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We studied the evolution of developmental plasticity in populations of

Drosophila melanogaster that evolved at either constant or fluctuating tempera-

tures. Consistent with theory, genotypes that evolved at a constant 168C or

258C performed best when raised and tested at that temperature. Genotypes

that evolved at fluctuating temperatures performed well at either temperature,

but only when raised and tested at the same temperature. Our results confirm

evolutionary patterns predicted by theory, including a loss of plasticity and a

benefit of specialization in constant environments.
1. Background
Optimality models predict that species evolve to perform best in the range of

conditions they experience most frequently [1,2]. A generalist, which performs

well under many conditions, would only outperform a specialist when con-

ditions fluctuate from generation to generation [3]. However, generalists must

spend more energy to function at different extremes [4], usually by making iso-

forms of proteins and stabilizing the cellular environment [5]. This energetic

cost favours a genotype that anticipates future conditions and develops the

appropriate phenotype [6], a process called developmental plasticity. The cost

of sensing environmental change and the risk of misinterpreting this change

offset the benefit of developmental plasticity [7]. Thus, developmental plasticity

should evolve when environments fluctuate slowly and reliably.

Ideally, hypotheses about the evolution of developmental plasticity would be

tested by manipulating environmental fluctuations and observing genetic

changes in plasticity [8,9]. However, experimental studies of evolution in fluctu-

ating environments have focused on unicellular organisms ([10–13], but see [14]),

which develop far less than plants and animals do. Thus, we lack sufficient

evidence to infer whether the plasticity of multicellular organisms evolves

according to hypothetical costs and benefits.

Here, we evaluated the evolutionary theory of developmental plasticity

with experimental populations of Drosophila melanogaster that evolved at either

constant or fluctuating temperatures [15]. During experimental evolution, fluctu-

ations in temperature occurred between generations, analogous to the seasonal

variation in temperature that occurs in temperate environments. Following

evolution, we compared the thermal sensitivity of flight performance [16]

between genotypes from fluctuating environments and genotypes from constant

environments. Our experimental design enabled us to tease apart the genetic,

developmental and acute effects of temperature on performance.
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Table 1. All likely models included an effect of selective treatment on flight performance. Likely models are ranked according to their Akaike information
criterion (AICc). For each model, we provide the Akaike weight, which equals the probability that the model describes the data better than other models. All
models contained an intercept and error terms associated with experimental population and isofemale line.

model parameters log likelihood AICc DAICc Akaike weight

(1) dev temp þ test temp þ selection þ (dev temp � test

temp) þ (dev temp � selection) þ (test temp � selection)

12 2340.3 705.1 0 0.62

(2) dev temp þ test temp þ selection þ (dev temp � test

temp) þ (dev temp � selection) þ (test

temp � selection) þ (dev temp � test temp � selection)

14 2339.6 707.9 2.76 0.16

(3) dev temp þ test temp þ selection þ (dev temp � test

temp) þ (test temp � selection)

10 2344.5 709.4 4.28 0.07

(4) dev temp þ test temp þ selection þ (dev temp � test

temp) þ (dev temp � selection)

10 2344.7 709.8 4.68 0.06

(5) dev temp þ test temp þ (dev temp � test temp) 6 2348.9 709.8 4.74 0.06

(6) dev temp þ test temp þ selection þ (dev temp � test temp) 8 2347.8 711.8 6.69 0.02
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2. Material and methods
We studied populations of D. melanogaster that evolved at either a

constant 168C (C populations; n ¼ 5), a constant 258C (H popu-

lations; n ¼ 5), or temporal fluctuations between 168C and 258C
(T populations; n ¼ 5). Temporal fluctuations were achieved by

moving populations between 168C and 258C every four weeks.

These populations were sampled after 32 and 64 generations

at 168C and 258C, respectively; populations at fluctuating tempera-

tures experienced an intermediate number of generations. Yeaman

et al. [15] described the origin and maintenance of the experimental

populations. Isofemale lines were founded by pairing virgin

flies from each population [17]. These lines were subsequently

transferred to vials of fresh medium every three weeks.

Our experiment included 6–8 isofemale lines from each

population (31, 31 and 38 lines from T, C and H populations,

respectively). We controlled the density of each line for two gen-

erations by mating two pairs of flies in a new vial. These adults

were removed after 48 h to limit the density of offspring. Seven

days after offspring emerged from pupae, females from each

line were transferred to fresh vials kept at 20.58C—a temperature

that lies between those experienced during evolution. After two

generations, flies were divided randomly between an incubator

set at 168C and another set at 258C. About 7–10 days after

adults emerged, we measured performances of two females of

each isofemale line from each developmental temperature.

We quantified flight performances at 168C and 258C in a

custom chamber located in a temperature-controlled room.

