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Childhood pneumonia is the leading cause of death of children under the age

of 5 years globally. Diagnostic information on the presence of infection, sever-

ity and aetiology (bacterial versus viral) is crucial for appropriate treatment.

However, the derivation of such information requires advanced equipment

(such as X-rays) and clinical expertise to correctly assess observational clinical

signs (such as chest indrawing); both of these are often unavailable in resource-

constrained settings. In this study, these challenges were addressed through

the development of a suite of data mining tools, facilitating automated diagno-

sis through quantifiable features. Findings were validated on a large dataset

comprising 780 children diagnosed with pneumonia and 801 age-matched

healthy controls. Pneumonia was identified via four quantifiable vital signs

(98.2% sensitivity and 97.6% specificity). Moreover, it was shown that severity

can be determined through a combination of three vital signs and two lung

sounds (72.4% sensitivity and 82.2% specificity); addition of a conventional

biomarker (C-reactive protein) further improved severity predictions (89.1%

sensitivity and 81.3% specificity). Finally, we demonstrated that aetiology

can be determined using three vital signs and a newly proposed biomarker

(lipocalin-2) (81.8% sensitivity and 90.6% specificity). These results suggest

that a suite of carefully designed machine learning tools can be used to support

multi-faceted diagnosis of childhood pneumonia in resource-constrained set-

tings, compensating for the shortage of expensive equipment and highly

trained clinicians.
1. Introduction
Pneumonia is the number one killer of children under the age of 5 years (more

than 1.1 million deaths annually), causing more deaths than malaria, tuberculosis

and HIV/AIDS combined [1–3]. More than 95% of the childhood pneumonia

cases and 99% of subsequent deaths occur in developing countries [2]. Appropri-

ate diagnostic assessment of childhood pneumonia typically relies on the use of

advanced tools (such as X-rays and blood culture) as well as interpretation of

observational diagnostic signs (chest indrawing and nasal flaring) by highly

trained clinicians. Moreover, individual measurements are often insufficient

and the clinical expert has to assess a combination of vital signs and other clinical

characteristics for accurate diagnosis [4,5]. However, access to high-quality health-

care may often be limited in many low and middle income countries (LMICs) due

to a shortage of appropriate medical equipment and clinical expertise.

Timely and accurate diagnosis that facilitates appropriate treatment has been

reported to have the potential to reduce mortality by as much as 42% [3]. Most

childhood pneumonia deaths are reported to occur in a relatively early stage of

disease progression and complications can develop quickly. In resource-

constrained settings, hospital facilities are often remote and community health

workers (CHWs) need to differentiate between patients who can be managed
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Figure 1. (a) Summary of sensitivity and specificity of individual clinical characteristics, derived from applying a threshold (as per standard clinical guidelines),
as well as the integrated management of childhood illness (IMCI) guidelines [14 – 16]. (b) Diagnostic criteria used by a clinician to determine pneumonia
outcome.
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locally and those in need of urgent referral. Thus, it is essential

that severity can be determined as early and as accurately as

possible in a point-of-care setting.

The World Health Organization (WHO) has developed a

set of guidelines for diagnosis of childhood pneumonia in

resource-constrained settings, directing health workers through

identification of pneumonia and antibiotic prescription or

hospitalization—the guidelines for integrated management

of childhood illness (IMCI) [6]. However, a series of reports

investigating the integration of these guidelines into clinical

practice worldwide have reported reasonably high sensitivity

of derived diagnosis (69–94%), overshadowed by poor speci-

ficity (16–67%) [7–9]. Consequently, unnecessary antibiotic

prescription has risen, causing depletion of drug stocks and

microbial resistance. Thus, it is essential that more specific

(but equally sensitive) diagnostic tools are developed, and

that objective measurements are used to reduce intra- and

inter-user variability in diagnostic performance. Additionally,

novel and affordable tools for determination of aetiology

should be developed—currently, a combination of chest X-ray

and blood culture are required for this.

Machine learning has been shown to be successful as a tool

for strengthening diagnostic accuracy of hospitalized pneumo-

nia patients: in particular, (i) identifying patients suitable

for treatment at home and reducing healthcare costs [10,11]

and (ii) predicting mortality in hospitalized patients [12,13].

