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The past several years have witnessed an increased presence of control

theoretic concepts in synthetic biology. This review presents an organized

summary of how these control design concepts have been applied to

tackle a variety of problems faced when building synthetic biomolecular

circuits in living cells. In particular, we describe success stories that demon-

strate how simple or more elaborate control design methods can be used to

make the behaviour of synthetic genetic circuits within a single cell or across

a cell population more reliable, predictable and robust to perturbations. The

description especially highlights technical challenges that uniquely arise

from the need to implement control designs within a new hardware setting,

along with implemented or proposed solutions. Some engineering solutions

employing complex feedback control schemes are also described, which,

however, still require a deeper theoretical analysis of stability, performance

and robustness properties. Overall, this paper should help synthetic biol-

ogists become familiar with feedback control concepts as they can be used

in their application area. At the same time, it should provide some

domain knowledge to control theorists who wish to enter the rising and

exciting field of synthetic biology.
1. Introduction
Control theory has arisen from the conceptualization and generalization of

design strategies aimed at improving the stability, robustness and performance

of physical systems in a number of applications, including mechanical devices,

electrical/power networks, space and air systems, and chemical processes [1].

As shown in figure 1a, a closed loop feedback system involves a physical pro-

cess to be controlled and a controller. In a classical negative feedback set-up, the

controller measures the process output of interest y, compares it with a desired

value u, and, based on the error between these two, computes the input to be

applied to the process to ultimately decrease the discrepancy between y and u.

Indeed, when the performance, reliability and robustness of certain hardware

components cannot be improved further by better characterization or hardware

design, negative feedback control is especially useful.

A simple engineering example of negative feedback is the automatic cruise

control of a vehicle, in which the process to be controlled is the vehicle, u is its

desired speed (set by the driver) and y is its actual speed measured by a speed-

ometer. An on-board controller computes the error u – y, and if this error is

positive (y , u), throttle is applied to increase the propelling force applied to

the vehicle by the engine, so that the speed y increases towards u. If the error

is negative (y . u), then throttle (and/or brake) is used to decrease the propel-

ling force, so that the speed y decreases towards u. As described, this feedback

adjustment of the input (throttle or brake) requires minimal information about

the process beyond the fact that more throttle increases the speed, whereas less

throttle and/or brake decrease(s) the speed, and hence it tends to be robust to

process uncertainty and disturbances, such as wind gusts. Realization of this

negative feedback control system relies on the interconnection of highly modu-

lar, robust and accurate sensing, computing and actuating components

(e.g. speedometer, on-board computer and engine, respectively). However,
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Figure 1. Feedback control set-ups in synthetic biology. (a) General feedback control architecture where a controller measures an output y of interest of a process,
compares it with a desired value u, and applies it as an input to the process. (b) In-cell feedback control implementation: the process and the controller are both
‘running’ in the cell and, as such, are implemented by biomolecular reactions. (c) In silico feedback control implementation: the process is the cell itself with all its
molecular circuitry while the controller is implemented in a computer. (Microscopy image courtesy of Cell Image Library [2].)
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components that behave modularly and that are robust and

accurate are especially hard to find in the field of synthetic

biology, which we introduce next.

Synthetic biology is a nascent research area, in which bio-

molecular circuits are assembled in living cells with the final

goal of controlling cellular behaviour for a variety of uses,

from energy, to environment, to medicine [3]. However,

partly owing to the nonlinearity, stochasticity, variability and

lack of modularity in biomolecular processes, as reviewed in

more detail in §§2, 4 and 5, realization of synthetic biomolecu-

lar circuits is often a lengthy and ad hoc process [4]. The past

several years have witnessed an increased presence of control

theoretic techniques and concepts in synthetic biology for tack-

ling several of these problems, leading to promising results.

However, the nature of biomolecular interactions has also

posed unavoidable challenges to the implementation of nega-

tive feedback itself. Therefore, solving problems in synthetic

biology using control theory requires much more than simply

transplanting existing theories developed for engineering

systems directly to a biomolecular setting.

Implementations of negative feedback design in synthetic

biology fall into two different categories: in-cell feedback con-

trol and in silico feedback control, as illustrated in figure 1b,c.

