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The structure of school terms is well known to influence seasonality of

transmission rates of childhood infectious diseases in industrialized

countries. A less well-studied aspect of school calendars that influences dis-

ease dynamics is that all children enter school on the same day each year.

Rather than a continuous inflow, there is a sudden increase in the number

of susceptible individuals in schools at the start of the school year. Based

on the standard susceptible–exposed–infectious–recovered (SEIR) model,

we show that school cohort entry alone is sufficient to generate a biennial

epidemic pattern, similar to many observed time series of measles incidence.

In addition, cohort entry causes an annual decline in the effective trans-

mission that is evident in observed time series, but not in models without

the cohort effect. Including both cohort entry and school terms yields a

model fit that is significantly closer to observed measles data than is

obtained with either cohort entry or school terms alone (and just as good

as that obtained with Schenzle’s realistic age-structured model). Neverthe-

less, we find that the bifurcation structure of the periodically forced SEIR

model is nearly identical, regardless of whether forcing arises from cohort

entry, school terms and any combination of the two. Thus, while detailed

time-series fits are substantially improved by including both cohort entry

and school terms, the overall qualitative dynamic structure of the SEIR

model appears to be insensitive to the origin of periodic forcing.
1. Introduction
Using transmission models to uncover the mechanisms behind observed infec-

tious disease dynamics is a major goal of mathematical epidemiology [1,2]. In

the context of recurrent epidemics of childhood diseases such as measles, chicken

pox and whooping cough, a large body of research has indicated that seasonal

changes in transmission rate are fundamentally important in determining the

structure and periodicity of infectious disease time series [1,3–9].

The primary source of transmission seasonality for childhood diseases in

industrialized countries appears to be the aggregation of children in schools,

which are closed between terms and during summer holidays [3]. Indeed,

even crude reconstructions of the transmission rate from incidence data show

clear evidence of school term structure [10,11]. Other external influences,

such as seasonality of births [12] or weather [13,14] may contribute, but are

more difficult to detect (one study indicates that climatic changes affect

interannual differences in measles incidence in the UK [15]).

The traditional susceptible–infectious–recovered (SIR) and susceptible–

exposed–infectious–recovered (SEIR) modelling frameworks [1,16], including

seasonal forcing of the transmission rate, have been used extensively to examine

and explain the qualitative dynamics observed for a wide variety of infections in

different places and times [4–6,9,17,18]. In addition, detailed quantitative recon-

structions of seasonally varying transmission rates for childhood diseases have

been achieved, either by extending the Fine and Clarkson method [9,10,19–22]

or by using more statistically well-founded inference methods, e.g. (i) the ‘time-

series SIR’ (TSIR) framework in which a discrete-time SIR model subject to

additive and multiplicative noise is fitted [23], (ii) stochastic epidemic modelling

frameworks in which the data are treated as a partially observed Markov process,
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Figure 1. Weekly reported measles cases in 60 major cities of England and Wales, 1944 – 1994, with the biennial period studied by Fine & Clarkson [10]
(8 September 1949 to 7 September 1965) highlighted in grey. The per capita annual birth rate and susceptible recruitment rate (birth rate adjusted to account
for vaccination [5]) are shown in blue and cyan, respectively. (Online version in colour.)
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fitted by particle filtering [24,25], or (iii) deterministic models

fitted by generalized profiling, i.e. a combination of trajectory

matching and gradient matching [7,26,27]. Other techniques

are available for daily incidence data [28,29], but childhood

disease incidence has typically been reported weekly.

Figure 1 shows the well-known time series of weekly

reported measles incidence in 60 major cities of England

and Wales (E&W), 1944–1994 [10,11,30–41]. The highligh-

ted period from 1950 to 1964 displays a strictly biennial

epidemic cycle, with large and small epidemics in alternate

years. It is common to compare a biennial attractor of a deter-

ministic epidemic model with this observed 2-year cycle

[37,40,42,43]. Because such attractors are strictly periodic,

the observed variation from biennium to biennium must be

regarded as random fluctuations about the mean biennium.

Figure 2a shows the average measles biennium with a

dashed curve (+s.d. in grey). Figure 2b shows the trans-

mission rate as reconstructed with the method of Fine &

Clarkson [10].

The most obvious aspect of reconstructed childhood

disease transmission rates such as that shown with a dashed

curve in figure 2b is that they are high when school is in session

and low otherwise [7,10,11], a feature that can easily be

included in simple models using ‘term-time forcing’ [5,17,42].

Another clear aspect of reconstructed transmission rates is

that they decline over the course of the school year [7,10], a fea-

ture that is not reproduced by the simple term-time forced SEIR

model but is reproduced successfully by age-structured models

that employ both term-time forcing and annual gradewise

movement of school-age cohorts (figure 2, red points [37,40]).

