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Background

Isoniazid (isonicotinic acid hydrazide, INH; PubChem ID 3767) [1] is a first-line anti-

mycobacterial agent used to treat active or latent tuberculosis (TB) infections generated by 

Mycobacterium tuberculosis [2–4]. INH has been in clinical use for over 60 years [1] and 

standard regimens for active TB infections include two months treatment with INH, 

rifampicin, pyrazinamide and ethambutol or streptomycin, followed by an additional four 

months of INH and rifampicin treatment [2, 4, 5]. Management of latent TB infections 

typically involves administration of INH alone (for 6 or 9 months) or in combination with 

rifapentine (for 3 months) to individuals at high risk of developing active TB [6, 7]. 

Although effective, current therapeutic regimens are very lengthy and difficult to implement 

[8], and TB remains a major global health problem with more than 9 million new cases and 

1.5 million deaths reported in 2013 [9].

INH formulations are available as tablets (50, 100, or 300 mg) or solution (50 mg/5 ml) for 

oral administration, or as injection solution (100 mg/ml) for intramuscular use. Two 

combination formulations have additionally been approved for anti-TB therapy: Rifamate® 

(capsules with 150 mg INH and 300 mg rifampin) and Rifater® (tablets with 50 mg INH, 

120 mg rifampin and 300 mg pyrazinamide) [10]. All drug labels begin with a boxed 
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warning regarding hepatotoxicity associated with INH therapy; peripheral neuropathy is 

another common adverse reaction that can be avoided by co-administration of pyridoxine 

supplements to susceptible individuals (e.g. malnourished, pregnant/breastfeeding, etc.) [2, 

4, 5]. Treatment-induced hepatotoxicity and other serious adverse reactions cause 

discontinuation in up to 10% of patients treated with standard regimens of first-line anti-TB 

drugs, including INH [7, 11, 12]. Patients who develop INH-induced hepatotoxicity present 

with symptoms such as abdominal pain, jaundice, nausea and vomiting, whereas features of 

drug hypersensitivity (e.g. fever, rash, arthralgia, eosinophilia) are rare [4, 12, 13]. Although 

extensively studied, the underlying mechanisms for INH-induced hepatotoxicity remain 

unclear [14]. This is partly due to the complexity of these mechanisms, but also to the 

difficulty in distinguishing between drug-specific and patient-related factors that may 

determine susceptibility to INH toxicity [15]. This manuscript outlines the basic aspects of 

INH absorption, distribution, metabolism and excretion (ADME) in humans, with special 

emphasis on the influence of genetic polymorphisms in genes encoding xenobiotic-

metabolizing enzymes that modulate INH pharmacokinetics and, consequently, their 

association with INH-induced hepatotoxicity.

ADME/Pharmacokinetics

Few studies have been conducted investigating the in situ intestinal permeability of INH 

alone, though studies have been performed showing that INH has low permeability in the 

stomach and high permeability in the three segments of the small intestine (duodenum, 

jejunum, ileum) of rats [16, 17]. While the apparent permeability of the intestines and 

intestinal absorption rate constant of INH appears to decrease upon simultaneous perfusion 

with pyridoxine, no significant effects were concomitantly observed on INH 

pharmacokinetics [18]. It is of note that the bioavailability of INH was not significantly 

affected in tuberculosis patients who had undergone surgical procedures involving resection 

of the stomach or parts of the intestinal tract [19, 20]. Absorption may be reduced by 

concomitant administration of sugar or following food intake. This is likely due to the 

conversion of INH to a hydrazone species, making it less available for absorption [21–23]. 

INH seems to be widely distributed to all fluids and tissues, according to the apparent value 

of distribution volume (0.6 L/kg on average), with the largest accumulation in the liver; the 

pharmacological model for INH seems to follow first-order kinetics [24].