Twenty-four hours before testing, each fly was anaesthetized

with CO2, transferred to a new vial of medium and placed in

an environmental room set at the test temperature (+0.38C).

The next day, each fly was transferred without anaesthesia to

an empty vial just prior to testing performance. The flight

chamber (25.4 � 25.4 � 25.4 cm) was constructed from clear

acrylic, with a circular opening of 2.5 cm in diameter at the

top. This opening was temporarily sealed by a movable plate.

A vial with a fly was inverted on top of this plate. When the

fly was on the wall of the vial, the plate was slid aside and the

fly was tapped into the chamber. Flies either fell uncontrollably

or flew to a surface. To ensure objectivity, a fall was scored

when a fly landed on the floor within 10 cm of the point below

the vial. The order of testing at each temperature was random-

ized among selective treatments, experimental populations, and

isofemale lines.
To model the probability of flight, we fit a generalized linear

mixed model using the nlme library of the R Statistical Package

[18]. Selective treatment, developmental temperature, and test

temperature were fixed factors. Isofemale line was a random

factor, nested within the random factor of experimental population.

Following Burnham & Anderson [19], we used multimodel aver-

aging to estimate the most likely values of means. First, we

estimated the most likely random effects according to Zuur et al.
[20]. Then, we used the MuMIn library [21] to fit all possible sets

of fixed effects to the data. Finally, we calculated the Akaike infor-

mation criterion and Akaike weight of each model (table 1), the

latter being the probability that the model best describes the data.

The weighted average of each parameter, including estimates

from all models, was used to calculate the mean for each group.

This approach eliminates the need to interpret p-values, because

all models (including the null model) contributed to the most

likely value of each mean.
3. Results and discussion
Our results confirm major patterns of evolution predicted by

theory, including a loss of developmental plasticity and a

benefit of thermal specialization in constant environments

(figure 1). Regardless of their evolutionary background, flies

performed worse when raised at one temperature and sub-

sequently tested at another temperature, suggesting that flies

benefitted from developmental responses to temperature [22].

Adaptive plasticity was most pronounced in genotypes from

T populations, which evolved at fluctuating temperatures.

When raised and tested at 168C, these genotypes performed

almost as well as genotypes from C populations. Moreover,

when raised and tested at 258C, genotypes from T populations

performed as well as genotypes from H populations. However,

this adaptive plasticity was associated with a loss of perform-

ance at other test temperatures. When raised at 168C, flies

from T populations performed better at 168C but worse at

258C than did flies raised at 258C. Conversely, when raised at

258C, flies from T populations performed better at 258C but

worse at 168C than did flies raised at 168C. The best perform-

ance was observed in flies that evolved, developed and were

tested at 258C, supporting the view that ‘hotter is better’ [23].
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Figure 1. Flies performed best when they were raised and tested at the
temperature experienced by their ancestors. Data are mean probabilities of
flight estimated from multimodel averaging. Data for flies that developed
at (a) 168C and (b) 258C. The text next to each datum denotes the selective
environment (H, C or T).
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Constant environments should favour specialists over gen-

eralists when a cost of generalization exists [1,3]. Accordingly,

genotypes from C populations or H populations performed

best when raised and tested at 168C or 258C, respectively. In

fact, flies from the C populations were more likely to perform

successfully when raised and tested at 168C than when raised

and tested at any other combination of temperatures. No

other group of flies performed better at 168C than at 258C,

suggesting that the optimal temperature for performance

decreased during the evolution of C populations. Furthermore,

genotypes from either C or H populations performed poorly at

either temperature when raised at a temperature that differed

from their selective environment. Thus, selection for specializ-

ation resulted in genotypes that produced poor phenotypes, in

general, when developing at a novel temperature, a pattern

referred to as detrimental acclimation [24]. Such clear costs of
thermal adaptation, though commonly assumed [25,26], have

rarely been documented through comparative or experimen-

tal studies of closely related populations (e.g. see [27,28]).

More often, adaptation of performance at an extreme tempera-

ture occurs without a large loss of performance at other

temperatures [29,30].

The evolution of developmental plasticity likely involves

mechanisms for expressing genes that promote physiological

functions in extreme conditions. Several biochemical mechan-

isms could account for plastic responses to temperature,

such as the ability to express protein isoforms [31], adjust mem-

brane fluidity [32] or regulate mitochondrial density [33]. In

a previous experiment, flies from our T populations adjusted

membrane fluidity to developmental temperature more readily

than did flies from our C or H populations [34]. However,

this effect resulted primarily from differences in fluidity

after developing at 258C, with all populations having similar

fluidity when developing at 168C. Thus, this biochemical

change can only partially explain our results. Additional

studies of biochemical mechanisms are needed to understand

the mutations required for developmental plasticity to evolve.
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