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Numerous processes across both the physical and biological sciences are

driven by diffusion. Partial differential equations are a popular tool for mod-

elling such phenomena deterministically, but it is often necessary to use

stochastic models to accurately capture the behaviour of a system, especially

when the number of diffusing particles is low. The stochastic models we con-

sider in this paper are ‘compartment-based’: the domain is discretized into

compartments, and particles can jump between these compartments.

Volume-excluding effects (crowding) can be incorporated by blocking move-

ment with some probability. Recent work has established the connection

between fine- and coarse-grained models incorporating volume exclusion,

but only for uniform lattices. In this paper, we consider non-uniform, hybrid

lattices that incorporate both fine- and coarse-grained regions, and present

two different approaches to describe the interface of the regions. We test

both techniques in a range of scenarios to establish their accuracy, benchmark-

ing against fine-grained models, and show that the hybrid models developed

in this paper can be significantly faster to simulate than the fine-grained

models in certain situations and are at least as fast otherwise.
1. Introduction
Diffusion can be modelled using a multitude of mathematical techniques. Partial

differential equations (PDEs) are a popular choice, but are inappropriate where

stochastic effects are significant [1]. Stochastic models of diffusion fall into two

main categories: off-lattice models, where each particle’s position lies on a conti-

nuum within the domain, and on-lattice, compartment-based models, where

particles undergo a random walk on a lattice [2].

Volume exclusion (crowding) can be incorporated into compartment-based

models by assigning a maximum particle capacity, m, to each compartment,

where m varies linearly with the compartment’s size. Attempted moves into

any given compartment are blocked with some probability. Of particular interest

is the case where this probability scales linearly with the compartment’s current

occupancy, such that the blocking probability is equal to zero when empty and

to unity when full to capacity, m [3–5]. We describe such a model as ‘partially

excluding’ or ‘coarse-grained’ when m . 1, and as ‘fully excluding’ or ‘fine-

grained’ when m ¼ 1. In one spatial dimension, the fully excluding model is an

example of single-file diffusion, a class of model of particular relevance to biologi-

cal processes such as the diffusion of aTAT1 within microtubules [6], the

movement of flagellin in the formation of bacterial flagella [7] and the dispensing

of proteins through in the nanochannels of drug delivery devices [8].

In a recent paper [9], we showed that the descriptions of a one-dimensional

system given by fully and partially excluding models can be reconciled. Specifi-

cally, we demonstrated that the mean and variance of particle numbers within

each partially excluding compartment of capacity m can be matched with the
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Figure 1. Shaded cells represent particles, and white cells unused capacity,
within uniform compartments of different capacities. As m increases, the
spatial resolution coarsens, but the descriptions given at these different
scales can be reconciled. (Online version in colour.)
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mean and variance of the total number of particles across the

m corresponding contiguous fully excluding compartments.

Our previous work considered uniform lattices, where every

compartment was of the same size and capacity. For some

models, such as those of real biological systems, it may be necess-

ary to incorporate events occurring across a wide range of spatial

and temporal scales [10]. This means that it may be desirable to,

for example, simulate the diffusion of particles with precision

in a small spatial region of interest, such as the area around

receptors on a cell membrane [11], or around an ion channel

[12], while using less computationally intensive methods else-

where on the domain. As a result, recent years have seen the

development of multiple hybrid approaches for linking

compartment-based models to off-lattice models of diffusion

[13–15], off-lattice models to PDE models of diffusion [16] and

PDE models to compartment models of diffusion [17–19]. To

the best of our knowledge, however, there have been no attempts

to develop a hybrid system interfacing volume-excluding

compartment-based models at different scales.

In this paper, we consider how to interface a uniform region

of partially excluding compartments with another uniform

region of fully excluding compartments, and present two

hybrid approaches capable of accurately simulating diffusion

in such systems. Both approaches will be of value to researchers

working on multi-scale systems, as they can speed up

simulations while preserving precision where needed.

We begin by providing a short summary of our previous

work on reconciling models of particle behaviour across

spatial scales on uniformly partitioned lattices, before proceed-

ing to consider hybrid models. The first hybrid method we

present extends to diffusion on non-uniform lattices the pre-

vious results reconciling fully excluding and partially

excluding systems. We use these results to present one simple

and elegant means of connecting two uniformly partitioned

regions of differing compartment capacity. The second hybrid

method we present defines a small area between the fine

and coarse regions of the domain, where particle behaviour

exhibits some characteristics of both regions. We term this

area a pseudo-compartment, and the modelling framework

a pseudo-compartment method, by analogy to a recent

paper using similar techniques to couple a PDE model to a

compartment-based model [17].

To determine the accuracy of these hybrid approaches, we

apply each one to three scenarios, comparing the correspon-

dence of the means and variances of particle numbers in the

hybrid system to the corresponding moments in non-hybrid

fine- and coarse-grained systems, as well as to PDE solutions

when appropriate. The first scenario confirms that the hybrid

systems are capable of maintaining a uniform steady state.

The second compares their accuracy in a simple case of particle

spreading from an initially inhomogeneous particle distri-

bution. In the third scenario, we examine a morphogen

gradient formation system, incorporating particle decay and

influx of particles at the left-hand boundary x ¼ 0. Morphogen

gradients are a common example of a multi-scale system in

biology, as they incorporate both regions of low particle den-

sity where models with high spatial resolution are suitable,

and regions of high particle density where such detailed mod-

elling is computationally infeasible and unnecessary [20,21].

In all three cases, we observe that the mean and variance

of particle numbers in each compartment of the hybrid

models agree with those obtained from simulations run on

uniform lattices.
Finally, we consider a simple multi-species scenario, where

the simulated results of a partially excluding model fail to

match those of a fully excluding model. We demonstrate that

both hybrid systems are capable of matching the accuracy of

the fully excluding model in this scenario, while requiring

only between a third and a seventh of the computational

time to simulate.
2. Random walks on uniform lattices
We consider a one-dimensional lattice-based random walk on

x [ ½0, L�, where each motile particle has length h. The length

of the domain, L, is chosen such that L ¼ Nh, where N [ N,

so that the domain can contain at most N particles. We

impose a uniform lattice consisting of K compartments onto

this domain, where choices of K are constrained by the require-

ment that m ¼ L/(Kh) should be a positive integer. As a

consequence, N ¼ Km, and m describes the maximum

number of particles that can reside in each of the K compart-

ments, or their ‘capacity’. Diffusion may then be modelled as

a series of jumps as particles move between neighbouring com-

partments; in the absence of volume exclusion, the jump rates

between compartments scale inversely with the square of box

lengths, i.e.