These studies use a wide range of machine learning techniques,

applied to datasets derived from electronic health records

(EHR). EHR contain numerous variables acquired by experts

using advanced diagnostic tools; it is unfeasible that such
rich datasets could be regularly obtained in resource-

constrained settings. Moreover, the focus of most of these

studies is pneumonia in adults and yet manifestations of the

disease in children are considerably different.

By contrast, research on the use of parsimonious datasets,

comprising affordable point-of-care measurements for diag-

nostic support of childhood pneumonia is rare. Traditionally,

basic analytical tools for thresholding individual variables

have been used [14–16] but none of these variables have

been found to be both sensitive and specific enough individu-

ally (figure 1). Abeyratne et al. reported the use of cough

recordings, in combination with fever, deriving algorithms

for automated detection of the cough sounds and subsequent

identification of pneumonia. While this approach appears to

deliver promising sensitivity (94%), specificity is lower (75%)

and no information on severity or aetiology is derived.

Additionally, the approach relies on continuous sound record-

ing of the child in a hospital setting; in practice, consultation

times are typically reported to be less than 2 min due to the

large volume of patients in primary care facilities and the lim-

ited tolerance young children have for physical examinations

[17].

Triaging systems based on data mining of a few basic vital

signs have been investigated in the context of influenza and

epidemic outbreaks in highly populous areas, delivering prom-

ising results (sensitivity and specificity of approximately 85%)

[18,19]. We propose a suite of machine learning techniques for

automated threefold diagnosis of childhood pneumonia

(identification, severity and aetiology) based on variables that:

(i) could be quantified unambiguously and (ii) have the
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potential to be measured affordably in resource-constrained set-

tings. Such techniques could provide health workers with

essential information and facilitate holistic evidence-based clini-

cal decisions. In this study, each of the three diagnostic aspects

was addressed separately, where (i) a minimal and most infor-

mative set of features was identified and (ii) machine learning

algorithms were used to combine information from individual

features and improve diagnosis in an automated way. The prac-

tical limitations of feature acquisition in a point-of-care setting

were incorporated and the number of measurements needed

during an examination was minimized. The analysis presented

here builds upon a clinical study investigating the discovery of

novel pneumonia-related biomarkers [20].
c.Interface
13:20160266
2. Data
The dataset analysed here was originally collected as part of a

clinical study described by Huang et al. [20]. The 1581 partici-

pants were Gambian children aged 2–59 months. Various

features were collected for each case. The full dataset consisted

of 57 features (clinical characteristics), including measurable

clinical variables (e.g. white blood cell count, neutrophils,

haemoglobin, etc.), observational clinical characteristics

(e.g. sleepiness, sternal indrawing, cough heard, etc.) and con-

ventional vital signs (e.g. respiratory rate (RR), heart rate

(HR), oxygen saturation (Osat), etc.). Additionally, selected

cases also contained four biomarkers (C-reactive protein

(CRP), lipocalin-2 (Lcn2), haptoglobin (Hap) and CD163

protein). We will demonstrate results on the following subsets:

— Identification dataset (1581 cases, 57 features). Seven hun-

dred and eighty childhood pneumonia and 801 age- and

gender-matched healthy controls were recruited.

— First severity dataset (780 cases, 57 features). From the 780

pneumonia cases, 458 had severe and 322 had non-

severe pneumonia.

— Second severity dataset (180 cases, 61 features). One hundred

and eighty of the pneumonia cases contained biomarker

information—104 severe and 76 non-severe cases.

— Aetiology dataset (84 cases, 61 features). Only 84 cases had

aetiology information, 22 bacterial and 62 viral, as gold

standard diagnosis requires the acquisition of X-rays and

blood culture.

The diagnostic outcome for each case was provided by a clini-

cian, expanding on the WHO [21] and IMCI [6] guidelines. The

criteria for identification of pneumonia and severity determi-

nation are listed in figure 1 and have been discussed in detail

by Scott et al. in their search for a widely accepted clinical

criteria for pneumonia classification [22]. Additionally, X-ray

end consolidation and/or a positive blood culture result were

used to differentiate bacterial from viral pneumonia cases.