We suggest that the most crucial element of the age-

structured models—from the point of view of reproducing the

aggregate temporal dynamics of childhood infections in industri-

alized countries—is the annual, sudden gradewise movement of

age cohorts and, moreover, that the key aspect of gradewise

movement is the sudden entry of the youngest school-age

cohort into schools. This ‘cohort effect’ changes the way new sus-

ceptibles enter the system, i.e. each year some proportion of

children effectively enter the well-mixed susceptible pool all

at once on the first day of school, rather than continuously

throughout the year as maternally acquired immunity wanes.

In E&W, the Education Act of 1944 [44] mandates that

children must be in school from ages 5 to 16. In practice,

this means that children enter school at age four or five.1
The average age at which measles infection occurred in

E&W during the period on which we focus was 4–5 years

[1, p. 51], i.e. during the first year of school. Even the extreme

approximation that all children entered the susceptible

pool on the same day each year may be valid if pre-school

children were usually infected by older siblings who were

attending school.

In this paper, we show that incorporating the cohort effect in

an epidemiological model is easy without introducing any

explicit age structure, and that doing so yields an annual decline

in the effective (reconstructed) transmission rate, as observed in

real measles time series. Moreover, including the cohort effect

yields simulation time series that fit observed disease incidence

data more closely than standard term-time forced SEIR models.

On the other hand, we find that the qualitative dynamic struc-

ture of the SEIR model is almost identical if seasonal forcing is

implemented only in the transmission rate, only via the cohort

effect, or any combination of the two. Consequently, the results

of research aiming to understand transitions in the qualitative

dynamics of childhood diseases (e.g. via bifurcations) appear

to be robust to the detailed implementation of seasonality in

the model.

The cohort entry model that we present here was first

considered by He [45]. A stochastic version was included in

a collection of models used to illustrate plug-and-play

inference techniques by He et al. [25].
2. Methods
The standard SEIR model [1] can be expressed as a simple system

of nonlinear ordinary differential equations

dS
dt
¼ B� bSI � mS , ð2:1aÞ

dE
dt
¼ bSI � sE� mE , ð2:1bÞ

dI
dt
¼ sE� gI � mI ð2:1cÞ

and
dR
dt
¼ gI � mR : ð2:1dÞ

Here, S, E, I and R denote the numbers of susceptible, exposed

(infected but not yet infectious), infectious and recovered

(immune) individuals. The parameters are the rates of birth (B),

per capita death (m), transmission (b), onset of infectiousness (s)
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Figure 2. (a) Average biennial cycle of reported measles cases in England and Wales, 1950 – 1964. Mean (dashed) + s.d. (grey). Best-fit biennial attractor of
Schenzle’s [37] realistic age-structured (RAS) model (red; see electronic supplementary material, §2). School vacations are indicated with light grey shading.
(b) Transmission rate as reconstructed by the method of Fine & Clarkson [10] (see §2.3.5). Colour-coding as in panel (a). Transmission rate reconstructions
from other models are shown in figure 3 and in the electronic supplementary material, figures S1 and S2. (Online version in colour.)
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and recovery (g). The mean latent and infectious periods are tE ¼

1/s and tI ¼ 1/g, respectively (for measles, tE � 8 days and tI �
5 days [1, p. 31]). The total population size is N ¼ S þ E þ I þ R.

Disease-induced mortality is not included in equation (2.1)

because it has a negligible population-level effect for typical

childhood diseases [12]. Note that because equations (2.1a)–

(2.1c) do not depend on the recovered class R, equation (2.1d )

can be ignored.

The basic reproduction number R0 (the average number of

secondary cases caused by a given primary case in a wholly sus-

ceptible population [1,2]) is ([8] and electronic supplementary

material, equation (S8))

R0 ¼
B
m
� s

sþ m
� b

gþ m
: ð2:2Þ

The first factor (B/m) does not normally appear in formulae for

R0 because it is usually assumed that B ¼ mN and N is usually
absorbed into the transmission rate b. For measles in E&W

during the period we examine, R0 � 17 [1, p. 70].
2.1. Seasonality of transmission rate
The transmission rate b is not constant for childhood infections.

It varies seasonally as a result of the aggregation of children

in schools [3]. The term-time forced transmission rate can be

written [46]

bðtÞ ¼ kbl
1þ 2ð1� psÞa school days

1� 2psa non-school days,

(
ð2:3Þ

where kbl is the mean transmission rate, a is the amplitude of for-

cing and ps is the proportion of days on which school is in

session. (Note that we always use k � l to denote the time average

of a quantity.)
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2.2. The cohort effect
Early in life, most children have fewer social contacts than they

do after entering school at age 4 or 5. This effective shielding

from disease exposure is only partial, of course, and some

young children become infected before entering school. For sim-

plicity, we suppose that a proportion c of newborns is subject to

the cohort effect, meaning complete shielding from disease trans-

mission until entering school, whereas the remaining proportion

1 – c enters the well-mixed population immediately after birth

(or, in practice, after maternally acquired immunity wanes,

which takes about four months in the case of measles [1]). We

refer to the day of the year on which school begins as t0 (e.g. if

school starts on 8 September and we measure time in years,

then t0 ¼ 251=365 ≃ 0:688). Thus, we implement the cohort

effect in the model by replacing the constant annual birth rate

B with the function

eBðtÞ ¼ B ð1� cÞ þ c
X1
k¼0

dðt� t0 � kLÞ
 !