T +
j ¼

D
m2h2

, j ¼ 1, . . . , K, ð2:1Þ

where D is the macroscale diffusivity of particles. The spatial

resolution of the model can be varied by changing the compart-

ment capacity, m, as illustrated in figure 1. We are particularly

interested in the fine-grained limiting case m ¼ 1, where each

compartment contains at most one particle (fully excluding).

We shall consider the fully excluding case to be ‘accurate’, in

the sense that no assumptions are required to determine each

particle’s position within its compartment. We assume that

the particles considered in this paper do not interact except

through volume-excluding effects.
2.1. Volume exclusion
A common approach taken in the literature is to define the

jump rates between compartments as the product of the

non-excluding jump rate and a blocking probability

T+
j ¼ T +

j 1�
nðmÞj+1

m

 !
¼ D

m2h2
1�

nðmÞj+1

m

 !
,

j ¼ 1, . . . , K,

ð2:2Þ
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where nðmÞj is the number of particles in compartment j when

each compartment has capacity m [3]. The term in brackets

incorporates volume exclusion by causing attempted jumps

into a compartment to fail with a probability that scales linearly

with the compartment occupancy. Other forms for the block-

ing probability could be chosen, but the resulting particle

behaviours would not be conserved across spatial scales [9].

Imposing zero-flux boundary conditions so that the number

of particles in the system is constant, the evolution of mean

particle numbers in compartment 1 , j , K is given by

dMj

dt
¼ T þj�1 M j�1 �

1

m
kn j�1njl

� �
� T �j Mj �

1

m
kn j�1njl

� �

�T þj Mj �
1

m
knjn jþ1l

� �
þ T �jþ1 M jþ1 �

1

m
knjn jþ1l

� �
,

where k � l is used to denote expected values, and MðmÞj ¼ knðmÞj l
denotes the mean number of particles in the jth compartment

of capacity m. Writing out the transition rates explicitly, the

evolution of mean particle numbers in each compartment is

given by

dMðmÞ
1

dt
¼ D

m2h2
�MðmÞ

1 þMðmÞ2

� �
, ð2:4Þ

dMðmÞj

dt
¼ D

m2h2
MðmÞj�1 � 2MðmÞ

j þMðmÞjþ1

� �
,

j ¼ 2, . . . , K � 1

ð2:5Þ

and

dMðmÞ
K

dt
¼ D

m2h2
MðmÞ

K�1 �MðmÞK

� �
: ð2:6Þ

We refer to these as ‘mean master equations’, and note

their linearity: this is a consequence of our choice of blocking

probability, and would not be the case had we chosen other-

wise [9]. Nonlinear terms will also occur when there is more

than one species of particle present, or when there is directional

bias in particle movement [22]. The absence of nonlinear

terms in this macroscopic description does not imply that the

individual particles are unconstrained by volume exclusion:

a single-tagged particle can display density-dependent

behaviour [6,22].

It is also possible to derive equations describing the

evolution of the variance of nðmÞj (variance master equations):

dVðmÞj

dt
¼ D

m2h2
2

m� 1

m

� �
VðmÞj,j�1 � 4VðmÞj þ 2

m� 1

m

� �
VðmÞj,jþ1

�

þMðmÞ
j�1 1�

MðmÞ
j

m

 !
þMðmÞj 1�

MðmÞ
j�1

m

 !

þMðmÞ
j 1�

MðmÞjþ1

m

 !
þMðmÞjþ1 1�

MðmÞ
j

m

 !#
, ð2:7Þ

for 2 � j � K 2 1, where VðmÞj ¼ kðnðmÞjÞ2l� ðMðmÞ
j Þ

2 is the var-

iance of particle numbers in compartment j, and VðmÞj,k is the

covariance of particle numbers in compartments j and k:

dVðmÞj�1,j

dt
¼ D

m2h2

2

m
�4

� �
VðmÞj�1,jþVðmÞj þVðmÞj�1þVðmÞj�2,jþVðmÞj�1,jþ1

�

�MðmÞ
j�1 1�

MðmÞ
j

m

 !
�MðmÞ

j 1�
MðmÞ

j�1

m

 !#
and

dVðmÞj,k

dt
¼ D

m2h2
�4VðmÞj,k þVðmÞj�1,kþVðmÞjþ1,kþVðmÞj,k�1þVðmÞj,kþ1

h i
for 1 , j , k�1 , K,

and 1 , kþ1 , j , K: ð2:8Þ

Similar expressions can be found for the variance and covari-

ance terms involving the boundary compartments, j ¼ 1, K.

Note that, unlike the mean master equations, equations

(2.7) and (2.8) contain m terms resulting from volume-exclud-

ing effects. As a result, mean particle numbers will evolve

identically in volume-excluding and non-excluding models,

but the variances and covariances of particle numbers will

be different.

When comparing a fully excluding model (m ¼ 1) to a

partially excluding model (m . 1), we seek to show that the

mean and variance of particle numbers in each compartment

is conserved. In order to compare the results of the two

models, we first consider the means and variances of the

total number of particles residing in a group of m contiguous

compartments with capacity one. We therefore define

SðmÞj ðtÞ ¼
Xjm

i¼ðj�1Þmþ1

nð1Þi ðtÞ, ð2:9Þ

with m
ðmÞ
j ðtÞ the mean of SðmÞj ðtÞ, and vðmÞj ðtÞ its variance.

