dissimilar actions 

of the muscarinic M4 subtype on dopamine release may reflect experimental conditions that 

evaluate either reward enhancement or inhibition, mediated by different cholinergic 

thresholds.
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Tonic activity by a subset of nucleus accumbens neurons appears to inhibit appetitive 

responding, with several-second pauses in firing associated with initiation of food-reinforced 

behavior [156]. The subset of cells in the nucleus accumbens shell that exhibit a pause in 

firing during feeding behavior have been described as type 1 neurons. Feeding is disrupted 

by electrical stimulation of type 1 neurons [157]. Declines in the activity of nucleus 

accumbens medium spiny neurons are also implicated in drug- reinforced behavior [158]. 

For example, the most frequent pattern of neural activity in the nucleus accumbens that 

follows self-administration of an intermediate dose of cocaine is a decline in firing rate that 

begins within 0.2 minutes of lever pressing, and persists over approximately one minute 

[159]. Overall, these findings implicate interventions that quiet or excite accumbal type 1 

neurons as underlying reward enhancement or inhibition, respectively.

In striatal slices, either cholinesterase inhibition or low, micromolar concentrations of a 

nonselective cholinergic agonist suppressed electrically-evoked activity, with periods of 

burst firing observed after higher agonist concentrations [160]. After iontophoretic 

application of ACh in awake rats, the activity of most spontaneously active or glutamate-

excited neurons in the nucleus accumbens is suppressed [161]. As noted above, optogenetic 

stimulation of cholinergic interneurons plays a role in cocaine reward, and suppresses the 

activity of most adjacent medium spiny neurons [123]. A role for ACh-induced electrical 

pauses in reward enhancement is consistent with a literature linking decreases in the rate of 

tonically active cholinergic interneurons in the striatum with exposure to behaviorally 

relevant stimuli in non- human primates [162].

In brain slices from the nucleus accumbens shell, treatment with a low concentration of a 

nonselective cholinergic agonist (1 µM carbachol) suppresses repetitive firing in medium 

spiny neurons (consistent with reward enhancement), with this effect blocked by an M1 

selective antagonist [163]. Carbachol applied at greater concentrations (50 µM) can enhance 

repetitive firing in medium spiny neurons (implicating reward inhibition) [107]. Short-term 

decreases in excitatory glutamatergic inputs mediated by muscarinic receptors [107,164] can 

also inhibit the activity of medium spiny neurons, possibly causing reward enhancement. In 

striatal brain slices, cholinergic agonists can depolarize GABAergic neurons through 

activation of nAChRs [165]. Inhibitory effects of enhanced GABA release may also increase 

the probability of pauses in firing by cholinergic interneurons and medium spiny neurons.

Biphasic effects of ACh on the firing rate of medium spiny neurons may underlie thresholds 

that modify reward behavior. Whether through ACh released by cholinergic interneurons, 

muscarinic agonists, or cholinesterase inhibition (see the following section), low-level 

binding at accumbal-VTA muscarinic receptors likely quiets the activity of type 1 accumbal 

medium spiny neurons [161,163]. This exceeds the lower cholinergic threshold, increasing 

the probability of reward behavior (reward enhancement). Further activation of the same 

muscarinic receptors rises above the upper cholinergic threshold, facilitating rhythmic 

activity by medium spiny neurons [107,160] and decreasing the probability of reward 

(reward inhibition).

Background, Cholinesterase Inhibition—Mammalian brain contains two forms of 

cholinesterase, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The 
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physiologic role of BuChE is unclear, but it can metabolize cocaine and other exogenous 

compounds and contributes to degradation of ACh. Cholinesterase inhibitors, which are 

widely used for treatment of Alzheimer’s disease, increase synaptic levels of ACh by 

preventing its inactivation by AChE or BuChE. In general, these agents attenuate declines in 

functional status associated with Alzheimer’s disease and other forms of dementia.