Further details on the data acquisition process can be found

in the original clinical study [20].
3. Methodology
3.1. Preprocessing
Preprocessing of the original data was performed. The substantial

number of missing values (up to 42% for some of the features) was

addressed through imputation: features and cases containing less

than 85% of the total number of entries were removed; the
remaining missing values were imputed using feature median

values (feature mean imputation was also tested but was observed

to deliver equivalent results). Following standard statistical

machine learning methodology, we extended the dimensionality of

the original design matrix. Specifically, we introduced additional

vectors for each feature that mirrored imputations—these vectors

contained ‘ones’ where imputation was done and ‘zeros’ otherwise

[23]. We will refer to these vectors as ‘ghost vectors’ throughout

this study.

Several clinical features were excluded from the dataset as they

are used in the clinical ‘gold standard’ and cannot be captured in a

quantifiable way, e.g. ‘lower chest wall indrawing’. Details can

be found in the feature list in the electronic supplementary

material, §A.

In addition to imputation, all features were scaled to a similar

range. For continuous valued features, this was achieved by sub-

tracting their minimum value and dividing by their range of

values. For discrete features, a vector of ones was added and

the resulting sum was divided by the maximum values for the

feature plus one, avoiding multiple zero entries. Gaussianizing

of data via the Box–Cox transformation was also attempted

but had no considerable effect on performance.

3.2. Feature selection
Feature selection in this study was driven by considerations

related to data limitations and diagnostic application

— Data considerations. The curse of dimensionality has been

shown to affect even powerful classifiers such as random

forests (RFs) and support vector machines (SVMs) [24–26].

An exhaustive search over all possible feature combinations

to determine the optimal feature subset is computationally

intractable, hence we used a number of well-established

feature selection approaches.

— Diagnostic application considerations. Point-of-care diagnostics

would realistically afford a limited number of features. There-

fore, a feature selection approach that took into account cost,

acquisition time and quantifiability of measurements was used.

Seven feature selection techniques were used to investigate

the predictive ability of features towards the outcome: maximum

relevance on the basis of the linear (Pearson) correlation coefficient,

maximum relevance minimum redundancy (mRMR), relief,

Gram–Schmidt orthogonalization (GSO), least angle shrinkage

and selection operator (LASSO), elastic net (EN) and sparse

linear discriminant analysis (sLDA). A brief description of each

technique is given in the electronic supplementary material.

A majority voting approach that consolidates results from all

techniques was developed in order to dilute the bias of individual

techniques and obtain a more objective selection of features. Using

10-fold cross-validation and 50 repetitions, feature selection was

performed on nine tenths of the data via each one of the seven tech-

niques, after all features were scaled to the same range. The

frequency with which each feature occupied each rank was calcu-

lated across folds and results were averaged across the number of

repetitions. Additionally, normalized scores were derived to reflect

the overall frequency of ranks. This approach is summarized in the

pseudo-code figure 2. Next, two inclusion conditions were

applied. First, a feature should appear in the top 10 of at least

three ‘fundamentally different’ techniques; the pairs (correlation

and mRMR) and (LASSO and EN) share conceptually similar

theoretical bases and are not ‘fundamentally different’. Second,

the feature should be measurable in a point-of-care setting in an

affordable way. The scores associated with selected features were

used to derive a feature ranking. The SpaSM toolbox was used

to perform LASSO, EN and sLDA in MATLAB [27]; we used our

own custom-based implementations for the remaining feature

selection algorithms.



Figure 2. Pseudo-code for majority voting method for feature selection. We used 10-fold CV with 50 repetitions for statistical confidence.
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3.3. Classification
The IMCI guidelines are widely used by CHWs in low-resource

settings to identify children at risk of pneumonia. In this paper,

we compare a number of machine learning techniques with the

potential to improve performance of the IMCI guidelines. Histori-

cally, logistic regression (LR) has been the most popular technique

in classification contexts in the medical domain, including assess-

ment of pneumonia. In this study, LR was used as a benchmark

technique and the applicability of two other classifiers, SVMs

and RFs, was investigated. The application of all three techniques

to various medical diagnostics problems has been well-documented

in the literature [28,29] and a brief overview of the underlying

principles is given in the electronic supplementary material.