2.2. Moving between scales
We wish to establish the relationship between: (i) m

ðmÞ
j ðtÞ and

MðmÞ
j ðtÞ; and (ii) vðmÞj ðtÞ and VðmÞj ðtÞ: It is straightforward to

show that, in both of these cases, the steady-state values

match. To find the relationship between m
ðmÞ
j ðtÞ and MðmÞ

j ðtÞ
under transient conditions, we note

dm
ðmÞ
j

dt
¼

Xjm
i¼ðj�1Þmþ1

dMð1Þ
i

dt

¼ D
h2

Xjm

i¼ðj�1Þmþ1

Mð1Þ
i�1 � 2Mð1Þi þMð1Þ

iþ1

� �

¼ D
h2

Mð1Þðj�1Þm �Mð1Þ
ðj�1Þmþ1 �Mð1Þ

jm þMð1Þ
jmþ1

� �
:

ð2:10Þ

We compare this to the coarse-grained model, equation (2.5),

which we re-state here for convenience:

dMðmÞj

dt
¼ D

m2h2
MðmÞj�1 � 2MðmÞ

j þMðmÞ
jþ1

� �
:

Under the assumption that particles in the coarse (m . 1)

compartments are distributed, on average, following a linear

interpolation between neighbouring coarse compartments.

We therefore write

Mð1Þ
jm ¼

1

m
1

2

mþ 1

m
m
ðmÞ
j þ 1

2

m� 1

m
m
ðmÞ
jþ1

� �
ð2:11Þ

and

Mð1Þ
jmþ1 ¼

1

m
1

2

m� 1

m
m
ðmÞ
j þ 1

2

mþ 1

m
m
ðmÞ
jþ1

� �
, ð2:12Þ

as shown in figure 2, with similar values for Mð1Þðj�1Þm and

Mð1Þ
ðj�1Þmþ1: As a result, we have

dm
ðmÞ
j

dt
¼ D

m2h2
m
ðmÞ
j�1 � 2m

ðmÞ
j þ m

ðmÞ
jþ1

� �
, ð2:13Þ
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Figure 2. Schematic of the interpolation process for m ¼ 4. (Online version
in colour.)

x1 x2

mh h h h h h h h
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Figure 3. The locations of a Voronoi lattice’s residence points are chosen (x1, . . . ,
x9), and then compartment edges are positioned equidistant between neigh-
bouring residence points. This particular arrangement demonstrates how
a compartment of capacity (m þ 1)/2 can be used to interface regions where
m . 1 with regions where m¼ 1. In this case, Dx2 ¼ mh, and Dxj ¼ h for
j ¼ 3, . . . , 9. When grouped, we would find SðvÞ1 ðtÞ ¼ nðvÞ1 ðtÞ,
SðvÞ2 ðtÞ ¼

P4
i¼2 nðvÞi ðtÞ and SðvÞ3 ðtÞ ¼

P9
i¼5 nðvÞi ðtÞ:
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and evolution of the mean particle numbers in the coarse-

grained system matches that of the accurate model. Analogous

reasoning can be applied to match the evolution of the variance

of particle numbers.
 nterface
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3. Hybrid fully/partially excluding systems
Having reviewed the reasoning used to match descriptions

of uniform lattices at different spatial scales, we proceed to

outline two hybrid models using non-uniform lattices.

In both cases, we justify the correspondence of mean

particle numbers in each compartment of the hybrid

model to the mean particle numbers in the accurate, m ¼ 1

uniform lattice.

3.1. Voronoi method
Jump rates between compartments can be derived from the

assumption of underlying Brownian motion of particles

using first-passage time arguments (the method is outlined

in the electronic supplementary material, appendix A) [23].

Particles are assumed to begin from a fixed point within

their current compartment, the ‘residence point’, and are

deemed to have jumped to a neighbouring compartment

when they first reach that compartment’s residence point.

For a uniform lattice, these residence points are located at

the centre of each compartment.

For a non-uniform lattice, we let the compartment

residence points be at [x1, . . . ,xK] on the domain [0, L],

then define Dxj ¼ xj 2 xj21, for 1 , j � K. Compartment

edges are then placed so as to be equidistant between

neighbouring residence points, so that the jth compart-

ment covers the interval x [ ½xj � Dxj=2, xj þ Dx jþ1=2� (an

example is given in figure 3). Recall that the capacity of

each compartment varies linearly with its length, and

that the capacity of compartments on a uniform lattice is

given by m ¼ L/(Kh), that is, the compartment length

divided by particle length, h. Similarly, we obtain capacities

[m1, . . . ,mK] for the K Voronoi compartments by dividing

their lengths by h, obtaining

m1 ¼
2x1 þ Dx2

2h
, ð3:1Þ

mj ¼
Dxj þ Dxjþ1

2h
, 1 , j , K ð3:2Þ

and

mK ¼
2ðL� xKÞ þ DxK

2h
: ð3:3Þ

The positioning of residence points is restricted by a require-

ment that every compartment should have an integer-valued

capacity. Inverting the conditional expected exit times
obtained in the electronic supplementary material,

appendix A, and factoring in the relative probabilities of

moving left or right, the following transition rates for a par-

ticle in the jth compartment, in the absence of volume

exclusion, can be obtained [23,24]:

T �j ¼
2D

DxjðDxj þ Dx jþ1Þ
¼ D

Dxjmjh
ð3:4Þ

and T þj ¼
2D

Dx jþ1ðDxj þ Dx jþ1Þ
¼ D

Dx jþ1mjh
: ð3:5Þ

Multiplying equations (3.4) and (3.5) by the jump blocking

probability, ð1� nðvÞj+1=m j+1Þ, we arrive at the transition

rates for a volume-excluding model:

T�j ¼ T �j 1�
nðvÞj�1

m j�1

 !
¼ D

Dxjmjh
1�

nðvÞj�1

m j�1

 !
ð3:6Þ

and

Tþj ¼ T þj 1�
nðvÞjþ1

m jþ1

 !
¼ D

Dx jþ1mjh
1�

nðvÞjþ1

m jþ1

 !
: ð3:7Þ

The following equation for the evolution of mean particle

number can then be obtained:

dMðvÞ
j

dt
¼ T þj�1 MðvÞj�1 �

1

mj
knðvÞj�1nðvÞj l

� �

� T �j MðvÞj �
1

m j�1
knðvÞj�1nðvÞj l

� �

� T þj MðvÞj �
1

m jþ1
knðvÞj nðvÞjþ1l

� �

þ T �jþ1 MðvÞjþ1 �
1

mj
knðvÞj nðvÞjþ1l

� �
,

ð3:8Þ

where we use nðvÞj , MðvÞj and VðvÞj to denote the number, mean

and variance, respectively, of particles in the jth Voronoi

compartment. From the definitions of the transition rates

given in equations (3.6) and (3.7), we note that

T þj�1=mj ¼ T �j =m j�1 and T þj =m jþ1 ¼ T �jþ1=mj, and hence

equation (3.8) simplifies to

dMðvÞ
j

dt
¼ T þj�1MðvÞ

j�1 � (T �j þ T þj )MðvÞj þ T �jþ1MðvÞ
jþ1: ð3:9Þ
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In the same way, we can obtain equations for the evolution of

variances,

dVðvÞj

dt
¼ �2(T �j þ T þj )VðvÞj þ 2T þj�1 1� 1

mj

� �
VðvÞj�1,j

þ 2T �jþ1 1� 1

mj

� �
VðvÞj,jþ1

þ T þj�1MðvÞj�1 1�
MðvÞj

mj

 !
þ T �j MðvÞ

i 1�
MðvÞj�1

m j�1

 !

þ T þj MðvÞ
j 1�

MðvÞ
jþ1

m jþ1

 !
þ T �jþ1MðvÞ

jþ1 1�
MðvÞ

j

mj

 !
:

ð3:10Þ

The derivations of both equation (3.8) and (3.10) are outlined

in the electronic supplementary material, appendix B. In the

previous section, we summarized previous work matching

the behaviours of m
ðmÞ
j ðtÞ with MðmÞ

j ðtÞ, and of vðmÞj ðtÞ with

VðmÞj ðtÞ: We now wish to show that particle behaviour is simi-

larly conserved between scales when using a Voronoi

partitioned lattice.

Suppose that the Voronoi lattice consists of p compart-

ments of capacity m . 1 at the left of the domain, followed

by a single compartment of capacity (m þ 1)/2, and then

the remainder of the domain is partitioned into fine compart-

ments of capacity one (as illustrated in figure 3, for p ¼ 1 and

m ¼ 5). To avoid non-integer compartment capacities, our

choice of m must be odd-valued. Recall that, to aggregate

compartments on a fully excluding uniform lattice, we wrote

SðmÞj ðtÞ ¼
Xjm

i¼ðj�1Þmþ1

nð1Þi ðtÞ: ð3:11Þ

By analogy, we define SðvÞj ðtÞ, such that

SðvÞj ðtÞ ¼

nðvÞj ðtÞ if j , pþ 1,

Ppþðmþ1Þ=2

i¼pþ1

nðvÞi ðtÞ if j ¼ pþ 1,

Ppþðmþ1Þ=2þmðj�pÞ

i¼pþðmþ3Þ=2þmðj�p�1Þ
nðvÞi ðtÞ if j . pþ 1:

8>>>>>>><
>>>>>>>:

ð3:12Þ

These groupings are illustrated in figure 3 for p ¼ 1 and m ¼ 5.

As in the previous section, we write m
ðvÞ
j ðtÞ and vðvÞj ðtÞ to

denote the mean and variance of SðvÞj ðtÞ, and seek to show a

connection between: (i) m
ðvÞ
j ðtÞ and m

ðmÞ
j ðtÞ, and (ii) vðvÞj ðtÞ

and vðmÞj ðtÞ: We can do this by examining the equation for

the evolution of m
ðvÞ
j : For j , p, we write

dm
ðvÞ
j

dt
¼

dMðvÞ
j

dt
¼ D

m2h2
m
ðvÞ
j�1 � 2m

ðvÞ
j þ m

ðvÞ
jþ1

� �
, ð3:13Þ

which clearly matches equation (2.13). For j . p þ 1, a similar

match can be obtained using the same linear interpolation

applied in the previous section.

When j ¼ p, p þ 1 then we use equations (3.6) and (3.7) to

obtain

dm
ðvÞ
p

dt
¼ D

m2h2
MðvÞp�1 � 2

D
m2h2

MðvÞp þ
D

mm pþ1h2
MðvÞ

pþ1 ð3:14Þ
and

dm
ðvÞ
pþ1

dt
¼

Xpþðmþ1Þ=2

i¼pþ1

dMðvÞi

dt
ðtÞ

¼ D
m2h2

MðvÞ
p �

D
mm pþ1h2

MðvÞ
pþ1

� D
h2

MðvÞpþðmþ1Þ=2 þ
D
h2

MðvÞ
pþðmþ3Þ=2:

ð3:15Þ

As before, we make the substitutions MðvÞ
p�1 ¼ m

ðvÞ
p�1

and MðvÞp ¼ m
ðvÞ
p , and interpolate values of MðvÞ

pþðmþ1Þ=2 and

MðvÞ
pþðmþ3Þ=2 from m

ðvÞ
pþ1 and m

ðvÞ
pþ2 using equations (2.11)

and (2.12). Finally, we observe that the residence point of

the ( p þ 1)th Voronoi box coincides with the centre of the

( p þ 1)th aggregated box (as illustrated in figure 3), so

the interpolated value for MðvÞ
pþ1 is simply

MðvÞ
pþ1 ¼

m pþ1

m
m
ðvÞ
pþ1: ð3:16Þ

Substituting this into equations (3.14) and (3.15), we arrive at

dm
ðvÞ
p

dt
¼ D

m2h2
m
ðvÞ
p�1 � 2mðvÞp þ m

ðvÞ
pþ1

� �
ð3:17Þ

and

dm
ðvÞ
pþ1

dt
¼ D

m2h2
MðvÞp � 2m

ðvÞ
pþ1 þ m

ðvÞ
pþ2

� �
, ð3:18Þ

so we can expect the values of m(v) to match those of m(m).

Although we do not show them here, analogous treatments

can be applied to match v(v) with v(m).

Voronoi partitioned lattices provide one method of

interfacing two regions partitioned by uniform lattices of

differing compartment capacities, but only for certain com-

partment capacity values. It is not possible, for example, to

interface a region where m ¼ 1 with a region where m ¼ 2,

as any intermediate sized compartment would have non-

integer-valued capacity. In such situations, it is useful

to have another hybrid method capable of interfacing

the regions.
3.2. Pseudo-compartment method
Pseudo-compartment methods have previously been used to

interface compartment-based models with PDE models.