Clinically relevant doses of cholinesterase inhibitors can augment learning and memory in 

Alzheimer’s disease and other neuropsychiatric disorders [166,167]. Depending on the 

specific task being evaluated, performance in healthy individuals may be impaired, 

augmented, or unaffected [168,169]. Cholinesterase inhibition in some settings may disrupt 

performance by producing a hyper- vigilant state, enhancing sensitivity to irrelevant stimuli 

that serve as distractions [170]. In a subset of patients, cholinesterase inhibitors administered 

at relatively high doses cause symptoms of anorexia, nausea, diarrhea, and weight-loss 

[171].

Cholinesterase inhibition that attenuated morphine-induced conditioned-place preference in 

control animals was ineffective in after ablation of cholinergic neurons from the nucleus 

accumbens [172], implicating the involvement of this brain region in reward inhibition. 

Cholinergic lesions to the posterior nucleus accumbens and ventral pallidum caused a shift 

to the left in cocaine-reinforced behavior, with enhanced self-administration of relatively low 

doses of cocaine [173], again implicating removal of an inhibitory influence.

Thresholds and Cholinesterase Inhibition—By preventing degradation of ACh in the 

synaptic cleft, the threshold model predicts that cholinesterase inhibition will also produce 

biphasic effects on behavior that are mediated by a combination of the nicotinic and 

muscarinic mechanisms outlined in the preceding sections. When applied to striatal slices, 

different cholinesterase inhibitors share a common biphasic effect on dopamine efflux: low 

(nanomolar) concentrations enhance release that is either electrically evoked or spontaneous, 

with maximal effects of 12 to 24%, while higher (micromolar) concentrations strongly 

attenuate release [174]. These in vitro effects may correspond to in vivo enhancement and 

inhibition or reward, respectively.

An early study found that pretreatment with single doses of the cholinesterase inhibitor 

physostigmine (0.1 to 0.5 mg/kg) decreased cocaine self-administration in rhesus monkeys 

under FR-1 and caused vomiting and diarrhea [129], consistent with its administration at 

relatively high dose causing reward inhibition. When either cocaine or procaine were self-

administered by rhesus monkeys under FR-10, 0.02 to 0.05 mg/kg doses of physostigmine 

increased responding in 3 of 10 sessions, with declines uniformly observed following greater 

physostigmine doses [175]. This inverted “U” dose-response relationship is again consistent 

with reward enhancement and inhibition, respectively. It is unclear why augmented reward 

behavior is not more consistently observed at lower cholinesterase inhibitor doses, but this 

may reflect differences in the time-action or dose-response functions for nicotinic and 

muscarinic receptors. Cocaine-reinforced behavior evaluated under FR-5 was also attenuated 

in rats pretreated with cholinesterase inhibitors delivered as single bolus doses [176] or by 

infusion [177,178]. Pretreatment with tacrine or other cholinesterase inhibitors can also 

produce a dose-related attenuation of food- or water-reinforced responding in rats [179,180].
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Daily pretreatment with 0.1 mg/kg of physostigmine modestly impaired acquisition of 

heroin self- administration by rats, and also attenuated cue-induced reinstatement 14 days 

later, although no further physostigmine was administered during extinction and 

reinstatement session [181]. In the same study, single doses of 0.5 or 2.5 mg/kg of 

physostigmine also attenuated self-administration in heroin- experienced animals. Although 

lower physostigmine doses did not modify heroin reward, the number of daily self-

administered heroin doses was limited by design, decreasing the potential to detect increases 

in self-administration. Reductions in self-administration after 0.5 mg/kg of physostigmine 

were prevented by scopolamine but not mecamylamine, implicating a role for muscarinic 

receptors underlying inhibition of opiate reward caused by treatment with cholinesterase 

inhibitors. Physostigmine doses of 0.1 or 0.5 mg/kg decreased drug-seeking behavior after 

cue exposure, with the higher dose also effective during extinction. Cue- and extinction- 

induced responding for heroin were increased after local infusion of physostigmine into the 

VTA; but cue- induced responding was decreased after delivery to the nucleus accumbens, 

with responses during extinction uneffected [181]. Under these conditions, increased 

synaptic ACh in the VTA appeared to exceed the lower cholinergic threshold, increasing the 

likelihood of behaviors associated with reward (enhancement). Reductions in heroin-seeking 

behavior (reward inhibition) after delivery of physostigmine to the nucleus accumbens [181] 

may be due to ACh levels that preferentially activate the upper cholinergic threshold.