3.4. Performance generalization
The generalization of each machine learning algorithm (i.e. its

expected performance on unseen data) was assessed using either

fourfold cross-validation (for the bigger data subsets) or leave-

one-out (for the smaller data subsets). For each training set,

preprocessing as described in §3.1 was performed; these oper-

ations were then applied to the test set, using characteristic

parameters derived from the training set. Additionally, internal

fivefold cross-validation was performed to optimize classifier par-

ameters in each training set, based on area under the curve (AUC).

Using the feature ranking, an increasing number of features

were gradually fed into the classifier, with a separate algorithm

trained for each number. The following performance metrics were

recorded from the test set: sensitivity, specificity, AUC, balanced

accuracy and Matthew’s correlation coefficient (MCC), where the

latter two were defined as: balanced accuracy¼ 0.5 (sensitivity þ
specificity); MCC ¼ (TP � TN 2 FP� FN)/

p
(TP þ FP)(TPþ

FN)(TNþ FP)(TNþ FN), where TP¼ true positive, TN¼ true

negative, FP¼ false positive and FN¼ false negative. MCC and

balanced accuracy were used to account for the disproportionality

of outcomes, particularly evident in the aetiology dataset.
In a thorough validation approach, the steps above were

repeated 20 times to offset any bias in the split of the data into

train and test, and assess performance variance (which ideally

will be low in order to have confidence in the reported errors).

Algorithm performance in this paper is reported in terms of

mean values and variance across the repetitions. The performance

of the three classifiers was assessed, identifying both the optimal

number of features as well as the best performing algorithm.

3.5. Visualization for interpretation
Childhood pneumonia presents through a complex inter-action of

symptoms. Therefore, visualization of the identified diagnostic

features was necessary to link this data-driven approach back to

the clinical rationale. A dimensionality reduction technique

called t-stochastic neighbourhood embedding (t-SNE) was applied

[30]. Medical data, such as the pneumonia data used in this study,

occupies nonlinear manifolds; consequently, linear methods such

as principal component analysis (PCA) [31] and multidimensional-

ity scaling (MDS) [32] are insufficient as they mainly preserve

the separation between dissimilar data entries within a low-

dimensional space, at the expense of closure information concerning

similar entries. t-SNE has been previously reported to capture

aspects of both the local as well as the global structure, preserving

the neighbouring probabilities of samples. It calculates Euclidean

distances between data entries and derives similarities (conditional

probabilities) by assuming a Student-t distribution [30]. In this

study, t-SNE was used for projecting the higher dimensional

feature space onto a two-dimensional space.
4. Results
Results for each of the three diagnostic challenges are presented

separately in §4. Additionally, the electronic supplementary

material, §D, contains a description of various machine
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learning techniques that were applied to this problem but led to

worse results than those reported here. Nevertheless, these les-

sons can be of value to the research community and others

working on this specific problem.

4.1. Disease identification
Applying the feature selection methodology outlined pre-

viously, the following feature subset was selected: RR, HR,

temperature (T), malnutrition (WHZ) and Osat, listed in des-

cending order of importance. A full list of the selected

features can be found in the electronic supplementary material,

figure S1. RR, HR, T and Osat had 13 missing values each,

WHZ had 22. Values were imputed using the procedure

described in §3.1., leading to the creation of five ghost vectors.

We experimented with different loss function approaches

(balanced accuracy, MCC) for the three classifiers tested

(LR, SVM, RF). The MCC was observed to be most favourable,

optimizing performance in the test set as a result of fine-tuning

of model parameters in the training/validation set. Specifi-

cally, for SVM, a Gaussian radial basis function kernel, with

a kernel width, g, of 0.1 and a cost parameter of 1000 were

found to deliver the best performance; for RF, 750 decision

trees and searching over two variables at each tree node were

the optimal hyperparameters.

The three classification techniques exhibited comparable

performance, with somewhat more favourable sensitivity and

specificity obtained with RF (figure 3a). LR was seen to some-

times outperform SVM but exhibited larger variance. The

addition of the ghost vectors had a very limited effect on classi-

fication performance, with changes in all metrics limited to

+1%. Taking a closer look at the RF algorithm, four features

(RR, HR, Osat and T), with the addition of age, delivered maxi-

mal results: 98.2% (95% CI 97.9–98.8%) sensitivity; 97.6% (95%

CI 97.1–98.0%) specificity; 99.7% (95% CI 99.3–99.8%) AUC;

95.9% (95% CI 95.3–96.5%) MCC. From the cases that were fal-

sely classified as controls, 33% were severe pneumonia.