In such models, the domain consists of a region where diffu-

sion is modelled using a discrete model, another region in

which diffusion is modelled using a continuum PDE model,

and a pseudo-compartment that combines both models.

Specifically, although particle concentration in the pseudo-

compartment is modelled in a spatially continuous manner

using PDEs, discrete jump events between the pseudo-

compartment and the neighbouring compartment-based

region can take place, adjusting the particle concentration pro-

file appropriately [17]. In this section, we discuss using similar

ideas to interface one region of the domain, partitioned by a

coarse lattice with compartment capacity m . 1, with another

region, partitioned with a fine lattice where m ¼ 1.

We assume, without loss of generality, that the coarse

region is to the left-hand side of the domain, and that it con-

sists of p compartments of capacity m . 1. The first m fully

excluding compartments, i.e. those of index p þ 1 through

to p þ m, are then said to collectively comprise the pseudo-

compartment (this is illustrated for p ¼ 1 and m ¼ 5 in
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Figure 4. Pseudo-compartment method, with m ¼ 5 and p ¼ 1. The
compartments of index 2 through to 6 form the pseudo-compartment.
Particles in these compartments may attempt to jump to neighbouring com-
partments with rate D/h2, or into compartment 1 with propensity D/m2h2,
subject to the standard blocking probability arising from volume exclusion.
Particles in compartment 1 may jump into any unoccupied compartment
with index 2 through to 6 with propensity D/mh2. When grouped,
we have SðcÞ1 ðtÞ¼nðcÞ1 ðtÞ, SðcÞ2 ðtÞ ¼

P6
i¼2 nðcÞi ðtÞ and SðcÞ3 ðtÞ ¼P11

i¼7 nðcÞi ðtÞ: (Online version in colour.)
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figure 4). Particles in compartments 1 through to p may attempt

to jump to neighbouring compartments in this range with

rate D/m2h2, while particles in compartments p þ 1 through

to K may attempt to jump to neighbouring compartments in

this range with rate D/h2. In both cases, these jumps fail

with blocking probability

1�
nðcÞj

mj

 !
, ð3:19Þ

where j is the index of the destination compartment, and we

use nðcÞj , and later MðcÞ
p , to denote, respectively, the number

of particles and the mean number of particles in compartment

j of the lattice.

In addition, it is possible for a particle in compartment p
to move into the pseudo-compartment with jump propensity

D/m2h2. When this happens, one of the compartments

that comprise the pseudo-compartment is selected uniformly

at random, and if it is unoccupied a particle jumps into it

from compartment p (if it is occupied then the jump is

terminated). Equivalently, volume-excluding effects can be

incorporated by multiplying the jump propensity by the frac-

tion of compartments in the pseudo-compartment currently

unoccupied, and selecting a destination from among the

unoccupied compartments uniformly at random when a

jump occurs.

Similarly, a particle residing within any part of the pseudo-

compartment may jump into compartment p, with propensity

D
m2h2

1�
nðcÞp

m

 !
: ð3:20Þ

All of the possible particle jumps for an example lattice

are illustrated by arrows in figure 4. Suppose that the pth

compartment is the last partially excluding compartment, so

that all compartments of index greater than p will be fully

excluding. Within the coarse region, we write the usual

equations for the evolution of mean particle number

dMðcÞ1

dt
¼ D

m2h2
�MðcÞ

1 þMðcÞ
2

� �
ð3:21Þ

and

dMðcÞ
i

dt
¼ D

m2h2
MðcÞ

i�1 � 2MðcÞi þMðcÞiþ1

� �
, 1 , i , p: ð3:22Þ
The mean master equation for compartment p, the final

partially excluding compartment, is modified to account for

the incoming particles it can receive from all fully excluding

compartments within the pseudo-compartment

dMðcÞp

dt
¼ D

m2h2
MðcÞp�1 � 2MðcÞ

p þ
Xpþm

j¼pþ1

MðcÞ
j

0
@

1
A: ð3:23Þ

Similarly, the equations for mean particle number in the m
fully excluding compartments comprising the pseudo-

compartment region must also account for particles moving

to, and arriving from, the partially excluding region, as well

as for movement over the fully excluding lattice,

dMðcÞ
pþ1

dt
¼ D

h2

1

m
1

m2
MðcÞ

p � 1þ 1

m2

� �
MðcÞ

pþ1 þMðcÞ
pþ2

� �
ð3:24Þ

and

dMðcÞi

dt
¼ D

h2

1

m
1

m2
MðcÞp þMðcÞi�1 � 2þ 1

m2

� �
MðcÞ

i þMðcÞ
iþ1

� �
;

pþ 1 , i � pþm,

ð3:25Þ

and, finally, beyond the pseudo-compartment, the evolution of

mean particle number is described using the standard mean

master equations with m ¼ 1,

dMðcÞ
i

dt
¼ D

h2
MðcÞi�1 � 2MðcÞ

i þMðcÞ
iþ1

� �
, pþm , i , K ð3:26Þ

and
dMðcÞ
K

dt
¼ D

h2
MðcÞ

K�1 �MðcÞK

� �
: ð3:27Þ

To compare the description of particle diffusion given by the

pseudo-compartment model to the description given by

the fully excluding model where m ¼ 1 we must aggregate

the compartments, writing

SðcÞj ðtÞ ¼

nðcÞj ðtÞ if j , pþ 1,

Ppþm

i¼pþ1

nðcÞi ðtÞ if j ¼ pþ 1,

Ppþmðj�pÞ

i¼pþ1þmðj�p�1Þ
nðcÞi ðtÞ if j . pþ 1:

8>>>>>>><
>>>>>>>:

ð3:28Þ

As before, we write m
ðcÞ
j ðtÞ ¼ kSðcÞj ðtÞl, and seek to match m

ðcÞ
j ðtÞ

withm
ðmÞ
j ðtÞ:This is trivial for j , p and for j . p þ 1, as these are

sections of uniformly partitioned compartments where m . 1

and m ¼ 1, respectively, and so the previously obtained results

apply. When j ¼ p, we use equation (3.23) to write

dm
ðcÞ
p

dt
¼

dMðcÞ
p

dt
¼ D

m2h2
MðcÞ

p�1 � 2MðcÞp þ
Xpþm

j¼pþ1

MðcÞ
j

0
@

1
A

¼ D
m2h2

(m
ðcÞ
p�1 � 2mðcÞp þ m

ðcÞ
pþ1),

ð3:29Þ

which is the expected form needed to match m
ðcÞ
p with m

ðmÞ
p :
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Similarly, for j ¼ 1 we use equations (3.24) and (3.25) to write

dm
ðcÞ
pþ1

dt
¼
Xpþm

j¼pþ1

dMðcÞ
j

dt
¼ D

m2h2
MðcÞ

p �
D

m2h2

Xpþm

j¼pþ1

MðcÞ
j

� D
h2

MðcÞ
pþm þ

D
h2

MðcÞ
pþmþ1

¼ D
m2h2

mðcÞp �
D

m2h2
m
ðcÞ
j �

D
h2

MðcÞ
pþm þ

D
h2

MðcÞ
pþmþ1:

ð3:30Þ

Interpolating values of MðcÞ
pþm and MðcÞ

pþmþ1 using equations

(2.11) and (2.12), we finally arrive at

dm
ðcÞ
pþ1

dt
¼ D

m2h2
(mðcÞp � 2m

ðcÞ
pþ1 þ m

ðcÞ
pþ2), ð3:31Þ

so we expect the values of m
ðcÞ
j to match those of m

ðmÞ
j :

Having presented two hybrid methods for interfacing

partially excluding with fully excluding regions, we now

apply them both to a number of test systems to check their

correspondence to the fully excluding model where m ¼ 1.
36
4. Numerical investigations
In this section, we consider three single-species test cases:

maintaining a uniform steady state in a purely diffusive

system, particle redistribution from a non-uniform initial

state and a morphogen gradient. For each case, we compare

the following four different models:

(1) Uniform fully excluding (m ¼ 1): 105 compartments of

capacity one and length 0.2.

(2) Uniform partially excluding (m ¼ 7): 15 compartments of

capacity seven and length 1.4.

(3) Hybrid Voronoi: five compartments of capacity seven

and length 1.4, one box of capacity four and length 0.8,

and 66 compartments of capacity one and length 0.2.

(4) Hybrid pseudo-compartment: five compartments of

capacity seven and length 1.4, and 70 of capacity one and

length 0.2. The first seven fully excluding compartments

form the pseudo-compartment.

In each case, we use these four models to obtain, res-

pectively, numerical values for m
ðmÞ
j and vðmÞj , for MðmÞ

j and

VðmÞj , for m
ðvÞ
j and vðvÞj , and for m

ðpÞ
j and vðpÞj , aggregating

compartments from the finer grids into regions of capacity m ¼
7. In each case, we set h¼ 0.2, L ¼ 21, and hence N¼ 105. We

choose diffusion constant D ¼ 2 for all test cases, and perform

50 000 realizations of each case over the time interval t [ ½0, 25�:
Because we consider the fully excluding model as ‘accu-

rate’, in the sense that it specifies each particle’s location

precisely rather than making assumptions about its position

within a larger compartment, a further 50 000 realizations of

the fully excluding model were generated to provide an inde-

pendent estimate for m
ðmÞ
j and vðmÞj , and these values were

used as our comparison dataset. For the first two single-species

test cases, it would also be possible to generate a comparison

dataset by evaluating the master equations deterministically,

but this would not be possible for the morphogen gradient

test (the addition of particles to the first compartment with

available capacity leads to a non-closed system of equations).

In the interests of consistency, we have therefore generated

all datasets by stochastic simulation, rather than using a mix-

ture of approaches.
The agreement of the four models with the comparison

dataset was then quantified using the histogram distance

error (HDE) [25]:

HDE ¼ 1

2

XK

k¼1

jsk � ckj, ð4:1Þ

where Sk is the normalized value of the kth aggregated

compartment of the model being considered, and ck is the

normalized value of the kth aggregated compartment of the

comparison dataset, such that

XK

k¼1

sk ¼
XK

k¼1

ck ¼ 1: ð4:2Þ

The HDE therefore returns values between zero and one,

where zero corresponds to two identical datasets and one rep-

resents two completely distinct datasets. We note that the HDE

is an example of an L1-norm, but that qualitatively similar

results are observed when using L2-norms. Our conclusions

are not affected by the choice of using an L1 or an L2-norm.

To generate realizations, we used an algorithm based on

Gillespie’s direct method [26], as described in the electronic

supplementary material, appendix C. In each of the three test

cases, we also record the time taken to simulate 50 000 realiz-

ations of each model. All simulations were performed using

Matlab code, parallelized using parfor, on a four-core desktop

computer using an AMD PhenomTM II X4 925 Processor.
4.1. Test case 1: maintaining a spatially uniform steady
state

In this simplest test, for each realization we initialize 15 uni-

formly distributed particles over the lattice, let them diffuse

freely, then record their final positions to ensure that they

remain uniformly distributed. This is the most basic test

and is performed to confirm that the hybrid interfaces do

not interfere with a homogeneous particle distribution.

The mean and variance of particle numbers in each aggre-

gated box at t ¼ 25 are plotted in figure 5, showing good

agreement between all four models. This agreement is quan-

tified in table 1, where we observe that in each model, mean

values deviate from the comparison data by less than 0.25%,

and variance values deviate by less than 0.5%. Although

we do not present the details here, it is also possible to

demonstrate the steady-state agreement of all four models

by analysing their mean and variance master equations.

We find that the hybrid models are faster to simulate than

the fully excluding model. However, the decrease in compu-

tational time is modest, and we anticipate that significant

computational savings will only be achieved when the

majority of particle motion is concentrated in the partially

excluding region. The case of maintaining a spatially uniform

steady state is used in this paper solely to check the accuracy

of the hybrid models, and hybrid modelling will not be helpful

for such systems, unless the region partitioned with

fully excluding compartments is small relative to the domain

as a whole.
4.2. Test case 2: particle redistribution
The second test case examines the ability of our hybrid

models to accommodate a net particle flux over the interface.