, ð2:4Þ

where d is the Dirac delta function and L is the length of the time

interval between cohort entries (normally 1 year). The periodic

forcing of the birth term specified in equation (2.4) affects R0

(which now depends on the time of year that initial invasion

occurs [47]). Instability of the disease-free solution of this non-

autonomous SEIR model is determined (approximately, but

fairly accurately) by the condition �R0 . 1, where �R0 refers to

the basic reproduction number of the autonomous system

obtained by averaging the time-dependent parameters, i.e. using

B rather than eBðtÞ and replacing b by kbl in equation (2.2) [47–49].

2.3. Quantitative fits of models to observed time series
2.3.1. Observed measles time series
In the main text, we consider fits to the average biennium of

the weekly measles reports in E&W from September 1949 to

September 1963. In the electronic supplementary material, we

repeat the analysis with three other (city level) measles time

series that display a consistent biennial incidence pattern over a

similar period:

(i) weekly reported measles in London, UK, from September

1949 to September 1965 (the same period fitted in [42,43]);

(ii) weekly reported measles in Liverpool, UK, from

September 1945 to September 1965;

(iii) monthly reported measles in New York City (NYC), USA,

from September 1945 to September 1963. To correct for

the different lengths of each month in the NYC data, we

followed [12] and multiplied each raw data point

(reported measles in month j of year i) by

ðDays in year iÞ=12

Days in month j of year i
: ð2:5Þ

2.3.2. Average measles biennium
The observed average biennial pattern (Xobs) and the variance

about it (Vobs) can be written [42]

XobsðtÞ ¼
1

kmax

Xkmax�1

k¼0

n̂ðt0 þ 2k þ tÞ , 0 � t , 2 ð2:6Þ

and

VobsðtÞ ¼
1

kmax � 1

Xkmax�1

k¼0

½n̂ðt0 þ 2k þ tÞ � XobsðtÞ�2: ð2:7Þ

Here, n̂ðtÞ refers to the number of notified (reported) measles

cases at time t. We took the initial time to be t0 ¼ 1949.688

(8 September 1949) in E&W and London, and t0 ¼ 1945.688
(8 September 1945) in Liverpool and NYC. The number of bien-

nia was kmax ¼ 9 in E&W, kmax ¼ 10 in London and NYC, and

kmax ¼ 12 in Liverpool (see electronic supplementary material,

figure S3 for the four time series).

2.3.3. Simulated measles incidence
To compare the models with the observed data, we solved

the SEIR model (equation (2.1)) numerically with initial

conditions taken to be a slight random perturbation of

ðSð0Þ, Eð0Þ, Ið0ÞÞ ¼ ð1=R0, 10�4, 10�4Þ. After discarding a 500

year transient to ensure the solution had settled onto an attractor,

we defined the simulated number of notified cases at report

times t to be

nðtÞ ¼
ðt

t�Dt
h �N � gIðtÞdt , ð2:8Þ

where Dt is the notification interval (one week or one

month), N is the population size (electronic supplementary

material, table S1) and h is the notification efficiency (or report-
ing ratio) for measles [11,37] (electronic supplementary

material, table S6). Because gI is the proportional rate at

which individuals enter the recovered class (equation (2.1d )),

it is a reasonable approximation of the rate at which cases

are notified (before adjusting for population size and

notification efficiency).

2.3.4. Best fit
Following Keeling & Grenfell [42], we found the parameters

of a given deterministic model that yielded an attractor

that best fits the observed biennium by minimizing the weighted
fitting error

EVðmÞ ¼
1

2yr

XNt

i¼1

½XobsðtiÞ � nðti; mÞ�2

VobsðtiÞ
Dt : ð2:9Þ

Here, Dt is the reporting interval and Nt is the number of report-

ing intervals in a biennium (for weekly data, Dt ¼ 1/52 year and

Nt ¼ 104). In equation (2.8), we used the notation n(t) for the

simulated number of cases at time t; here, we use the more cum-

bersome notation n(t; m) to emphasize explicitly that the model

solution depends on a vector m containing the Np model par-

ameters that are fitted (e.g. for the cohort-entry, term-time

forced SEIR model, m ¼ ðR0, h, a, cÞ and Np ¼ 4). EV measures

the total deviation of the model’s attractor from the observed

biennium, relative to the variation in the observed data [42].

Greater weight is given to points where the variation from bien-

nium to biennium is smaller. All the noise in the data is implicitly

assumed to arise from observation error as opposed to process

error from intrinsic stochasticity.

EV has a natural likelihood interpretation. Suppose the

data point n̂i observed at biennium time ti is drawn from a

distribution with probability density

diðn̂, nðti; mÞ; aiÞ , ð2:10Þ

where ai is a parameter vector associated with distribution di.