In-cell feedback control has both the process and the controller

realized within the cell through biomolecular processes. It is

more suitable for applications where cells need to function

as autonomous programmed ‘machines’, such as in bioremedia-

tion where engineered bacteria can detect harmful compounds

in the environment and target them for degradation, or in medi-

cal applications where engineered cells are injected into ill

patients to target specific diseases. By contrast, in silico feedback

control has the entire cell as the process to be controlled, while

the controller is implemented in a computer. This may be suit-

able for applications where the cells to be controlled should be

only minimally genetically modified, such as when controlling

cell differentiation and de-differentiation (reprogramming).

This paper reviews both set-ups, with more emphasis on

in-cell feedback owing to the more extensive work that has

been done in this setting.

Before delving into the review, we provide a short sum-

mary of synthetic biology in §2 and of the essence of

feedback control in §3 to set the basis for the rest of the

review. In-cell feedback control is reviewed in §§4–6. In §4,

we focus on control designs created to improve the robustness

of genetic circuits to a number of perturbations, including

noise, and fluctuations in the genetic context. In §5, we illus-

trate how feedback control designs and implementations

have been used to defeat loading problems appearing when
connecting genetic modules to create larger systems. In §6,

we discuss current implementations of cooperative feedback

control to engineer multicell coordination for a number of

applications. In silico feedback control is reviewed in §7, with

a description of the main achievements and of the technical

challenges that need to be overcome to make in silico feedback

control practical.
2. Brief overview of synthetic biology and the
role of control theory

Synthetic biology aims to engineer new living functionalities

by creating, characterizing and assembling biological parts,

devices and systems in living cells [5]. The ability to re-engin-

eer living organisms has tremendous potential to address

societal needs with a number of applications, ranging from

energy, to environment, to medicine. Microbes can be engin-

eered to convert biomass or light into biofuels [6], and the

design of genetic control circuits provides a promising way

to optimize microbial hosts to boost production [7]. Beyond

typical energy usage on Earth, there is also a need for sustain-

able life support in space exploration missions, in which

genetic circuitry that optimizes production is of paramount

importance [8]. Bioremediation and biodegradation of harm-

ful molecules in our water, soil or industrial facilities can also

leverage synthetic biology technology by programming bac-

teria that seek out and degrade herbicides [9], or that sense

environmental hazards such as heavy metals and signal

them through visible output [10].

The potential to interface with human health in a way that

traditional drugs cannot puts synthetic biology in a position

to impact cancer treatment, microbiome engineering and

regenerative medicine [11]. Engineered bacteria can be used

to invade cancer cells or colonize tumours and, as a result,

express a reporter for detection [12,13]. Similarly, engineered

T cells (a type of the body’s immune cells) can express special

receptors that recognize molecules typical of cancer cells.

With synthetic sensors, dynamic feedback control can be

implemented through genetic circuits that eradicate cancer

cells by regulating the secretion of killing agents [14]. The

human microbiome, the vast community of microorganisms

that reside on and in humans, maintains proper health by

an actively regulated balance among the activities and

amounts of its constituent microbes. The ability to engineer

microbes to steer this balance back to a health state in

microbiome-related diseases provides a powerful control

mechanism that surpasses traditional antibiotic treatments,
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Figure 2. Condensed timeline of synthetic biology. (a) The development of synthetic biology is grounded on molecular biology, genetic engineering and genomics.
(b) The early phases of synthetic biology were focusing mostly on forward engineering simple modules, such as switches and oscillators. (c) After the ‘era’ of
modules, synthetic biology is heading towards the era of systems, in which modules will serve as functional units to create more complex and sophisticated systems
with potential applications to energy, environment and medicine.
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which are non-specific and can promote resistance [15].

Finally, synthetic biology could prove remarkably effective

in regenerative medicine where some damaged tissues and

organs are traditionally replaced by biomaterials to restore

proper function. These and many more tissues could instead

be replaced by patient-derived cells that have been repro-

grammed through appropriate temporal and spatial control,

avoiding innate immune responses [11,16].
2.1. From parts to modules
The roots of this emerging field may be traced back to two

key Nobel Prize winning discoveries: the discovery of the

lac operon’s regulation in 1961 [17], shortly followed by

the discovery of DNA restriction enzymes in 1969 [18]