Our initial state consists of 35 particles collected at the left of
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Figure 5. Results from 50 000 repeats of the uniform steady-state simulation at time t ¼ 25. Fifteen particles were uniformly distributed at time t ¼ 0 and then
diffused until time t ¼ 25. From left to right, each set of four bars shows results from the fully excluding (dark blue), partially excluding (light blue), Voronoi
(green) and pseudo-compartment (yellow) models.

Table 1. Details of uniform distribution simulation.

model
mean HDE
at t525

variance HDE
at t525

time to
simulate

acceleration relative
to fully excluding

fully excluding 0.0023 0.0046 28 741 s —

partially excluding 0.0022 0.0036 582 s 49.4 times faster

Voronoi 0.0020 0.0035 19 738 s 1.5 times faster

pseudo-compartment 0.0017 0.0033 26 361 s 1.1 times faster
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the domain. For the uniform fully excluding model, this

means that the first 35 compartments are occupied. For all

the other models, the first five compartments, each of

capacity seven, are full to capacity.

We compare the agreement of mean and variance values

at t ¼ 1, 2 ,3, . . . , 25 in figure 6. As anticipated, all four

models perform well, although the Voronoi model performs

somewhat better than the pseudo-compartment model.

A possible explanation of this is that, with particle concen-

trations in the pseudo-compartment higher to the left and

lower to the right, particles jumping into the pseudo-

compartment from compartment p will disproportionately

arrive in the more numerous vacant compartments to the

right of the pseudo-compartment, slightly lengthening the

average jump length. We note though that, even in this case

of strongly asymmetric flux, the HDE remains below 0.008

throughout the simulation.

We also plot the means and variances of particle numbers

at t ¼ 25 in figure 7, and for consistency with the other test

cases list the HDE values at time t ¼ 25 in table 2. We also

record the time taken to simulate each model in table 2,

noting again that the hybrid models run faster than the

fully excluding model, with the Voronoi model taking only

half as much time to simulate. As with the spatially uniform

steady state considered in the previous test, however, we

would only expect significant time savings when the fully
excluding region of the domain is relatively small; this case

is presented primarily as a test of accuracy rather than to

demonstrate significantly accelerated computation.
4.3. Test case 3: morphogen gradient
In the final single-species test case, a simple morphogen gra-

dient system is simulated. Starting from an empty initial

state, particles enter the domain at the left-hand boundary

with rate r1, while a zero-flux boundary condition is imposed

at the right-hand boundary. As well as moving diffusively,

particles decay with rate r2. In the absence of volume exclusion,

a flux boundary condition can be implemented by adding or

removing particles in the closest compartment to the boundary

at a specified rate [27]. When volume exclusion is incorporated,

however, it will sometimes be the case that the closest compart-

ment to the boundary is already filled to capacity, in which case

no more particles may be added to it. When this occurred in

simulations, we added particles to the first compartment

from the boundary with available capacity.

The means and variances of particles at time t ¼ 25 are

illustrated in figure 8, while HDE values and the compu-

tational time required to simulate each model are presented

in table 3. In this case, the hybrid simulations are significantly

faster than the equivalent fully excluding simulations. This is

because the majority of particles are located in the first third
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Figure 7. Results from 50 000 repeats of the particle redistribution simulation at time t ¼ 25. Thirty-five particles were initialized at the left of the domain at time
t ¼ 0. From left to right, each set of four bars shows results from the fully excluding (dark blue), partially excluding (light blue), Voronoi (green) and pseudo-
compartment (yellow) models.

Table 2. Details of particle redistribution simulation.

model
mean HDE
at t525

variance HDE
at t525

time to
simulate

acceleration relative
to fully excluding

fully excluding 0.0015 0.0037 40 775 s —

partially excluding 0.0022 0.0021 752 s 54.2 times faster

Voronoi 0.0019 0.0037 20 884 s 2.0 times faster

pseudo-compartment 0.0047 0.0032 31 330 s 1.3 times faster
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Figure 8. Results from 50 000 repeats of the morphogen gradient simulation at time t ¼ 25. Particles are added to the system with rate r1 ¼ 1 and are placed
into the closest compartment to the left-hand boundary which is not full to capacity, while each particle may decay and be removed with rate r2 ¼ 0.05. From left
to right, each set of four bars shows results from the fully excluding (dark blue), partially excluding (light blue), Voronoi (green) and pseudo-compartment (yellow)
models.

Table 3. Details of morphogen gradient simulation.

model
mean HDE
at t525

variance HDE
at t525

time to
simulate

acceleration relative
to fully excluding

fully excluding 0.0015 0.0050 16 622 s —

partially excluding 0.0023 0.0060 385 s 43.2 times faster

Voronoi 0.0032 0.0059 3438 s 4.8 times faster

pseudo-compartment 0.0077 0.0105 4847 s 3.4 times faster
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of the domain, where the hybrid models use computationally

efficient partially excluding compartments. Simulations of

the Voronoi model ran more than four times faster than the

fully excluding model, while simulations of the pseudo-

compartment model ran more than three times faster than

the fully excluding model.
5. Application to a simple multi-species
exclusion system

Having established the accuracy of the hybrid methodologies in

the test cases of the previous section, we now apply them to a

simple model system where the results of the partially excluding

model deviate from those of the fully excluding model.

We consider a simple multi-species system containing

two species of particle, A and B [22]. Neither species is

reactive, and particles do not interact with each other

except through volume exclusion effects. The initial state for

the system consists of 21 particles of species A at the left

of the domain, and 21 particles of species B at the right of

the domain, as illustrated in figure 9 (so that for the fully

excluding model, the first and last 21 compartments are
occupied, and for the other models the first and last three

compartments are filled to capacity). When simulated using

a partially excluding model, this system will eventually

reach a homogeneous steady state, with both A and B par-

ticles intermixed since the coarsened lattice description

allows particles to move past each another. By contrast, the

fully excluding model does not allow particles to pass one

another, and hence the two species will remain separated.

Our hybrid methods can improve the efficiency of simu-

lations by modelling a small central region, where it is

possible for the two species to meet, using a fully excluding

lattice, while using a computationally efficient, partially

excluding lattice elsewhere in the domain.