Moreover, reducing the number of features to three, worsened

performance marginally: 98.2% (95% CI 97.8–98.6%)
sensitivity; 97.1% (95% CI 96.8–97.5%) specificity; 99.6%

(95% CI 99.5–99.6%) AUC; 95.2% (95% CI 94.9–96.1%)

MCC. Somewhat surprisingly, the addition of malnutrition did

not improve results. The distribution of malnutrition values

across the two classes (pneumonia and controls) was further

examined on the basis of t-SNE dimensionality reduction

(figure 3b).

4.2. Severity determination
The aim of this part of the analysis was to investigate whether it

is possible to predict severity using quantifiable features rather

than the observational features included in the ‘gold standard’

guidelines such as ‘chest wall indrawing’. Additionally, it was

also investigated whether biomarkers could be fused with vital

signs to improve severity prediction. For the purposes of an

early warning algorithm, severity was divided into ‘non-

severe’ and ‘severe’, with the latter combining both severe

and very severe pneumonia cases.

In the first severity dataset, selected features were: RR,

Osat, crackles, grunting, HR. In the second severity dataset,

selected features were: RR, grunting, crackles, CRP, HR,

Osat, CD163, Hap, Lcn2. A full list of the selected features

is available in the electronic supplementary material, figure

S2. In the first severity dataset, all five features had less

than three missing values each, introducing five ghost vec-

tors. In the second severity dataset, the clinical signs had

no missing values and the missing values among the bio-

markers were less than 8% (after exclusion of 19 cases that

were missing seven out of nine features), introducing four

ghost vectors.

First, the mixture of vital signs and lung sounds, listed for

the first severity dataset, was used to classify severity

(figure 4). The following hyperparameters were found to

lead to best performance: a Gaussian radial basis function

kernel, with a kernel with g of 0.01 and a cost parameter of

10 000 for SVM; 750 decision trees and searching over two

variables at each tree node for RF. MCC proved to be the

most suitable optimization metric. Some differences were
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observed between the classifiers: RF and SVM performed

comparably, whereas LR achieved better sensitivity at the

cost of specificity (figures 4 and 5). The addition of the ghost

vectors had very limited effect on classification, with changes

in all metrics limited to +0.8%. With five features (and age):

LR delivered sensitivity of 84.6% (95% CI 83.6–85.2%); speci-

ficity of 68.3% (95% CI 67.5–69.3%); AUC of 83.7% (95% CI

83.2–83.8%); MCC of 53.6% (95% CI 52.1–55.2%); RF delivered

sensitivity of 71.8% (95% CI 70.0%–76.6%); specificity of 81.8%

(95% CI 73.3–83.5%); AUC of 83.5% (95% CI 82.5–83.8%);

MCC of 52.9% (95% CI 49.6–55.2%).

The five clinical features listed above could be extracted

via two measurements, keeping cost down, while also ensur-

ing feasibility. Biomarkers could be used to improve

performance but are associated with additional cost (both for

the development of the assay, if it does not exist, as well as

the cost of individual probes). Consequently, when introducing
biomarkers to the feature set we attempted to keep their

number as low as possible (one or two) and identify optimal

combinations (table 1). CRP and Hap added to the three vital

signs and two lung sounds, were seen to deliver best results:

sensitivity of 91.4% (95% CI 89.4%–92.3%); specificity of

83.2% (95% CI 82.1–84.2%); AUC of 94.2% (95% CI 93.7–

94.3%); MCC of 73.9% (95% CI 72.8–77.0%). However, with

just one biomarker (CRP) and the same list of remaining fea-

tures, performance was not much worse: sensitivity of 88.5%

(95% CI 87.5%–90.4%); specificity of 82.1% (95% CI 80.0–

84.2%); AUC of 92.3% (95% CI 92.0–94.9%); MCC of 71.8%

(95% CI 68.9–72.9%). The reported results were obtained with

RF; with more than five features, LR’s specificity fell below

60% and computational time with SVM was very long (17 h

for the full validation routine, compared with 2 h with RF).