Moreover, suppose that observations at different biennium

times, fti: i ¼ 1, . . . , Ntg, are independent. Then, the likelihood

of the model (specified by m) given the data, i.e. the probability

of obtaining the observed data given the model, is

YNt

i¼1

½diðn̂i, nðti; mÞ; aiÞDt� : ð2:11Þ

If it is further assumed that the distributions di are normal, then

diðn̂i, nðti; mÞ; mi, s
2
i Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

i

q exp � 1

2s2
i
½n̂i � nðti; mÞ�2

� �
:

ð2:12Þ
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where we have set mi ¼ nðti; mÞ. Now, taking n̂i ¼ XobsðtiÞ and

s2
i ¼ VobsðtiÞ, the negative log likelihood is

�L ¼ 1

2

XNt

i¼1

logð2ps2
i Þ þ

XNt

i¼1

½XobsðtiÞ � nðti; mÞ�2

2VobsðtiÞ2

�Nt logDt

ð2:13aÞ

¼ 1 yr

Dt

� �
EV þ constant, ð2:13bÞ

where the constant depends only on the data and not on the

model parameters m. Thus, EV is a scaled and translated version

of the negative log likelihood, and minimizing EV yields a maxi-

mum-likelihood estimate of m. Given the likelihood, we can use

the Akaike information criterion [50, p. 209] for model selection,

AIC ¼ �2Lþ 2Np: ð2:14Þ

We compare models via their difference in AIC, so the constant

in equation (2.13b) cancels out.

2.3.5. Transmission rate reconstruction
In their study of the aggregate E&W measles times series, Fine &

Clarkson [10] reconstructed the seasonally varying transmission

rate b(t) using a discrete-time SIR model. The meaning of

this ‘reconstruction’ of b(t) is that the ‘reconstructed’ b(t) is the

transmission rate that would yield the observed data if the

underlying process were exactly a discrete-time SIR model in

which the only source of time variation in parameter values is

in the transmission rate. Thus, the ‘reconstructed’ b(t) is really

an effective transmission rate. The algorithm also ‘reconstructs’

(or perhaps more accurately estimates) the unobserved time

series of susceptibles.

The discrete-time SIR model that Fine & Clarkson [10] used

specifies the number of cases (Ct) and susceptibles (St) at times

0,1,2, . . . , where the time unit is a biweek (14 days), and the

mean disease generation time Tg is also assumed to be a

biweek (rather than the more precise 13 days). We follow Krylova

[19], who found that a slight revision avoids the need to assume

the reporting interval is equal to Tg (instead the reporting inter-

val is taken to be a single week, as in reality, and Tg must simply

be a multiple of the reporting interval). Assuming the time unit

is the reporting interval (one week), the dynamic equations are

CtþTg
¼ btþTg

StþTg
Ct ð2:15aÞ

and

Stþ1 ¼ St �
1

h
Ctþ1 þ Bt � Vt � mSt , ð2:15bÞ

where bt, Bt and Vt denote the transmission rate and numbers of

births and vaccinations, respectively, in time interval t, h is the

proportion of cases reported and m is the natural mortality

rate. Given time series fbtg, fBtg and fVtg, and initial conditions

(S0, C0), the discrete dynamic equations (2.15) can be iterated to

produce discrete-time trajectories f(St, Ct)g [31]. Fine & Clarkson

[10] noted that for an observed time series of cases fCtg, together

with an estimated notification efficiency h and initial susceptible

proportion S0, equation (2.15) could instead be used to reconstruct

the time series of susceptibles fStg and transmission rate fbtg. This

can be achieved by solving equation (2.15a) for bt, which yields

[19, eqn (4.8)]

btþTg
¼

CtþTg

StþTg
Ct
: ð2:16Þ

We used this method to reconstruct bt from the E&W time series as

well as from time series resulting from simulations of the various

models we examined. When reconstructing bt from a simulation,

h and S0 are known. To compare the reconstructed bt from a
model and from the E&W data, we fitted the model to the data

(minimizing EV as in §2.3.4) and then used the S0 from the matched

trajectory (electronic supplementary material, table S7) and the

value of the notification efficiency that yields a piecewise horizontal

bt for the term-time SEIR model (h ¼ 0.71).

The discretization in equation (2.15a) is over the mean

generation time Tg (two weeks), which means that cases are inte-

grated over a full generation time Tg and the reconstructed

transmission rate bt is per generation time. Consequently, because

R0 � bN=Tg, we can interpret btN as R0 and the time-averaged

R0 can be estimated as kR0l ¼ kbtlN.
2.4. Dynamic structure of the cohort-entry model
We used standard bifurcation and continuation software

(XPPAUT) [51] to construct the bifurcation diagrams shown in

figure 5b,c. Solid curves show attractors and dotted curves

show repellers. A step-by-step guide to the procedure we used

can be found in the electronic supplement to [8].
3. Results
3.1. Qualitative understanding of annual decline in

transmission rate
Figure 3 shows the equivalent of figure 2 for the term-time

forced SEIR model without age structure, but including the

cohort effect as described in §2.2. Visual comparison of the

top panels of these figures makes clear, qualitatively, that

age structure is not necessary to capture the main features

of the observed measles biennium. In addition, comparison

of the bottom panels reveals that age structure is not required

to capture the observed decline in the reconstructed effective

transmission rate bt over the course of each year.