In the liver and intestines, INH is predominantly metabolized (50–90%) via N-acetylation of 

its hydrazine functionality by arylamine N-acetyltransferase 2 (NAT2; E.C. 2.3.1.5) to N-

acetylisoniazid (AcINH) (Figure 1) [14, 25–29]. INH can also be hydrolyzed to hydrazine 

(Hz) by amidase with concomitant formation of isonicotinic acid (INA); it can also be 

metabolized into oxoacid hydrazone species [14, 26–30]. In turn, AcINH may be 

enzymatically hydrolyzed by amidase to form acetylhydrazine (AcHz) and INA [14, 27–32]. 

Additionally, AcHz can be deacetylated to Hz via hydrolysis by amidase or be further 

acetylated by NAT2 to diacetylhydrazine [14, 27–30, 33]. Hz can be broken down to 

ammonia or acetylated to AcHz by NAT2 [27–29]. None of the metabolites have known 

antitubercular properties, apart from the hepatotoxic AcHz [23].
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INH, AcHz, and Hz are likely oxidized, in part, by cytochrome P450 2E1 (CYP2E1) into 

potentially hepatotoxic intermediates, however explicit evidence of this has not yet been 

found [33–35]. These intermediates can then be dehydrated into compounds that covalently 

bind with macromolecules in hepatocytes causing necrosis and, possibly, autoimmunity [14, 

28, 36]. The glutathione S-transferase (GST) enzyme family can conjugate these potentially 

harmful metabolites with glutathione, effectively removing these toxic metabolites [26, 35, 

37]. Similar to CYP2E1, there have not been any studies explicitly detailing the metabolism 

of INH accomplished by the GST enzymes [37].

Urinary excretion is the primary elimination route (approximately 80%) of most INH 

metabolites (AcINH, AcHz, diacetylhydrazine) [38]; INA may be excreted as a free acid 

metabolite or a conjugated species with glycine (isonicotinyl glycine) [27–29]. Less than 

10% of the oral INH dose is excreted in the feces [39].

INH and toxicity

Anti-tuberculosis treatment drug-induced liver injury (ATT-DILI) is an adverse reaction that 

may lead to poor compliance or interruption of treatment, and thus has implications for the 

control of TB infections [13, 40]. INH treatment is associated with increased activity of liver 

enzymes in 20% of patients and also with severe hepatotoxicity in 1–2% of patients [41–44]. 

INH thus constitutes the leading cause of hepatotoxicity in many countries [41–44]. A better 

understanding of the risk factors and mechanisms behind INH-induced hepatotoxicity may 

help in the prevention and mitigation of this complex drug reaction [42]. Reported possible 

risk factors include advanced age, female sex/pregnancy, low body weight/malnutrition, 

alcoholism, pre-existing abnormal liver function/liver transplantation, co-administration with 

other hepatotoxic agents, chronic hepatitis B and C infection, AIDS, and genetic factors [13, 

42]. No consistent associations between race and INH-induced hepatotoxicity are evident 

[13]. Despite these postulated associations, the precise mechanism underlying INH-induced 

hepatotoxicity remains unclear; numerous different mechanisms are likely to be involved 

and influenced by multiple factors [13, 15, 42].

INH-induced hepatotoxicity has traditionally been attributed to the cytotoxic effects of INH 

metabolites, particularly AcHz and Hz [14, 29]. However, several features of this 

hepatotoxicity, such as a delay in liver injury after drug onset or the activation of 

macrophages by INH, are indicative of an immune response (see recent review by Metushi 

and colleagues for a thorough account of possible immune-related components of INH 

DILI) [14]. A recent study also reported detection of covalent INH adducts with CYP2E1, 

CYP3A4 and CYP2C9 in the serum of INH-treated patients developing ATT-DILI, pointing 

to immunological response as the underlying mechanism of hepatotoxicity [45].

As previously discussed, INH, AcHz, and Hz can be oxidized, potentially by CYP2E1, to 

hydroxyl-hydrazine intermediates that are then dehydrated to more damaging metabolites. 