(figure 2a). The discovery that the rate of gene expression

can be controlled by suitable proteins (transcription factors)

enables genes to be viewed as (nonlinear) dynamical systems

with inputs and outputs, where inputs and outputs are pro-

teins. These parts can thus be assembled to form functional

modules and larger systems. Technologically, restriction

enzymes provided a way to assemble these circuits on

DNA, because specific DNA sequences could be cut and

then ligated into a new DNA sequence to create recombinant

DNA [19]. A groundbreaking application of this technology

was insulin production in engineered bacteria, Escherichia
coli [20]. Further advances in genetics, including polymerase

chain reaction (PCR) in 1985 [21] and automated DNA

sequencing in 1986 [22], provided additional enabling tech-

nology to effectively engineer synthetic gene networks from

a high-level functional specification to the corresponding

coding DNA sequence in living cells. Although viewing

genes as input/output systems that can be connected through

transcription factors is a convenient abstraction for design,

the reality is that the properties of these components are
often altered by the DNA sequences of the genetic parts sur-

rounding them. Dissecting this lack of modularity of basic

parts and finding ways to mitigate it is a major research

thrust in synthetic biology and remarkable progress has

been made. This review is not concerned with modularity

of basic parts, and a more detailed description of recent pro-

gress can be found elsewhere [23]. The first two forward-

engineered genetic modules appeared in early 2000: the

toggle switch and the ‘repressilator’ (figure 2b). The toggle

switch uses two mutually repressing genes, effectively form-

ing a positive feedback circuit, which leads to a bistable

system that can switch between two possible states under

suitable stimulation [24]. The toggle switch has been

employed in several applications, such as in microbial kill

switches for bacterial containment [25] and in detection/

recording devices for living diagnostics [26]. The repressilator,

instead, uses three genes mutually repressing each other in a

loop, effectively forming a negative feedback system with sub-

stantial phase lag along the loop, leading to a genetic oscillator

[27]. This circuit demonstrates that negative feedback systems

with substantial phase lag may be used by Nature as mechan-

isms for time keeping. Other early works identified feedback

and feed-forward motifs that can provide functions such as

robustness to noise, improved temporal response and robust-

ness to genetic context, as we detail in §4 [28–31]. For an

extensive review of the early stages of synthetic biology and

the many circuits that were built in the past several years,

the reader is referred to [3,32].
2.2. From modules to systems
As more parts and functional modules become available,

larger systems can be assembled that accomplish sophisti-

cated tasks such as those required to impact bioenergy,

environment and medicine applications [32,33]. While initial
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results demonstrate the potential of assembling larger sys-

tems that perform non-trivial logic computations [34–37],

substantial challenges need to be overcome to turn synthetic

biology into a bottom-up engineering discipline where circuit

modules are characterized in isolation and then assembled to

create larger systems [4,38]. In particular, in a bottom-up

design approach, a functional module, such as the repressila-

tor or the toggle switch, should maintain its input/output

behaviour as characterized in isolation unchanged upon con-

nection with other modules. This modularity property is

rarely satisfied by biomolecular systems [23]. Failure of mod-

ularity leads to a long and iterative design process where

subsystems are re-characterized from scratch any time a

new module is added, thus presenting a challenging obstacle

to scaling up circuits’ size. Control theory has especially

played a key role in the design of insulation devices that

‘buffer’ modules from loading effects [39], as reviewed in

detail in §5. Control theory is likely to play a central role

also in ‘robustifying’ circuits’ behaviour to unwanted inter-

actions with the cellular ‘chassis’, which range from the

bacterium E. coli, to yeast Saccharomyces cerevisiae, to mamma-

lian cells [40], to other bacteria like the gut bacterium

Bacteroides thetaiotaomicron [41]. The host cell provides all

the resources required for gene expression and protein modi-

fication, including RNA polymerase, ribosomes, amino acids,

tRNA, proteases and ATP, which are all found in limited

amounts. While, for small circuits, the added load by synthetic

circuits on these resources may be sufficiently small and thus

negligible, as the circuit size increases, these loads cannot be

neglected any longer. These can cause harmful effects to cell

physiology (toxicity) and may result in counterintuitive coup-

lings among otherwise independent circuits [42–45]. Suitable

engineering solutions to make a circuit’s behaviour more

robust to fluctuations in available resources and more gener-

ally to changes in the cellular context are highly desirable

and the subject of intense research.
3. The essence of negative feedback
In this section, we review the benefits and trade-offs of nega-

tive feedback control, capitalizing on strategies that have been

implemented in synthetic biology to address problems of

relevance to the field.