Similar figures shown in the electronic supplementary

material reinforce the inference that the cause of the annual

decline in bt is the cohort effect. Without the cohort effect,

the effective bt obtained by applying the reconstruction algor-

ithm to solutions of the term-time SEIR model shows no

decline (electronic supplementary material, figure S1),

whereas without term-time forcing, the effective bt recon-

structed from solutions of the cohort-entry SEIR model

shows decline but (unsurprisingly) no dips during school

terms (electronic supplementary material, figure S2).
3.2. Quantitative fits of models to observed time series
Figure 4 compares the performance of the standard term-time

forced SEIR model (figure 4a), the cohort-entry model with-

out school-term forcing (figure 4b) and the full cohort and

term-time forced model (figure 4c) in fitting the average

E&W measles biennium. As detailed in Methods (§2), we

follow previous work [42,43] and assess these deterministic

models in terms of their ability to reproduce the average bien-

nium for the period 1950–1964, and quantify the quality of

the fits using the weighted fitting error EV [42].

In each of the three panels of figure 4, the data are shown

using a dashed black curve for the mean biennium (Xobs(t),
equation (2.6)) and grey shading extending to one standard devi-

ation above and below the mean (+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VobsðtÞ

p
, equation (2.7)).

For each model, the solid red curve shows the solution

(after converging to the attractor) for the parameter set that

minimizes EV.
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The inset graphs in each panel show profiles of EV as a

function of R0, i.e. for each R0, we find the values of all

other free parameters that minimize EV (black); thus, the

minimum of the plotted EV profile is the minimum in

the full parameter space. The free parameters are the term-

time forcing amplitude a, the cohort proportion c and the

case notification efficiency h. The values of our focal par-

ameters (a, c) that yield the minimum EV for each R0 are

also shown (term-time amplitude a in blue, cohort-entry

proportion c in green).

Previous work fitting the term-time forced SEIR model to

the same measles incidence time series [42,43] was conducted

subject to the constraint that R0 ¼ 17, the empirically esti-

mated value [1, p. 70]. The resulting best fit with this

constraint (reproducing fig. 5.15 of [43]) is shown as a

dotted red curve in figure 4a. Allowing R0 to be fitted as

well yields the solid red curve in figure 4a, but the fitted

value (R0 ¼ 22:6) is substantially higher than the empirical

value. In contrast, without term-time forcing but with
cohort-entry, figure 4b shows a fit that is just as good, with

R0 ¼ 17 arising from the fit rather than being specified in

advance. Including both the school-term and cohort effects

yields the best fit (lowest EV), again yielding R0 ¼ 17 without

fixing R0 in advance. Note that while the cohort effect alone

(figure 4b) succeeds in producing a formally good fit to the

data, it fails to capture the small-scale temporal fluctuations

arising from the three school terms, which are successfully

reproduced in figure 4c. Table 1 summarizes the fits shown

in figure 4, together with their associated DAIC values. The

improvement obtained by including the cohort effect in

addition to term-time forcing is highly significant.

In the electronic supplementary material, we repeat our

analysis for several other measles incidence time series (see

electronic supplementary material, figure S3) and obtain

similar results (see electronic supplementary material, table

S6). In addition, a much more elaborate and computationally

demanding analysis of fully stochastic implementations of

the models [25] also shows that significantly better fits of
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Figure 4. SEIR model fits (solid red) of the average measles biennium in England and Wales for the period 1950 – 1964 (dashed). Best fits were obtained as in
previous work [40 – 43] by minimizing the weighted fitting error EV (equation (2.9) and [42]). (a) The standard term-time forced SEIR model with forcing amplitude
a (the dotted red curve shows the fit obtained by fixing R0 ¼ 17 ([43] and fig. 5.15). (b) The cohort-entry model with cohort proportion c and no school-term
forcing. (c) The full cohort and term-time forced model. In each panel, insets show profiles of EV in black (and the associated minimizing values of a and c in blue
and green, respectively) as a function of R0. Details are given in §3.2 and §2.3. The analysis is repeated for several city-level measles time series in electronic
supplementary material, figure S4. (Online version in colour.)