These metabolites have the capacity to covalently bind macromolecules, causing liver injury 

[14, 15, 28, 36]. Hz and ammonia may also contribute to toxicity [14, 26, 29]. AcINH is less 

toxic than INH, but is not a potential therapeutic alternative due to its 100-fold less anti-

mycobacterial activity and its ability to be hydrolyzed to hepatotoxic AcHz [14, 26–29].
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Mitochondrial abnormalities have been linked to the toxicity of an array of drugs [46]. With 

respect to INH-induced hepatotoxicity, mitochondrial dysfunction appears to be caused by 

Hz, support for which comes from the observation that rat liver cells develop 

megamitochondria upon exposure to this particular metabolite prior to apoptosis. This 

finding is consistent with adaptive responses to oxidant stress and/or reduced oxygen 

consumption rates [47]. Mechanistically, the finding that Hz inhibits the succinate 

dehydrogenase enzyme in a dose-dependent manner suggests that complex II and/or the 

tricarboxylic acid cycle may also be affected, but the nature of this effect is unclear [48]. The 

various postulated mechanisms underlying the toxicological hazard posed by INH on liver 

cells have been extensively discussed recently [12] and include oxidative stress and 

disruption of energy homeostasis attributable to mitochondrial damage.

It is also worth noting that INH is rarely administered alone and some of the toxic effects 

seen in patients treated with INH may be due to, or exacerbated by, drug-drug interactions 

[7, 12, 13, 49–54].

Pharmacogenetics

As ATT-DILI remains unpredictable, even when environmental factors and drug regimen are 

considered, polymorphisms within genes involved in the INH pharmacokinetic pathway 

have been investigated in order to identify possible biomarkers for hepatotoxicity risk. These 

associations and the possible reasons behind a lack of consensus between studies are 

discussed below and summarized in Table 1.

NAT2

Studies unraveling the genetic basis of N-acetylation first appeared around 1990; an 

exhaustive review of INH acetylation pharmacogenetics in the NAT2 pre-genotyping era was 

published by Weber and Hein [55] and the subject has subsequently been reviewed by many 

authors, more recently by McDonagh and colleagues [56]. When examining plasma 

concentrations of INH over time after an oral dose, a bimodal pattern was originally 

observed; higher plasma levels and reduced clearance of the drug were seen in slow 

acetylators compared to rapid acetylators. More refined phenotypic analysis further 

demonstrated a trimodal population distribution pattern; subjects can be divided into rapid, 

intermediate or slow acetylators [55]. Following the development of genotyping techniques 

for the NAT2 gene, prediction of the acetylator phenotype has become possible through 

genetic testing. There are many different alleles described for the NAT2 gene (NAT Gene 

Nomenclature website) and an individual’s genotype can be predictive of rapid, slow or 

intermediate acetylator phenotype, depending on the presence of two “rapid” alleles, two 

“slow” alleles or one of each, respectively [57]. The reference NAT2*4 allele is the most 

common NAT2 allele conferring the rapid acetylator phenotype and is associated with 

increased metabolism and clearance of INH [56, 58, 59]. Conversely, the polymorphic NAT2 
alleles of the main allelic groups *5, *6, *7 and *14 encode for slow acetylator enzyme 

variants that may compromise the drug-metabolizing ability of individuals [56].

An investigation of NAT2 genotype as a pharmacogenetic biomarker for personalization of 

INH therapeutic dosage demonstrated a linear relationship between clearance of the drug 
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and the number (0 in slow, 1 in intermediate or 2 in rapid acetylators) of NAT2*4 alleles; 

this specific parameter accounted for 88% of the INH clearance variability observed in the 

Caucasian population studied [60]. Similar conclusions were drawn by another study with 

Japanese TB patients treated with INH and rifampicin. Genotyped NAT2 slow acetylators 

(no *4 allele) exhibited significantly decreased acetylation of INH and Hz, resulting in 

increased serum concentrations of INH compared to intermediate (one *4 allele) or rapid 

(two *4 alleles) acetylators [26]. Rapid acetylators display higher levels of AcINH and 

AcHz in serum and clear AcHz more quickly when compared to slow acetylators, whereas 

slow acetylators have higher exposure to AcHz and excrete more unchanged INH in urine 

[13, 26].