Figures 10 and 11 illustrate how such regions can be

arranged for Voronoi and pseudo-compartment models

where m ¼ 5, and how the interfaces can be shifted left or

right to prevent particles of species A and B from passing

one another. Shifting the interface imposes a small compu-

tational cost, but this is more than compensated for by the

decreased number of jump events occurring due to the coar-

ser lattice partitioning. This approach could be generalized to

a model containing additional particle species by considering

additional fully excluding regions between each species
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Figure 9. At time t ¼ 0, 21 particles of species A (blue) are initialized at the
left of the domain, and 21 particles of species B (red) are initialized at the
right. (Online version in colour.)
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Figure 10. An illustration of an adaptive Voronoi domain partition. Particles
of species A and B are shown in blue and red, respectively. The upper image
shows the lattice before the hybrid region shifts left, where the areas marked
(a), (b) and (f ) are partially excluding, those marked (c) and (e) are a com-
bination of fully excluding and partially excluding, and the one marked (d) is
a section of fully excluding compartments. When a B particle enters box (c),
the interface shifts left as illustrated in the lower image, where the areas
marked (i), (v) and (vi) are partially excluding, those marked (ii) and (iv)
are a combination of fully excluding and partially excluding, and the one
marked (iii) is a section of fully excluding compartments. Where a partially
excluding box is replaced with a finer partition (i.e. (b) and the left
part of (c)), the particles within it are uniformly randomized across the
compartments taking its place, weighted by the length of the destina-
tion compartments. When a section of compartments are replaced by a
coarser partition (i.e. (e) and the right of (d)) the occupancy of the
new compartments is found from the total number of particles across that
section.

(a) (b) (c) (d) (e) (f)

(i) (ii) (iii) (iv) (v) (vi)

Figure 11. An illustration of an adaptive domain partition using the pseudo-
compartment model. Particles of species A and B are shown in blue and red,
respectively. The upper image shows the lattice before the hybrid region
shifts left, where the areas marked (a), (b) and (f ) are partially excluding,
those marked (c) and (e) are pseudo-compartments, and the one marked
(d) is a section of fully excluding compartments. When a B particle enters
box (c), the interface shifts left as illustrated in the lower image, where
the areas marked (i), (v) and (vi) are partially excluding, those marked
(ii) and (iv) are pseudo-compartments, and the one marked (iii) is a section
of fully excluding compartments. The positions of any particles in box (b) are
uniformly randomized across (ii), while the occupancy of (v) is given by the
total number of particles across (e).
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(assuming all particles of each species are initialized in dis-

tinct groups). In cases where multiple species are already

mixed together at time t ¼ 0, but preserving their ordering

is important for the model, it may be necessary to employ

a fully excluding model. Although it would not be necessary

to prevent particle mixing in this way in a two- or three-

dimensional model, it would still be possible to dynamically

adjust the lattice in similar ways to save computational time

where possible and preserve detailed modelling where

necessary [28].

We adopt the same values of N, h, L and D used in §4, and

perform 50 000 realizations of each model over the time inter-

val t [ ½0, 25�: For the Voronoi and pseudo-compartment

models, we begin each realization with six compartments of

capacity m ¼ 7 at the left-hand side and at the right-hand

side of the domain, with an intermediate region at the centre

of the domain of the form illustrated in figures 10 and 11.

We compare mean and variance values at t ¼ 1, 2, 3, . . . ,

25, and plot the resulting HDEs in figure 12. As anticipated,

the results generated using the partially excluding model

deviate significantly from those generated using the fully
excluding and hybrid models. This deviation is illustrated by

plots of the means and variances of particle numbers at t ¼
25 in figure 13. The HDE values at time t ¼ 25 are listed in

table 4 together with the time taken to simulate each system.

It can be seen that the Voronoi and pseudo-compartment

models run 6.9 and 3.2 times faster, respectively, than the

fully excluding system without losing accuracy.
6. Discussion
In this paper, we have presented two methods for the simu-

lation of volume-excluding compartment-based models on

non-uniform lattices. We have presented analytical argu-

ments for the agreement between aggregated mean particle

distribution in the uniform partially excluding model with

m . 1 and in both hybrid models (i.e. M(m) m(v) and m( p),

respectively) with the aggregated mean particle distribution

in the ‘accurate’ fully excluding model with m ¼ 1 (m(m)).

Numerical investigations of three single-species test cases

confirm that all four models agree on the mean and variance

of particle numbers within each compartment. We have

further presented a simple multi-species system, where the

results of uniform partially excluding models deviate from

those of the accurate fully excluding model, but the results

of hybrid models match those of the fully excluding model

and can be generated in a fraction of the time. This is a valu-

able development for researchers working with multi-scale

diffusion systems, as it enables computationally efficient par-

tially excluding compartments to be used where possible,

while using fine-grained fully excluding compartments else-

where in the domain when necessary. Time savings of

nearly a factor of seven relative to the fully excluding

model were observed for the Voronoi model when the test

system was conducive to hybrid modelling, i.e. when the

majority of particles spend most of the simulation within

the coarse-grained region. The time savings in other situ-

ations could be even more significant. Partially excluding

models are generally accurate and are consistently faster than

both fully excluding and hybrid models, but the multi-species

example in this section shows that they can be inadequate

when fine spatial resolution is required in a region of the
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Figure 13. Results from 50 000 repeats of the multi-species simulation at time t ¼ 25. From left to right, each set of four bars shows results from the fully
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Table 4. Details of multi-species simulation.

model
mean HDE
at t525 (A/B)

variance HDE
at t525 (A/B) time to simulate

acceleration relative
to fully excluding

fully excluding 0.0011/0.0019 0.0032/0.0043 53 663 s —

partially excluding 0.1853/0.1844 0.2034/0.2023 902 s 59.5 times faster

Voronoi 0.0013/0.0019 0.0022/0.0031 7722 s 6.9 times faster

pseudo-compartment 0.0017/0.0023 0.0017/0.0049 16 755 s 3.2 times faster
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domain. In future work, we will consider two-dimensional

hybrid models in greater detail, and discuss the implementation

of reactions between particles in this framework.
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