Table 1. Parameter estimates obtained by fitting epidemic models to observed weekly measles cases in England and Wales, 1950 – 1964. Parameters that are
not fitted are indicated with ‘—’.

model c a R0 h EV DAIC

term-time (fixed R0 ¼ 17) — 0.25 — 0.25 2.867 270.4

term-time — 0.15 22.6 0.44 0.813 58.7

cohort-entry 1.00 — 17.2 0.43 0.732 50.3

both 1.00 0.16 17.1 0.49 0.229 0.0

RAS — — 13.4a 0.61 0.486 24.7
aFor the RAS model, R0 was estimated as the mean of the reconstruction in figure 2. The fitted RAS parameters are described in electronic supplementary
material, §2.3.
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the detailed time series are achieved by including the cohort-

entry effect (AICc is improved by more than 12 units).
3.3. Dynamic structure of the cohort-entry model
Predictions of structural changes in epidemic patterns, such

as transitions between epidemic cycles of different lengths,

depend primarily on qualitative analysis of models

(e.g. bifurcation theory) rather than detailed quantitative fits

of model-generated time series to case report time series.

We therefore consider how the cohort effect influences

predictions of bifurcations (e.g. transitions from annual to

biennial or more complex dynamics).

Figure 5a shows the principal branches of the bifurcation

tree (as a function of R0 ) of the term-time forced SEIR

measles model (c ¼ 0, a ¼ 0.25), which has been used pre-

viously [5,8,9,18,46] to predict the dynamic transitions

evident in figure 1. Figure 5b shows the equivalent bi-

furcation tree for the cohort-entry SEIR model (c ¼ 0.8,

a ¼ 0). The topologies of the two bifurcation trees are iden-

tical and the positions (R0) of the bifurcations differ only

slightly.2 The striking similarity of the strict term-time
forced (c ¼ 0) and strict cohort-entry (a ¼ 0) models indicates

that qualitative predictions of epidemic structure are very

insensitive to the mechanistic origin of periodic seasonal

forcing of the system.

Figure 5c summarizes the dynamics in the entire a – c
plane for R0 ¼ 17. The period-doubling bifurcation occurs

on the curve marked 1 (red), whereas the other curves are

contours of constant major-to-minor-peak-ratio for the bien-

nial attractor (in London from 1950 to 1964 this ratio was

approx. 5). Time series corresponding to the circled points

on these curves are shown in the small numbered panels

above figure 5c. A comparison of transient dynamics

with and without cohort entry is presented in the electronic

supplementary material, figure S6.
4. Discussion
In any situation where the rate of contact among children

changes significantly when they first enter school, a cohort

effect will influence the population dynamics of childhood

infectious diseases. In our cohort-entry SEIR model, we
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formalized this effect using an annual pulse in the birth term;

a proportion c of children begins contacting others on the day

schools open, whereas the remainder enter the well-mixed

population when they are born (equation (2.4)). We have con-

sidered the cohort effect in general and in the specific context

of measles, a well-studied childhood disease for which

lengthy high-quality notification time series exist for a variety

of locations.

Complex observed patterns of measles incidence have

captured the attention of mathematical ecologists and epide-

miologists since the seminal work of Bartlett [52–54] in the

1950s. In an attempt to understand measles dynamics, Schen-

zle [37] developed a realistic age-structured (RAS) model using

a system of 84 differential equations that specify the time vari-

ation of the numbers of susceptible (S), exposed (E), infectious

(I) and recovered (R) individuals in each of 21 age classes (see

electronic supplementary material, §2). The model includes

term-time forcing of contacts among school-age children, and

entry of a new cohort and gradewise movement at the start

of each school year. The RAS model provides a good fit to

the averaged biennial cycle of measles epidemics observed in

E&W in the pre-vaccine era (1948–1968) [37] and with the

fitted parameters does not predict chaotic dynamics [40], in

contrast to the simpler sinusoidally forced SEIR model [4].

The global dynamics of the RAS model are, in fact, primar-

ily driven by term-time forcing of the transmission rate, rather

than age structure [5]. This realization has made it possible to

explain changes in outbreak frequency in many infectious dis-

ease time series, using the term-time forced SEIR model or

other simple epidemic models [5,8,9,17–19,46].

One aspect of real measles dynamics that is captured by

the RAS model but not the simpler term-time forced SEIR

model is the decline in the effective (reconstructed) trans-

mission rate b(t) over the course of the school year
(figure 2). In this paper, we have shown that the decline in

the reconstructed b(t) arises from the cohort effect, not from

age structure per se (figure 3).

The cohort-entry SEIR model that we have examined here

is essentially equivalent to the two-age-class limit of the RAS

model in which there is no transmission in the younger age

class. Andreasen & Frommelt [55] presented a different

cohort-entry-age-structured model, which has the virtue of

being amenable to some useful analytical investigation

(unlike the RAS model and the simpler SEIR models con-

sidered here). The effects of birth pulses on epidemics in

animal populations have been studied previously [49].

Previous work has shown that matching trajectories of the

term-time forced SEIR model to the average measles biennium

in E&W yields an unrealistically high estimate of the basic

reproduction number R0 [42,43]. We compared the fits

obtained using the term-time forced SEIR model (figure 4a)

with fits obtained using SEIR models incorporating the

cohort-entry effect, both with and without seasonality in the

transmission rate (figure 4b,c). We obtained significantly

better fits, with an estimated R0 closer to the conventional

value [1, p. 70], by including the cohort-entry effect. Moreover,

when we include both cohort-entry and transmission rate sea-

sonality, the fit to the E&W measles biennium is just as good

as that obtained with the RAS model.