3.1. Advantages of high-gain negative feedback
systems

One of the early and highly celebrated applications of nega-

tive feedback addressed problems in the long-distance

telephone line that in the early 1900s aimed to connect the

west coast with the east coast in the USA. In particular, a

pressing problem was the poor performance of the amplifiers

that were connected in tandem along the telephone line to

prevent signal attenuation. For example, a simplified rep-

resentation of an amplifier in negative feedback set-up is

illustrated in figure 3a. Within this representation, the

output of the amplifier y represents a voltage signal whose

value depends on an input voltage z to the amplifier.

Owing to physical limitations, the input/output relationship

of this amplifier is nonlinear. The linear regime is when 21 �
z � 1, whereas the output saturates beyond this interval.

Within the linear regime, the amplifier’s input/output
relationship is linear with slope G . 0 (y ¼ Gz), which we

will call here the amplifier’s gain. The gain G is further sub-

ject to uncertainty D, owing, for example, to temperature

changes and ageing. Therefore, even in the linear regime,

the output will not be completely predictable. In the case of

a genetic circuit, the input and output signals (z and y) are

typically molecular counts/concentrations. For instance, z
can be the concentration of a transcription factor regulating

the production of a protein whose concentration is rep-

resented by y. The nonlinear input/output mapping of the

amplifier may correspond to the dose–response curve of

gene regulation, mathematically captured by the Hill func-

tion [46]. Gain G may represent the local slope of the Hill

function, which is determined by the strength of the regulat-

ing transcription factors and cooperativity (see §4), and D

may arise, for example, from uncertainties in biomolecular

interactions when the circuit is placed in different host cells.

Interestingly, once the amplifier is placed within a nega-

tive feedback set-up with feedback gain K . 0, which for a

genetic circuit will represent, for example, the binding

strength of a regulator with DNA operator sites, these two

limitations practically disappear. Specifically, the linear

regime of the input/output mapping of the closed loop

system extends from [–1,1] for the ‘open loop’ amplifier to

[212G(1 þ D)K,1 þ G(1 þ D)K ] for the closed loop system,

which becomes larger with increased G. Further, the input/

output relationship for the closed loop system in the linear

regime becomes

y ¼ Gð1þ DÞ
1þ Gð1þ DÞK u) y � u

K
, as G! 1:

This shows that the u-to-y amplification factor is decreased in

the closed loop system, but it is approximately equal to 1/K
for G sufficiently large, which is independent of the ampli-

fier’s uncertainty D. The net result is that negative feedback

has turned a nonlinear, uncertain, high-gain device into an

essentially linear system, whose input/output gain is robust

to uncertainty. This discovery, by H. Black, enabled Bell

Laboratories to overcome a major bottleneck affecting the

transcontinental telephone line in the 1920s, and illustrates

the pivotal role of negative feedback in overcoming limitations

and shortcomings of available hardware components [47].

In the context of dynamical systems, negative feedback

with high gain can often be used to attenuate the contribution

of unknown disturbances d on the output of interest y
(figure 3b). For synthetic biology applications, the output of

interest can be, for example, the concentration of a fluor-

escence protein or any other molecule with physiological

relevance. The disturbance can represent environmental per-

turbations, fluctuations in the system’s parameters or noise.

Within a high-gain negative feedback strategy, we set the

input to the system z ¼ G(u2Ky), which is proportional

through a large amplification factor G to the error between the

desired value of the output u and the measured output Ky.

The system with this input is in a closed loop form (see dia-

gram in figure 3b) and hence we will refer to it as the closed
loop system. This is in contrast to the open loop system in