Apart from INH acetylation, NAT2 also catalyzes the acetylation of AcHz to non-toxic 

diacetylhydrazine [55], and thus slow acetylator status causes accumulation of both Hz and 

AcHz to potentially hepatotoxic levels [15, 61]. Consequently, the NAT2 slow acetylator 

phenotype and genotype have been associated with an increased risk of INH-induced 

hepatotoxicity in the majority of published pharmacogenetic studies (Table 1); the patient 

cohorts genotyped are of various geographic origins, mainly from South America [62–66], 

East Asia [35, 67–75], South Asia [40, 76–78], Iran [79], Turkey [80] and Tunisia [81]. The 

labels of all INH-containing drug formulations currently approved by the FDA inform that 

slow acetylators may have increased blood levels of the compound, which results in an 

increased risk of hepatotoxicity and peripheral neuropathy [10]. The NAT2 gene is included 

in the pharmacogenomic biomarkers list of the FDA in relation with INH, but no specific 

actions are recommended on the basis of this information.

Contradictory results regarding the acetylator status and risk of INH hepatotoxicity have also 

been reported in the literature. An early study [36] attributed INH hepatotoxicity to the 

NAT2 rapid acetylator phenotype, presumably associated with increased plasma levels of 

AcHz. However, a series of ensuing pharmacological studies (reviewed by Weber and Hein 

[55]) showed the opposite or no association between the acetylator phenotype and INH 

hepatotoxicity. A small number of recent studies have also reported no association between 

the acetylator genotype and INH-induced hepatotoxicity [82–86] (Table 1).

A recent clinical trial reported a significantly lower relative risk of unfavorable events in 

patients treated with an INH dose based on NAT2 genotype, compared to those treated with 

the standard dose, supporting a clinically-relevant association between NAT2 variants and 

INH pharmacokinetics [87]. Importantly, in the genotype-based treatment group, efficacy of 

treatment in NAT2 slow acetylators was not reduced despite the lower doses administered. 

Also, incidence of INH-induced liver injury was not increased in rapid acetylators when 

INH was given in higher doses [87]. More independent studies are required to verify these 

results.

With regard to individual NAT2 single nucleotide polymorphisms (SNPs), rs1799930 

(NM_000015.2:c.590G>A, signature SNP for the NAT2*6 allelic group) has been associated 

with decreased acetylation of INH and clearance of the drug, which correlated with an 

enhanced risk of drug-induced hepatitis [64, 75, 77]. The NAT2*6 signature polymorphism 

has been reported to confer an ultra-slow acetylator phenotype [88, 89], and this could 
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explain the higher risk of INH-induced hepatotoxicity in slow acetylators carrying this 

particular SNP. A slow acetylator haplotype composed of rs4646244 

(NM_00015.2:c.-1144T>A) allele A, rs4646267 (NM_000015.2:c.-949A>G) allele A, 

rs1799930 allele A, and rs1799931 (NM_000015.2:c.857G>A, signature SNP for the 

NAT2*7 allelic group) allele G, has been associated with an increased risk of hepatotoxicity. 

Patients with this haplotype had significantly decreased acetylation and clearance of INH, as 

compared to the other haplotypes examined, and this is likely attributed to the presence of 

the ultra-slow NAT2*6 signature SNP [75]. Another study has correlated genotype AA of 

rs1495741 (NC_000008.10:g.18272881G>A, a tag SNP located about 14 kb downstream of 

NAT2) with increased risk of INH hepatotoxicity [69]. This association is indirect, as the A 

allele of rs1495741 is likely to be in linkage disequilibrium with a slow NAT2 variant [90].