We studied the global dynamic structure of the cohort-

entry SEIR model and found that the bifurcation tree is

topologically equivalent, regardless of whether transmission

rate seasonality is included (figure 5). Thus, from the point

of view of qualitative dynamics, the source of seasonal

forcing may be irrelevant in the SEIR model.

Age-structured models are important and natural tools to

use in the development of control strategies for childhood

diseases [56], because optimal control strategies are
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themselves likely to be age-structured. However, when using

models that include many biological details, the roles of indi-

vidual biological mechanisms may be obscured. Our

formalization of the cohort-entry SEIR model without explicit

age structure has allowed us to reveal that the cohort effect

alone is sufficient to generate an annual decline in the effec-

tive (reconstructed) transmission rate, as is often observed

(cf. figures 2b and 3b; and electronic supplementary material,

figures S1 and S2). In addition, our analyses of particular

measles time series indicated that the best-fit cohort pro-

portion is large (electronic supplementary material, table

S6), suggesting that most children younger than school age

are also indirectly subject to the cohort effect, presumably

because they interact with older siblings and other

schoolchildren.

Data accessibility. All the data studied in this paper are available either
from the electronic supplementary material or from the International
Infectious Disease Data Archive (IIDDA) at http://iidda.mcmaster.ca.

Authors’ contributions. Both authors conceived and carried out the study,
drafted the manuscript and gave final approval for publication.
Competing interests. We have no competing interests.

Funding. D.E. was supported by grants from NSERC, CIHR and the J.
S. McDonnell Foundation. D.H. was supported by an Early Career
Scheme grant from the Hong Kong Research Grant Council
(25100114), and a Health and Medical Research Grant from the
Hong Kong Food and Health Bureau Research Council (13121382).

Acknowledgements. We are grateful to Ben Bolker for valuable
comments.
Endnotes
1‘In England term starts in September, [and in] the entry year chil-
dren must be 5 before August 31 the following year.’ (http://
resources.woodlands-junior.kent.sch.uk/customs/questions/edu-
cation/startsch.html).
2We show only the principal branch of the bifurcation trees in figure 5a.
The positions of bifurcations on other branches (corresponding to
longer period cycles) do differ more substantially among models, but
these branches have no detectable effect on the dynamics [18,46]
and do not exist in the presence of a small amount of infective
immigration (e.g. proportion 1027 of total population size per year).
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35. Finkenstädt BF, Grenfell BT. 1998 Empirical
determinants of measles metapopulation dynamics
in England and Wales. Proc. R. Soc. Lond. B 265,
211 – 220. (doi:10.1098/rspb.1998.0284)

36. Rohani P, Keeling MJ, Grenfell BT. 2002 The
interplay between determinism and stochasticity in
childhood diseases. Am. Nat. 159, 469 – 481.
(doi:10.1086/339467)

37. Schenzle D. 1984 An age-structured model of pre-
and post-vaccination measles transmission. IMA
J. Math. Appl. Med. Biol. 1, 169 – 191. (doi:10.1093/
imammb/1.2.169)

38. Ellner SP, Bailey BA, Bobashev GV, Gallant AR, Grenfell
BT, Nychka DW. 1998 Noise and nonlinearity in
measles epidemics: combining mechanistic and
statistical approaches to population modeling. Am.
Nat. 151, 425 – 440. (doi:10.1086/286130)

39. Bolker B. 1993 Chaos and complexity in measles models:
a comparative numerical study. IMA J. Math. Appl. Med.
Biol. 10, 83 – 95. (doi:10.1093/imammb/10.2.83)

40. Bolker BM, Grenfell BT. 1993 Chaos and biological
complexity in measles dynamics. Proc. R. Soc. Lond.
B 251, 75 – 81. (doi:10.1098/rspb.1993.0011)

41. Babad HR, Nokes DJ, Gay NJ, Miller E,
Morgancapner P, Anderson RM. 1995 Predicting the
impact of measles vaccination in England and
Wales: model validation and analysis of policy
options. Epidemiol. Infect. 114, 319 – 344. (doi:10.
1017/S0950268800057976)

42. Keeling MJ, Grenfell BT. 2002 Understanding the
persistence of measles: reconciling theory,
simulation and observation. Proc. R. Soc. Lond. B
269, 335 – 343. (doi:10.1098/rspb.2001.1898)

43. Keeling MJ, Rohani P. 2008 Modeling infectious
diseases in humans and animals. Princeton, NJ:
Princeton University Press.

44. Education Act. 1944 London, UK: HMSO. See http://
www.educationengland.org.uk/documents/acts/
1944-education-act.pdf.