which the input is pre-set as z ¼ u and it is not adjusted

based on the effect it has on y. As we will see in §§4 and 5,

the amplification factor depends on the biomolecular mech-

anism chosen for the feedback. When transcriptional

regulation is chosen for the feedback, G depends on the pro-

moter and transcriptional regulator strengths, and it is not
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Figure 3. The essence of negative feedback. (a) Negative feedback extends the linear regime of an amplifier and provides robustness to uncertainty. The top diagram
shows the amplifier within a negative feedback loop. The bottom diagram shows the equivalent input/output mapping corresponding to the closed loop feedback
system. The graph in the box shows the mapping (i.e. the dose – response curve) between the input (signal on incoming arrow) and the output (signal on outgoing
arrow). (b) High-gain negative feedback attenuates disturbances and speeds up the temporal response. The purple block(s) represent the ordinary differential
equation (ODE) that links the input (incoming arrow) to the output (outgoing arrow). For a desired constant value u, the open loop system’s response is obtained
by setting z ¼ u and simulating the open loop system. The closed loop system response is obtained by simulating the closed loop system with K ¼ 1 and G large.
In this case, the steady-state error between y and the desired value u can be decreased by increasing G, that is, ju� yj ¼ Oð1=GÞ: (c) High-gain negative
feedback can lead to oscillations and amplifies high-frequency disturbances. The open loop system is simulated as before by setting z ¼ u. The closed loop system is
simulated with G large and K ¼ 1. The left-hand plot shows the time response of the system. The right-hand plot shows the frequency response of y to disturbance
d. The horizontal axis represents the frequency v of a periodic disturbance d(t) ¼ sin(vt) and the vertical axis shows the amplitude of the resulting y(t) signal.
(d ) Negative integral feedback completely rejects disturbances. The open loop system is as in panel (b) and simulated similarly. The closed loop system is simulated
for two different values of G (as shown) and for K ¼ 1. In all diagrams, the circle represents a summing junction: the outgoing arrow is a signal given by the
weighted sum with the indicated signs of the signals on the incoming arrows. Also, we have used the shortened notation _y ¼ dy=dt. The simulation codes used to
generate this figure are available in the electronic supplementary material.
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easily tunable (§4.1). When protein–protein interaction is

chosen for the feedback, such as a phosphorylation cycle, the

gain G can be easily increased by increasing the concentrations

of suitable substrates and enzymes (§5).

Consider the first-order open loop process _y ¼ �yþ
zþ d, which may describe, for example, the process of tran-

scription with y the concentration of mRNA, z the

concentration of a regulator and d a constant unknown dis-

turbance, capturing, for example, additional unknown
production rates. The result of applying high-gain nega-

tive feedback is twofold. First, while the open loop system

has a steady-state value given by y ¼ u þ d, the closed

loop system has a steady-state value given by y ¼ (Gu þ
d )/(GK þ 1). This value approaches u/K for large G; it is

therefore independent of the disturbance d, and can be

made equal to y by setting K ¼ 1. Second, the time to reach

steady state (typically measured by the earliest time the

output y(t) is within 90% of the steady state) decreases as G
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increases, and thus the closed loop system is also faster. These

results continue to hold if the disturbance and the desired

output value vary with time, facts that can be shown using

a variety of general tools, such as singular perturbation

techniques [48,49].

3.2. Downsides of high-gain negative feedback systems
High-gain negative feedback relies on a sufficiently large

amplification of the error between the system’s output and

the desired output to reduce the steady-state error owing to

disturbances. However, this desirable property does not

extend as easily to physical systems described by higher-

order ordinary differential equations (ODEs), such as the

second-order system depicted in figure 3c. This system may

describe the sequential process of transcription and translation,

in which x1 may represent the concentration of mRNA and x2

the concentration of protein [46], as we describe in greater

detail in §4.1. In this case, increased amplification gain G
may still result in a decreased steady-state error between the

output y and its desired value u, thus attenuating the effect

of disturbance d; however, the transient response can become

oscillatory with increasing amplitude of oscillation as G
increases. The frequency response of the system to disturbance

d shown in figure 3c further shows that the closed loop system

has less sensitivity than the open loop system to disturbance

inputs at low frequency, but it has increased sensitivity to dis-

turbances at high frequency when compared with the open

loop system. This shows a fundamental trade-off in the design

of any closed loop control system, also called the ‘water-bed’

effect [50], according to which a high-gain feedback control

design that attenuates the effects of slow perturbations will

result in potential amplification of high-frequency pertur-

bations. Another potential concern in the implementation of

high-gain feedback designs is the energetic requirement for

the realization of such high gains. While, in electronics, this

may not be a significant bottleneck, in the context of a biomole-

cular system it may translate into large protein amounts, with

potential consequences for cell physiology (see §5).

3.3. Properties of integral negative feedback systems
More sophisticated control strategies can make a system

robust to uncertainty without necessarily requiring large

gains. These strategies thus avoid some of the above-

described shortcomings. The simplest such control strategy,

which we describe here, is integral feedback control [50].