Administration of cholinesterase inhibitors can prevent acquisition of cocaine- or morphine- 

induced conditioned-place preference in mice [172] or rats [182], which again reflects 

reward inhibition. For the latter study, cholinesterase inhibition also attenuated place 

preference expression. In contrast, methamphetamine-induced conditioned-place preference 

in mice was not attenuated by donepezil in one study [183]. Because it stimulates reverse 

transport by the dopamine transporter [184], amphetamines can augment dopamine release 

more potently the cocaine [185]. This difference may explain why donepezil modified 

cocaine- but not methamphetamine- induced place preference in the study by Takamatsu et 

al. [183].

Treatment of cocaine-dependent human volunteers with 5 mg daily of donepezil, the lowest 

dose approved for Alzheimer’s disease, increased ratings of ‘good’ drug or ‘any’ drug for 

low-dose of cocaine, without modifying the subjective effects intermediate-dose cocaine 

[186]. When donepezil was increased to a final dose of 10 mg daily in treatment-seeking 

patients receiving cognitive behavioral therapy, cocaine-positive urines were non-

significantly increased, corresponding to values of 32 and 168% for placebo and active 

treatments respectively [187]. Apparently, donepezil administered at doses up to 10 mg daily 

interacts with the lower cholinergic threshold, augmenting drug-seeking behaviors through 

reward enhancement. Although a 23 mg daily dose of donepezil was approved which may 

offer greater improvements in some cognitive measures in Alzheimer’s disease [188], its 

effects on the course of cocaine-use disorder are unknown.

In another human laboratory study, an intermediate dose of the cholinesterase inhibitor 

rivastigmine attenuated methamphetamine-induced increases in blood pressure, anxiety, and 

“desire” to use drug, with a lower dose being ineffective [189]. Neither dose of rivastigmine 

modified the number of methamphetamine doses self-administered by dependent volunteers, 
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but intermediate-dose rivastigmine was associated with a trend for attenuation of the positive 

subjective effects of self-administered methamphetamine [190]. Rivastigmine’s 

pharmacokinetics may favor reward inhibition, in parallel to actions of cholinesterase 

inhibitors in rodents [172,178,182].

Galantamine is an additional clinically-available, reversible cholinesterase inhibitor, which 

also acts to allosterically potentiate nicotinic function [191]. The latter mechanism appears 

to augment extracellular levels of dopamine in medial prefrontal cortex [192] and nicotine-

induced norepinephrine release in hippocampus [193]. In recently detoxified alcoholics, 

treatment with galantamine treatment did not prolong abstinence, but decreased the number 

of self-reported drinks per alcohol-use episode [194]. Although it did not include an overt 

strategy for smoking cessation, this trial also reported decreased cigarette use after 

galantamine treatment [195]. For newly abstinent chronic cocaine users, daily treatment with 

galantamine improved reaction time and sustained attention [196]. In a relatively small 

preliminary trial (7 active and 7 placebo-treated cocaine-dependent patients receiving 

methadone maintenance), an escalating schedule of galantamine treatment (initiated at 8 mg 

daily over 4 weeks, subsequently advanced to 16 mg daily for an additional 4 weeks) was 

associated with trends for decreased drug use determined by either self-report or urine drug 

screen, relative to placebo treatment [197]. Four days of galantamine treatment in abstinent 

smokers decreased cigarette craving, improved response control and attention measures, and 

attenuated some subjective and physiologic effects of intravenous nicotine [198]. 

Galantamine’s unique dual mechanism of action of may allow it to preferentially cause 

reward inhibition by interacting with the upper inhibitory cholinergic threshold, without 

facilitating drug use through the lower threshold.

Alternative Interpretations—It has been proposed that reward processes are facilitated 

by VTA M5 muscarinic receptors, but attenuated by activation of M1 and M2 subtypes [199]. 