45. He D. 2006 Modeling of childhood infectious
diseases. PhD thesis, McMaster University, Hamilton,
Ontario, Canada.

46. Bauch CT, Earn DJD. 2003 Transients and attractors in
epidemics. Proc. R. Soc. Lond. B 270, 1573 – 1578.
(doi:10.1098/rspb.2003.2410)

47. Ma J, Ma Z. 2006 Epidemic threshold conditions for
seasonally forced SEIR models. Math. Biosci. Eng. 3,
161 – 172. (doi:10.3934/mbe.2006.3.161)
48. Shulgin B, Stone L, Agur Z. 1998 Pulse vaccination
strategy in the SIR epidemic model. Bull. Math. Biol.
60, 1123 – 1148. (doi:10.1016/S0092-
8240(98)90005-2)

49. Roberts MG, Kao RR. 1998 The dynamics of an
infectious disease in a population with birth pulses.
Math. Biosci. 149, 23 – 36. (doi:10.1016/S0025-
5564(97)10016-5)

50. Bolker BM. 2008 Ecological models and data in R.
Princeton, NJ: Princeton University Press.

51. Ermentrout B. 2002 Simulating, analyzing, and
animating dynamical systems: a guide to XPPAUT for
researchers and students. Software, environments,
and tools. Philadelphia, PA: Society for Industrial
and Applied Mathematics.

52. Bartlett MS. 1957 Measles periodicity and
community size. J. R. Stat. Soc. A 120, 48 – 70.
(doi:10.2307/2342553)

53. Bartlett MS. 1960 Stochastic population models
in ecology and epidemiology, volume 4 of
Methuen’s monographs on applied probability and
statistics. London, UK: Spottiswoode, Ballantyne &
Co. Ltd.

54. Bartlett MS. 1961 Monte Carlo studies in ecology
and epidemiology. In 4th Berkeley Symp. on
Mathematical Statistics and Probability (ed. J
Neyman), vol. 4: contributions to biology and
problems of medicine, pp. 39 – 55. Statistical
Laboratory of the University of California, Berkeley,
CA: University of California Press.

55. Andreasen V, Frommelt T. 2005 A school-oriented,
age-structured epidemic model. SIAM J. Appl. Math.
65, 1870 – 1887. (doi:10.1137/040610684)

56. Ramsay M, Gay N, Miller E, Rush M, White J,
Morgan-Capner P, Brown D. 1994 The epidemiology
of measles in England and Wales: rationale for the
1994 national vaccination campaign. Commun. Dis.
Rep. CDR Rev. 4, R141 – R146.

http://dx.doi.org/10.1093/aje/kwh255
http://dx.doi.org/10.1073/pnas.0902958106
http://dx.doi.org/10.1093/ije/12.3.332
http://dx.doi.org/10.1093/ije/12.3.332
http://dx.doi.org/10.1016/0025-5564(93)90021-2
http://dx.doi.org/10.1098/rsif.2009.0514
http://dx.doi.org/10.1093/ije/14.1.153
http://dx.doi.org/10.1093/ije/14.1.153
http://dx.doi.org/10.1098/rspb.1998.0537
http://dx.doi.org/10.1098/rspb.1998.0284
http://dx.doi.org/10.1086/339467
http://dx.doi.org/10.1093/imammb/1.2.169
http://dx.doi.org/10.1093/imammb/1.2.169
http://dx.doi.org/10.1086/286130
http://dx.doi.org/10.1093/imammb/10.2.83
http://dx.doi.org/10.1098/rspb.1993.0011
http://dx.doi.org/10.1017/S0950268800057976
http://dx.doi.org/10.1017/S0950268800057976
http://dx.doi.org/10.1098/rspb.2001.1898
http://www.educationengland.org.uk/documents/acts/1944-education-act.pdf
http://www.educationengland.org.uk/documents/acts/1944-education-act.pdf
http://www.educationengland.org.uk/documents/acts/1944-education-act.pdf
http://www.educationengland.org.uk/documents/acts/1944-education-act.pdf
http://dx.doi.org/10.1098/rspb.2003.2410
http://dx.doi.org/10.3934/mbe.2006.3.161
http://dx.doi.org/10.1016/S0092-8240(98)90005-2
http://dx.doi.org/10.1016/S0092-8240(98)90005-2
http://dx.doi.org/10.1016/S0025-5564(97)10016-5
http://dx.doi.org/10.1016/S0025-5564(97)10016-5
http://dx.doi.org/10.2307/2342553
http://dx.doi.org/10.1137/040610684

	The cohort effect in childhood disease dynamics
	Introduction
	Methods
	Seasonality of transmission rate
	The cohort effect
	Quantitative fits of models to observed time series
	Observed measles time series
	Average measles biennium
	Simulated measles incidence
	Best fit
	Transmission rate reconstruction

	Dynamic structure of the cohort-entry model

	Results
	Qualitative understanding of annual decline in transmission rate
	Quantitative fits of models to observed time series
	Dynamic structure of the cohort-entry model

	Discussion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