CYP2E1

CYP2E1 is involved in the oxidation of INH, AcHz, and Hz, resulting in likely hepatotoxic 

intermediates that undergo further dehydration to potentially harmful products [14, 26, 28, 

33–35, 68]. Polymorphisms of the CYP2E1 gene have been examined in association with 

risk of INH-mediated ATT-DILI, mainly by investigators in South [40, 76–78, 84] and East 

[26, 35, 67, 68, 71, 74, 75, 91–93] Asia and South America [62, 63, 65, 66]. Although some 

studies have reported higher risk of ATT-DILI in INH-treated patients who bear high-activity 

alleles of CYP2E1, particularly *1A and *6 [76, 84, 85, 91, 92], other studies have found no 

association [35, 62, 63, 65–68, 71, 74, 75, 77, 78, 86, 93, 94] and, therefore, a direct role for 

CYP2E1 in INH-induced hepatotoxicity remains widely controversial (Table 1). Evidence 

suggests that CYP2E1 polymorphisms may be associated with increased severity of INH 

related ATT-DILI, rather than enhanced susceptibility to it [71]. Studies also report increased 

risk of ATT-DILI in INH-treated patients who combine high-activity CYP2E1 and slow 

NAT2 genotypes [66, 67, 76, 91, 95].

Since the generation of many INH metabolites does not depend exclusively on CYPs, 

attention has somewhat shifted away from CYP2E1 as a major predictor of hepatotoxicity 

[12, 34]. Nonetheless, the observation that CYP2E1 is expressed in mitochondria and is one 

of the CYP forms that generates relatively high levels of reactive oxygen species may point 

to a role for CYP2E1 in increasing the extent of oxidative stress [96, 97]. Moreover, anti-

INH and anti-CYP2E1 antibodies have been found in the serum of patients with INH-

induced liver failure; INH-CYP2E1 covalent adducts were also detected, as well as 

antibodies against them [45]. Such auto-antibodies are considered markers of CYP2E1-

directed autoimmunity, which may lead to liver injury [98]. INH has been shown to induce 

CYP2E1 enzyme activity [99] and experiments with animal models support CYP2E1-

mediated hepatotoxicity when INH is administered [100].

GSTM1 and GSTT1

The GSTs are involved in the detoxification of numerous drugs and oxidative stress 

products; due to this role, polymorphisms of the GSTM1 and GSTT1 genes have also been 

investigated in risk of ATT-DILI [101]. GSTs are known to be involved in the metabolism of 

anti-TB drugs via conjugation of potentially harmful metabolites; however, the specifics 

about this interaction are unknown [35, 37]. Deficiencies in GST activity due to 

Klein et al. Page 6

Pharmacogenet Genomics. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



homozygous null mutations in GSTM1 and GSTT1 may have the potential to modulate 

susceptibility to INH-induced hepatotoxicity [15]. Indeed, several published studies have 

reported an association between GSTM1 homozygous null genotype and increased risk of 

ATT-DILI [26, 37, 102, 103], although the majority of studies report no association found 

[35, 63, 65, 74, 92, 93, 104–106] (Table 1). A similar pattern is seen for the GSTT1 
homozygous null genotype, with one study from Spain describing an association with 

increased risk of ATT-DILI [106], but the majority of studies (in Asia or Brazil) reporting no 

association [35, 37, 63, 65, 74, 93, 102–105] (Table 1). Studies have also shown an additive 

effect of combined GSTM1 and GSTT1 null genotypes on risk of INH hepatotoxicity [40, 

103], as well as of combined NAT2, CYP2E1, GSTM1 and/or GSTT1 polymorphic 

genotypes [63]. There does not seem to be a consistent pattern of factors that indicate why 

these contradictory results have been observed.

Other genes

It is likely that multiple genetic factors and gene-gene interactions are involved in INH-

induced hepatotoxicity risk, as is the case for other hepatotoxic drugs [107]. Indeed, 

significant associations with risk have been reported for genotypes of other genes [102, 108] 

(Table 1), which further complicates the assessment of possible risk factors. INH liver injury 

was associated with certain major histocompatibility complex (MHC) class II alleles, 

including human leukocyte antigen (HLA) haplotypes, which supports the role of the 

immune system in INH toxicity [14]. The absence of the HLA-DQA1*0102 allele and the 

presence of the HLA-DQB1*0201 allele were reported to be independently associated with 

increased risk of ATT-DILI in 331 TB patients [109]; however, the Bonferroni correction 

introduced to compare the distribution of both alleles in ATT-DILI and non-ATT-DILI 

patients could only confirm the negative association of DQA1*0102 with ATT-DILI, but was 

not clearly explained. Generally, only some cases of ATT-DILI associated with INH are 

suggested to be immune-mediated and HLA-associated, which may explain the discrepancy 

observed in some studies [14]. Overall, a direct association of ATT-DILI with HLA alleles 

may be difficult or not possible to establish at this stage [110].