Taking a closer look at the classifier’s predictions, most

cases from both classes were classified with high level of
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Figure 6. (a) Receiver operating characteristic (ROC) curve for the three classifier applied to the problem of aetiology determination; the location of the test results
on the ROC curve as per the MCC optimization are denoted via an ‘asterisk’. (b) Distribution of Lcn2 values across 10 probabilistic bins, presented as in figure 5. The
number of predicted cases in bins 1 – 10 were: 42, 14, 4, 3, 4, 4, 2, 5, 4, 7. Misclassified cases in each bin are plotted on top of the boxplot with squares denoting
bacterial and circles denoting viral cases.

Table 1. Sensitivity and specificity of severity determination. First, biomarkers are added individually, followed by combinations of pairs of the top three
performing biomarkers. With five features, LR outperformed RF’s sensitivity; with more features, RF delivered both greater sensitivity and specificity.

no. features features list sensitivity specificity

5a RR, HR, Osat, crackles, grunting 0.85 0.68

5b RR, HR, Osat, crackles, grunting 0.72 0.82

6b RR, HR, Osat, crackles, grunting þ CRP 0.89 0.82

6b RR, HR, Osat, crackles, grunting þ Lcn2 0.87 0.8

6b RR, HR, Osat, crackles, grunting þ Hap 0.88 0.79

6b RR, HR, Osat, crackles, grunting þ CD163 0.88 0.77

7b RR, HR, Osat, crackles, grunting þ CRP þ Lcn2 0.91 0.78

7b RR, HR, Osat, crackles, grunting þ CRP þ Hap 0.91 0.83

7b RR, HR, Osat, crackles, grunting þ Lcn2 þ Hap 0.88 0.76
aClassification via LR.
bClassification via RF.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160266

7

certainty. To trace the roots of any uncertainty, the probabilistic

outcomes were split into 10 bins and the distribution of indi-

vidual features in each bin was investigated (CRP in figure 5

and RR in the electronic supplementary material, figure S4).

From this, bins 1 and 2, and, 9 and 10 contained only one mis-

classified case and displayed a substantial difference between

their CRP and RR values. Cases with more moderate CRP

and RR values led to more uncertainty and consequently

higher misclassification rates.

Finally, the IMCI severity guidelines were used for com-

parison, delivering 79.3% sensitivity and 67.7% specificity

(first severity dataset).
4.3. Aetiology determination
This part of the study explored whether a combination of

vital signs and biomarkers could be used to predict aetiology

(bacterial versus viral), providing a potential alternative in set-

tings where X-rays and blood culture laboratories are unavailable.

The feature selection identified six features: Lcn2, Hap,

RR, CRP, HR, CD163; a full list of selected features is
available in the electronic supplementary material, figure

S3. Missing values were imputed using the median value of

features, where imputation was under 10% in all concerned

features, leading to the creation of four ghost vectors.

Optimization of hyperparameters was performed via

MCC, selecting a g of 0.01 and a cost parameter of 1000; and

750 decision trees and searching over three variables at each

tree node for RF. Substantial differences were observed in the

performance of the three classifiers (figure 6a)—SVM was

seen to underperform despite efforts to fine-tune the two

relevant hyperparameters. RF was seen to deliver better sensi-

tivity than LR for a comparable specificity. Similarly to the

severity part of the study, biomarkers were added to the feature

set, aiming to minimize the number required to achieve satis-

factory classification results (table 2). The addition of Lcn2 to

RR, HR and Osat was seen to deliver good performance: sensi-

tivity of 81.8% (95% CI 81.8–81.8%); specificity of 90.6% (95%

CI 89.1–92.2%); AUC of 91.6% (95% CI 89.6–92.8%); MCC of

70.5% (95% CI 68.1–73.0%). Adding a second biomarker did

not improve results. The addition of ghost vectors led to

marginal changes in performance (+0.7%).