Referring to figure 3d, the control input z of the physical pro-

cess is set to be the integral of the error G(u 2 Ky). For the

simple block diagram of this figure, the closed loop system

equations are given by

dz
dt
¼ Gðu� KyÞ and

dy
dt
¼ �yþ zþ d, ð3:1Þ

which is a stable system for all positive G and K and admits y ¼
u/K at steady state. Therefore, the output value at steady state

is completely independent of the disturbance input d, and

this disturbance rejection property is independent of the ampli-

fication gain G. This gain can therefore be picked to be small if

the only interest is disturbance rejection. Lower gain G, however,

will lead to a slower system while increased gain G will lead

not only to a faster system but also to oscillations (figure 3d).

If both disturbance rejection and speed of response are desirable,

then a combination of proportional and integral feedback
(PI control) is usually more appropriate. Other designs may

incorporate a derivative action for enhanced stability,

which however may have as an undesirable downside the

amplification of high-frequency noise [50].

3.4. Feed-forward and positive feedback systems
Even though, in this review, the description of control strat-

egies focuses on negative feedback systems, there are other

types of control architectures that are possible depending

on the design objective and on the problem definition.

These include feed-forward controllers and positive feedback

systems [50]. A feed-forward control system can be used to

‘cancel’ the effect of unwanted disturbances on an output

of interest. Different from a feedback system, however, the

control input is not adjusted based on the error between

the output and its desired value, but it is pre-set based on

perfect knowledge on how the disturbance affects the pro-

cess. This control strategy is therefore viable only if the

system’s model is perfectly known and is not subject to per-

turbations. Combinations of feed-forward and negative

feedback architectures are often used to obtain improved per-

formance and robustness, and are present in several modern

engineering applications [50]. In §4, we review an application

of feed-forward control in synthetic biology to enable circuits’

robustness to DNA plasmid variability. Positive feedback sys-

tems have been widely used in digital electronics to engineer

oscillators, switches and hysteresis where the system output

can take either of two stable values, and these are each kept

unless a sufficiently large input stimulus is applied [51].

A detailed discussion of positive feedback is beyond the

scope of this review and can be found elsewhere [46,52–55].
4. In-cell feedback and feed-forward control:
modules

In-cell control mechanisms are well suited to enhance the per-

formance and robustness of synthetic genetic circuits to a

number of perturbations, including noise, parameter uncer-

tainty, loading and fluctuations in available resources. Here,

we review how control system designs improve robustness

of protein levels to noise and to variability in the number of

copies of plasmid on which a circuit is coded. We then dis-

cuss some of the major implementation challenges involved

in the realization of high-gain negative feedback and integral

feedback. We adopt the notation where, for a species x, we

represent by x (italics) its concentration.

4.1. Negative feedback: robustness to noise,
performance and trade-offs

Stochasticity can not only substantially limit the precision at

which the function of a circuit is executed [56], but also be

exploited [57]. Substantial work is required to develop a

design-oriented quantitative understanding of stochastic

effects in order to attenuate them or leverage them, depend-

ing on the circuit’s requirements. Because negative feedback

tends to increase the robustness of a system’s output to

perturbations (figure 3b), a number of researchers have exam-

ined synthetic genetic implementation of negative feedback

in order to assess its ability to reduce the stochastic variation

of a protein concentration about its mean [28,58].
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The simplest implementation of negative feedback on a

protein of interest y is through negative transcriptional auto-

regulation as shown in figure 4a, in which y represses its

production by binding to its own promoter to sequester it

from RNA polymerase. A two-variable model of this circuit

that captures the mRNA (m) and protein y dynamics is given by

dm
dt
¼ HðyÞ � dmþ d1,

dy
dt
¼ bm� gyþ d2

and HðyÞ ¼ a

1þ ðy=kdÞn
,

in which H(y) is the Hill function, which models the effect of

transcriptional repression by y, with n the cooperativity of y

and kd the dissociation constant of the binding. A smaller dis-

sociation constant corresponds to stronger binding and thus to

stronger repression. The larger the cooperativity n, the more

switch-like is the Hill function. Parameters d and g are decay

constants, and bm models the fact that protein production is

proportional to the concentration of mRNA [46]. Here, d1 and

d2 are additive perturbations capturing, for example, the effect

of noise on the mRNA and protein dynamics. A simplified

analysis of the effect of the negative feedback can be carried

out by performing a linearization of H(y) near the steady state

ys, leading to H(ys þ y) � b 2 ay with a,b . 0, and analysing

the robustness of this system to noise when compared with

the open loop system where we have H(y)¼ u. Referring to

the diagram in figure 3b, we can set the parameters b ¼ uG
and a ¼ KG, such that K ¼ (a/b)u and the system with negative