One study in Japanese patients found associations between INH-induced hepatotoxicity and 

particular polymorphisms in the genes involved in one of the antioxidant pathways. Among 

these positive correlations, one polymorphism in NOS2A, which encodes inducible nitric 

oxide synthase, causes an increase in nitric oxide production. Polymorphisms in BACH1 
(encoding basic leucine zipper transcription factor 1) and MAFK (encoding v-maf avian 

musculoaponeurotic fibrosarcoma oncogene homologue K) result in suppression of the 

nuclear factor erythroid 2-like 2 (Nrf2) pathway [108] (Table 1). However, it remains 

mechanistically unclear how these mutations may contribute to ATT-DILI.

Meta-analyses of NAT2, CYP2E1, GSTM1 and GSTT1 genotypes

Several meta-analyses have been published to examine the association between ATT-DILI 

and genetic variants of drug metabolizing enzymes. A large meta-analysis of 38 studies 

found NAT2 slow acetylator genotype to be significantly associated with risk of ATT-DILI 

[111]. A meta-analysis of 4 studies found an association between increased risk of ATT-
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DILI and NAT2 slow acetylator status (defined as non-carrier of the *4 allele, as opposed to 

rapid acetylator status defined as heterozygous or homozygous for *4) in TB patients of 

Asian ethnicity (OR=2.52, CI=1.49–4.26, p-value not provided) [112]. However, in another 

larger meta-analysis with some overlapping studies, a significant association between ATT-

DILI and NAT2 slow acetylator status was observed in both Asian and non-Asian patients 

[113]. The same meta-analysis, which also analyzed different treatment combinations, found 

a significantly increased risk of ATT-DILI with NAT2 slow acetylator status compared to the 

rapid status in patients treated with INH, rifampicin, pyrazinamide and ethambutol (9 

studies, OR=4.09, 95% CI=2.78–6.03, p<0.001), or INH and rifampicin (3 studies, 

OR=34.30, 95% CI=10.41–113.00, p<0.001), but not with INH only (2 studies, OR=2.36, 

95% CI=0.52–10.73, p<0.266) [113].

One meta-analysis showed that the CYP2E1*1A/*1A high-activity genotype is significantly 

associated with risk of ATT-DILI, but only in East Asian patients [111]. CYP2E1*1A/*1A 
genotype was significantly associated with increased risk of ATT-DILI compared to all other 

genotypes in a meta-analysis of 4 studies (OR=2.22, 95% CI=1.06–4.66, p=0.03) [112]. 

Finally, the CYP2E1*1A/*1A genotype was determined to be a risk factor for ATT-DILI, 

particularly when combined with the slow acetylator NAT2 genotype (OR=3.10, 95% 

CI=1.83–5.26. p<0.0001) [95].

While two meta-analyses have shown significant associations of the GSTM1 null genotype 

with risk of ATT-DILI, neither meta-analysis found such an association for the GSTT1 null 

genotype [111, 112]. A recent large-scale meta-analysis of GST variants, which included 13 

and 12 case-control studies for the GSTM1 and GSTT1 null genotypes, respectively 

(approximately 900 cases and 1900 controls for each gene), found evidence that the null 

genotype of GSTM1, but not GSTT1, was associated with marginally increased 

susceptibility to ATT-DILI [114], which was consistent with the previous meta-analyses 

[111, 112].

Conclusion

The current consensus among the literature is that one mechanism is unlikely to explain 

INH-induced hepatotoxicity and that numerous pathways are probably involved. Different 

drug-specific mechanisms have been suggested, but most supporting data have been 

generated from cellular and animal models and thus do not account for the multitude of 

factors that may contribute to susceptibility to INH-induced hepatotoxicity in clinical 

settings. Variants of enzymes involved in the INH metabolic pathway have been associated 

with ATT-DILI, particularly the slow acetylator variant of NAT2. However, upon comparing 

studies in Table 1, there does not seem to be an obvious underlying factor that explains why 

some studies found an association and others did not; it is likely that many factors, such as 

inconsistent genotyping and phenotyping methods, study design, anti-TB drug regimen and 

the overall condition of patients, may contribute to risk of INH-induced hepatotoxicity. 