Table 2. Sensitivity and specificity of RF for prediction of aetiology. The best performing biomarker was identified first; combinations with a second biomarker
were explored with no substantial change in performance.

no. features features list sensitivity specificity

3 RR, HR, Osat 0.50 0.86

4 RR, HR, Osat þ CRP 0.64 0.88

4 RR, HR, Osat þ Lcn2 0.82 0.91

4 RR, HR, Osat þ Hap 0.64 0.86

4 RR, HR, Osat þ CD163 0.46 0.91

5 RR, HR, Osat þ Lcn2 þ CRP 0.82 0.88

5 RR, HR, Osat þ Lcn2 þ Hap 0.82 0.91

5 RR, HR, Osat þ Lcn2 þ CD163 0.82 0.89
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Similar to the analysis for severity, probabilistic predictions

were split into bins and the distribution of individual features

across these bins was studied (figure 6b). Cases with Lcn2

values below 200 ng ml21, were classified as viral with a

high degree of certainty. However, three bacterial cases were

seen to have Lcn2 values in that range and some viral cases

also presented with elevated Lcn2. Additionally, the relation-

ship between severity and aetiology of pneumonia is not

straight-forward. The available dataset contained a mixture

of cases spread across the severity and aetiology categories:

from the bacterial cases, 10 were severe and 12 non-severe;

from the viral cases, 12 were severe and 52 non-severe. Three

of the severe cases (13.6%) were misclassified in terms of

their aetiology. Based on the IMCI guidelines, all 86 cases

should have been administered antibiotics. Hence, according

to the IMCI guidelines, 100% of the viral cases would have

been misclassified according to their aetiology.
5. Discussion and conclusion
Childhood pneumonia presents a severe global health chal-

lenge, costing the lives of more than a million young children

annually. Affordable and timely diagnostics that facilitate

appropriate treatment could help save many of these lives.

However, existing diagnostic approaches are often inappropri-

ate for resource-constrained settings and novel techniques are

required to leapfrog the gap in medical expertise and expensive

equipment. Data mining has the potential to offer such a diag-

nostic remedy, if utilised in a clinically driven and user-centric

manner. This study investigated the use of a suite of machine

learning techniques to derive clinical insights regarding a hol-

istic diagnostic assessment, including identification, severity

and aetiology determination. The proposed approach applied

to eight features (four vital signs (RR, HR, Osat, T), two lung

sounds (grunting, crackles) and two biomarkers (CRP, Lcn2))

could: identify pneumonia with 98.2% sensitivity and 97.6%

specificity; determine severity with 89.1% sensitivity and

81.2% specificity; and determine aetiology with 81.8% sensi-

tivity and 90.6% specificity. These findings are very clinically

relevant as they suggest that machine learning could be used

to strengthen the capacity of health system in low-resource set-

tings to deal with childhood pneumonia, despite sparsity of

advanced equipment and highly trained clinicians.

The purpose of the analysis was not to simply automate the

guidelines but rather to offer a more accurate and reproducible
alternative. To achieve this, some of the features highlighted by

the feature selection techniques as predictive (‘cough’, ‘days

unwell’, ‘head nodding’) were excluded because they could not

be measured unambiguously. Both ‘cough’ and ‘days unwell’

rely on a parent’s careful observations. Similarly, features con-

taining a huge degree of variability between providers of

health (e.g. head nodding) were also excluded. However, lung

sounds (‘crackles’, ‘grunting’, ‘bronchial breathing’) were kept

in the feature set as recent technological advancements have indi-

cated that the acquisition of lung sounds could be automated

through appropriate signal processing.

Some of the selected features were grouped together,

e.g. RR, HR and Osat in figure 4, regardless of the ranking

order derived during feature selection. This was done in order

to illustrate that some features could be obtained through the

same measurement/signal, reducing complexity of clinical

examination and cost. For example, the PPG signal obtained

through a pulse oximeter could be used to derive RR, HR

and Osat. Similarly, multiple lung sounds (crackles, grunting,

bronchial breathing) can be obtained through a single

stethoscope measurement.

From the classifiers examined, RF was seen to outperform

other methods (including LR which is conventionally used in

clinical studies), indicating likely nonlinear interaction between

the clinical signs measured. Identification of pneumonia was

achieved with a high degree of confidence using four clinical

features that could be derived from just two measurements—

a PPG measurement (delivering RR, HR and Osat) and a

temperature measurement. However, the dataset analysed in

this study contained some limitations. Specifically, the control

cases were generally quite healthy (apart from some odd cases

of elevated HR and low SpO2). In a realistic clinical setting

children will also present with various other diseases; therefore,

a reliable evidence-based machine learning algorithm should

ideally be trained to differentiate childhood pneumonia from

other conditions that might appear similar (e.g. malaria or

tuberculosis).