As noted above, the absence of muscarinic agonists with M5 selectivity prevents an 

evaluation of whether high agonist levels can prevent reward behavior. If the M1 muscarinic 

subtype only functioned to diminish the probability of reward behaviors, pretreatment with 

antagonists or genetic disruption would be expected to augment drug- or food- motivated 

responding. As outlined above, both of these strategies instead have an opposite effect, 

attenuating the magnitude of drug reward in rodents [140,141,144] and decreasing craving 

intensity in humans [142].

In response to various seemingly contradictory results of cholinergic medications on drug 

reward, Zernig and colleagues [200] hypothesize the existence of different ensembles of 

accumbal cholinergic interneurons that are dedicated to specific reinforcement scenarios. 

These include psychostimulant self- administration, social interaction, eating routine food, 

and consuming highly palatable treats. Variable effects of treatments that augment 

cholinergic transmission across different species and behaviors occur because of the specific 

ensemble type being activated. They posit considerable intra- and inter- individual variation 

in the spatial distribution of different ensembles. In support of this hypothesis, neuronal 

activation measured by expression of the early growth response 1 transcriptional regulator is 

shows distinct patterns in the nucleus accumbens across different individual rats. These can 

be described as diffuse, patchy, or mixed [200], and may allow information processing in the 
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nucleus accumbens to provide specificity of responding based on individual differences or 

ecologically dissimilar circumstances. Even so, the existence a more generalized system 

which can facilitate or dampen reward through the thresholds described above allows a more 

parsimonious interpretation of existing data.

Dopaminergic systems in the nucleus accumbens also exert opposing influences on 

motivation, with the direct and indirect pathways facilitating and inhibiting behavior, 

respectively [201]. For example, stimulation of direct pathway medium spiny neurons 

expressing the D1 dopamine receptor can enhance cocaine-induced conditioned-place 

preference, with attenuation of place preference after activation of neurons expressing the 

dopamine D2 receptor that are part of the indirect pathway [202]. Self- administration of 

cocaine can also be inhibited by activation of indirect pathway D2 expressing medium spiny 

neurons in the nucleus accumbens core [203]. Interestingly, accumbal D1-expressing MSNs 

have an opposite effect on food-reinforced behavior, consistent with fundamental differences 

in the neural control of food- and drug- reinforcers [204]. As noted above, cholinergic 

interneurons can stimulate dopamine release through activation of nicotinic receptors on 

dopaminergic axons [120,121]. Therefore, biphasic effects of ACh on reward behaviors 

could be mediated through differential influences on dopaminergic direct and indirect 

pathways. Dopaminergic neurons projecting to the medial prefrontal cortex have also been 

implicated in aversive signaling [205].

A subset of neurons in the lateral habenula are activated by punishment and associated 

stimuli, but suppressed by rewarding events [206]. Intravenous cocaine can produce an 

initial inhibition of some neurons in the lateral habenula, followed by delayed excitation 

occurring 15 to 30 minutes later [207]. Local injection of an antagonist for α3β4 receptors 

into the habenular complex can have opposing effects on self-administration of intravenous 

nicotine: drug taking is decreased by injection into the medial habenula, the basolateral 

amygdala, or the dorsolateral tegmentum; but increased after delivery to the interpeduncular 

nucleus [208]. For primary cultures of neurons derived from the medial habenula and 

interpeduncular nucleus, repetitive activation of nAChRs can facilitate glutamatergic release 

for sustained periods of up to two hours; while prolonged exposure to nicotine can deactivate 

this response, requiring up to 24 hours for full recovery [86]. An important question is how 

function of the habenular complex interacts with thresholds mediated by the VTA-accumbal 

cholinergic transmission.