Future investigations that utilize DNA sequencing may lead to further identification of 

variants contributing to ATT-DILI. Large-scale, robust analyses of these underlying genetic 

and environmental risk factors in clinical settings will help uncover the full picture of these 

important and complex adverse reactions.
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Figure 1. 
Graphic representation of the candidate genes involved in the pharmockinetics of isoniazid. 

A fully interactive version of this pathway is available online at PharmGKB at http://

www.pharmgkb.org/pathway/PA166151813.
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Table 1

Genetic variants in genes within the isoniazid pharmacokinetic pathway associated with anti-TB treatment 

drug-induced liver injury (ATT-DILI).

Gene Genetic Variant Pharmacogenetic Association Referencesa

NAT2 Slow acetylator genotype NAT2 slow acetylator genotype is associated with an 
increased risk of ATT-DILI.

[35, 40, 62–81, 
91].

NAT2 slow acetylator genotype is not associated with 
an increased risk of ATT-DILI.

[82–86].

GSTM1 Nullb genotype GSTM1 null genotype is associated with an increased 
risk of ATT-DILI.

[37, 102].

GSTM1 null genotype is not associated with an 
increased risk of ATT-DILI.

[35, 63, 65, 74, 92, 
93, 104–106].

GSTT1 Nullb genotype GSTT1 null genotype is associated with an increased 
risk of ATT-DILI.

[106].

GSTT1 null genotype is not associated with an 
increased risk of ATT-DILI.

[35, 37, 63, 65, 74, 
93, 102, 104, 105].

CYP2E1 *1A, c1, D
c1 is defined as the wildtype allele at 
rs2031920 (C) and rs3813867 (G), and D is 
defined as the presence of the DraI restriction 
site denoted by the wildtype allele at 
rs6413432 (T).

CYP2E1*1A is associated with increased risk of 
ATT-DILI.

[85, 91, 92]

CYP2E1*1A is not associated with increased risk of 
ATT-DILI.

[35, 62, 63, 65–68, 
71, 74, 75, 77, 78, 
86, 93, 94].

*6, C
C is defined as the lack of the DraI restriction 
site denoted by the variant allele at rs6413432 
(A).

CYP2E1 *6 is associated with ATT-DILI. [76, 84].

CYP2E1 *6 is not associated with ATT-DILI. [35, 63, 66, 78, 
93].

rs2070672
NM_000773.3:c.-352A>G

Presence of the G allele is not associated with ATT-
DILI.

[75].

rs2070673
NM_000773.3:c.-333A>T

Presence of the T allele is not associated with ATT-
DILI.

[75].

HLA-DQA1 *0102 Lack of this allele is associated with ATT-DILI. [109].

HLA-DQB1 *0201 The presence of this allele is not associated with 
ATT-DILI.

[109] – before the 
Bonferroni 
correction, this 
allele was 
associated with 
ATT-DILI.

SOD2 rs4880
NM_000636.2:c.47T>C

Presence of the C allele is associated with increased 
risk of DILI when treated with an anti-TB drug 
regimen, as well as other drugs.

[102].

NOS2A rs11080344
NM_000625.4:c.1281+1205A>G

Genotype CC (positive strand) is associated with 
increased risk of ATT-DILI.

[108].

BACH1 rs2070401
NM_001186.3:c.*331A>G

Genotype GG is associated with increased risk of 
ATT-DILI.

[108].

MAFK rs4720833
NM_002360.3:c.-45+3869A>G

Presence of the A allele is associated with increased 
risk of ATT-DILI.

[108].

a
See www.pharmgkb.org for detailed annotations for individual studies.

b
Null genotype refers to the absence of the gene.
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