The severity analysis elucidated a few key findings. First,

with three vital signs and two lung sounds, it was possible to

determine severity with high specificity (82.2%) but lower

sensitivity (72.4%) using an RF algorithm. However, keeping

the diagnostic application in mind, low sensitivity would

mean severely ill children who should have been referred to

hospital get missed. The use of LR had the opposite effect,

favouring sensitivity at the expense of specificity (figure 4).

Consequently, triaging of severe cases using the LR algorithm
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might be more efficient but would also lead to referral of a lot of

non-severe cases. Future work could consider combining the

two algorithms to defuse some of this uncertainty. Second,

the addition of biomarkers was seen to only improve sensi-

tivity, with very limited changes to specificity (table 1). With

or without biomarker information, fusion of features via

machine learning was seen to outperform the IMCI guidelines

for severity (as demonstrated in §4.2.), where the latter uses

observational and unquantifiable features.

Finally, the study also suggested an alternative source of

aetiology information, which is typically obtained using X-rays

and blood culture, by combining a couple of vital signs with a

recently proposed biomarker (Lcn2). Moreover, only three out

of the 22 severe cases were misclassified (13.6%) in terms of

their aetiology. Misclassifications within the aetiology problem

would be most detrimental in cases of severe bacterial/viral

pneumonia as this could hinder the timely administration of

appropriate treatment. This information could be crucial in set-

tings where access to advanced medical technologies is limited,

provided a point-of-care test for Lcn2 is developed. In order to

reliably validate the ability of this approach to replace the use

of X-rays and blood culture, especially in settings where these

are not available, a bigger dataset would be required.

Multiple risk factors associated with pneumonia have been

identified in the literature, with malnutrition playing a sub-

stantial role in the clinical outcome. Specifically, malnutrition

has been quoted as an underlying factor in 35% of deaths

in children under 5-years old, including those from pneumonia

[2]. Pneumonia in severely malnourished children is often

undetected, in the absence of advanced imaging, leading to

high mortality. In the dataset analysed here, extreme malnu-

trition scores (from figure 3b, scores less than 24 and more

than 1) were seen to be related to the presence of pneumonia,

confirming the status of malnutrition as a high risk factor.

However, moderate malnutrition scores were seen to be

equally distributed across both pneumonia and controls.

Additionally, malnutrition showed limited significance to pre-

diction of severity or aetiology. Nevertheless, it is expected

that malnutrition would be more relevant as a predictor of

survival but the dataset available did not contain information

on such outcomes.

Biomarkers were included in the analysis despite the fact

that affordable point-of-care tools might not be commercially

available for all of them yet. Nevertheless, research in this

area has delivered promising results. For example, Martinez

et al. reported a production price of US$0.01 for a paper-based

analytical device and multiple applications for this type of tech-

nology have been explored [33]. Point-of-care assays for

CRP have been developed by several commercial providers.

Lcn2 cannot be currently measured in a point-of-care setting.
However, the results obtained in this study highlighted that

CRP and Lcn2 could facilitate both severity and aetiology deter-

mination, supporting the need for the development of

affordable point-of-care assays for both biomarkers.

This study provides a theoretical foundation upon which

the research team will be looking to expand both in terms of

the analysis of larger and richer datasets as well as the design

of appropriate point-of-care tools to be used for acquisition of

some of the key parameters (e.g. detection algorithms for

lung sounds via a low-cost digital stethoscope). Hence, a

mobile application connected to low-cost diagnostic tools

(a pulse oximeter and digital stethoscope) has been designed,

with the user interface designed for basically trained CHWs.

As a next step, it is crucial to validate findings on a dataset

obtained in a community setting, where initial triaging for

pneumonia would take place. For this purpose, the research

team is designing a study that will collect data via the

described tools in the community (e.g. in an urban slum),

with outcomes validated at a public hospital. Consequently,

this will allow validation of the proposed machine learning

approach, as well as the development of additional algor-

ithms to (i) differentiate pneumonia from other childhood

diseases, (ii) stratify severity based on disease evolution,

and (iii) predict potential complications early.
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