Clinical Implications of Cognitive Effects—Successful prevention of relapse in drug 

use disorders involves development of new coping strategies to situations that would 

otherwise stimulate drug-seeking behavior, and establishing new social contacts who do not 

use illicit substances. Depending upon the treatment program, relapse prevention may rely 

on attendance at clinical appointments, taking a medication to facilitate abstinence, and 

attempts at being employed. Cognitive-behavioral approaches can improve outcomes in 

cocaine use disorders, perhaps through enhancement of decision making. During recovery 

from each of the major forms of drug abuse, previous studies have demonstrated impairment 

in learning, memory, and attention [209-211]. Two outpatient-based studies have shown that 

greater delay after use of cocaine is associated with more severe impairment in cognitive 

performance [212,213]. Accordingly, protracted withdrawal from cocaine use leads to more 
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pronounced cognitive deficits, which are less severe immediately following use of cocaine. 

If so, at least part of the motivation for relapse to drug use may be cocaine's ability to 

normalize mental function during recovery from cocaine dependence.

Because impaired learning, memory, and attention is one of the more well-validated actions 

of cholinergic antagonists, these agents have at least a relative contraindication for use in 

patients with substance abuse disorders due their potential for exacerbating cognitive 

deficits. Even so, recent findings of improved treatment compliance and decreased craving 

intensity after muscarinic blockade in treatment-seeking patients recovering from cocaine 

use [142] would support a lessor role of cognitive actions. It is also unclear whether use of 

cholinergic agonists or cholinesterase inhibition can ameliorate cognitive deficits in this 

setting. Treatment with galantamine appears to do so during either nicotine withdrawal [198] 

or recovery from cocaine dependence [196]. Further studies are needed which combine 

measures of cognitive function and drug-motivated behaviors.
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Highlights

Different classes of cholinergic agents produce biphasic effects on appetitive responding.

Phasic activation of cholinergic tone in the nucleus accumbens and VTA above a low-

level threshold appears to increase the likelihood of rewarded behaviors.

Greater and more prolonged activation in the same brain regions above a second higher-

level threshold is associated with a decreased likelihood of reward.

Cholinergic effects on the nicotinic receptor function, dopamine release, and the firing of 

medium spiny neurons are potential mediators of thresholds that shape behavior.

High-affinity β2* nicotinic receptors appear to play a greater role in reward enhancement, 

with low-affinity homomeric α7 receptors underlying reward inhibition.
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Figure 1. Schematic Outline of Biphasic Cholinergic Effects on Reinforcing Events
Hypothetical values for cholinergic transmission in the nucleus accumbens and VTA are 

shown on the vertical axis in arbitrary units, with time plotted horizontally. More precisely, 

the vertical axis corresponds to momentary agonist activity at cholinergic receptors. This can 

be provided by either endogenous ACh or medications with nicotinic or muscarinic agonist 

properties. Cholinergic transmission contributes to the rewarding properties of different 

events, if its level is increased to a magnitude between the lower and upper thresholds. 

Further increases above the upper threshold diminish the likelihood of reward. For example, 

pretreatment with the cholinesterase inhibitor donepezil prevents degradation of ACh in the 

synaptic cleft. Relatively low doses of donepezil typically used in humans can increase the 

subjective effects of low-dose cocaine as condition A is changed to condition B (reward 

enhancement) [186]. In contrast, if administered at relatively high doses in rodents, this 

agent can also change condition B to C, decreasing drug-reinforced behavior (reward 

inhibition) [172,178]. Because reward inhibition occurs at the upper limb of the dose-

response for cholinergic agents, it is often associated with nonspecific disruption of behavior 

through adverse events.
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Table 1

Properties of the cholinergic systems underlying reward enhancement and inhibition.

Threshold
Level

Timing Reward [and
Affective]
Effects

Description

Lower Rapid, Short-
 Term

Enhancement
 [positive]

Under baseline, unstimulated conditions (Figure 1, State A),
short-term, increases in VTA-accumbal cholinergic transmission
that rise above a lower cholinergic threshold promote positive
affective states, increasing the probability of reinforcement
(Figure 1, State A is advanced to B).

Upper Delayed,
 accumulates
 over Time

Inhibition
 [negative]

Larger and more prolonged increases in VTA-accumbal
cholinergic transmission that exceed a second, higher value,
have an opposite effect, facilitating negative affective states, and
decreasing the likelihood of reinforcement (State B is advanced
to C).
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