feedback will have amplification gain G. Inspecting the

expression of G, we can determine how physically G can be

increased. In particular, G can be increased by having both a
and b sufficiently large. Because b ¼ H(ys), it can be increased

by increasing a, that is, the promoter’s strength; because 2a is

the slope of H(y) at the equilibrium point ys, it can be increased

(up to some limit) by decreasing kd, that is, having a stronger

repression, or by increasing the cooperativity n and suitably

tuning kd such that ys falls exactly at the maximal slope of

H(y). Therefore, physically increasing the gain G for a negative

autoregulation implementation is non-trivial and severely lim-

ited. Nevertheless, there are measurable benefits of the closed

loop system when compared with the open loop one.

For a sensible comparison between the open loop and

closed loop systems, it is important to set the parameters of

the controller such that the steady state of the closed loop

system is the same as that of the open loop system when
the perturbations are not present and when the feedback

gain G is sufficiently large. This can be obtained by setting

K ¼ dg/b, leading to ys ¼ bu/(dg). A standard measure of

the noisiness of a signal is the coefficient of variation (CV),

which is defined as the ratio between the standard deviation

and the mean. For the above system, in which we use the

linear approximation of H(y) and the fact that G is large,

and we assume for simplicity that d1 and d2 are white noise

processes, we can calculate the moments and hence also the

CV leveraging the fact that the system is linear [46]. This

leads to the two following expressions:

CVopen loop ¼
1

ys

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2g
þ b2

2ðdþ gÞdg

� �s
and

CVfeedback ¼
1

ys

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðgþ dÞ

p ,

which show that the system with high-gain feedback has a

smaller CV than the open loop system, suggesting that

under appropriate conditions the closed loop system is

more robust to noise, as detailed by a number of theoretical

works [59–62]. These theoretical predictions were confirmed

experimentally by a genetic circuit implementation in E. coli
of the negatively autoregulated gene [28]. In particular, in

this paper, the authors computed the empirical probability

distribution for both the closed loop and the open loop sys-

tems, resulting in the qualitative behaviour depicted in

figure 4a, which shows reduced variability of protein level

in the system with negative feedback.

Further, as illustrated in figure 3c, adding negative feed-

back around a system whose ODE model has order higher

than 1 can give rise to oscillations and can lead to amplification

of the response of the system to disturbances that have high-

frequency content. The process of protein production involves

a cascade of dynamical processes, including transcription,

translation and protein folding [46]. It is expected that, just as

shown in figure 3c, the water-bed effect may be observed

wherein the noise spectrum of the output y shifts to high

frequency in the closed loop system. This prediction was exper-

imentally validated on a genetic autoregulation circuit in E. coli,
in which the authors computed the experimental frequency

response of both open loop and closed loop systems and

which led to the qualitative plot shown in figure 4b [58].

Finally, figure 3b shows that the closed loop system is also

sped up compared with the open loop system. Experiments
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performed on a negative autoregulation circuit in E. coli con-

firmed this finding, illustrating that negative feedback can be

effectively used also as a mechanism to tune the temporal

performance of genetic circuits [63].
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4.2. Incoherent feed-forward control: robustness to
genetic context

Synthetic genetic circuits are commonly coded on plasmids

as this simplifies the assembly process compared with chro-

mosomal integration, and allows higher expression levels,

leading to easier detection of the proteins of interest.

A major problem when implementing a synthetic genetic cir-

cuit on a plasmid is the variability in the copy number of the

plasmid [64], which makes the levels of the expressed pro-

teins also variable and thus poorly predictable. From a

control systems point of view, the plasmid copy number is

a ‘disturbance’ input d and the concentration of the protein

of interest y is the output that ideally should be robust to

changes in d. As such, it can be addressed by a number of

potential designs, including negative feedback, integral feed-

back and feed-forward control. Negative feedback and

feed-forward control were each implemented in [65] to

tackle this problem. Here, we focus the description on the

implemented feed-forward control and on its relationship

with integral feedback.

The diagram of the incoherent feed-forward control

scheme is shown in figure 4c. The plasmid copy number d
directly ‘activates’ the protein it is expressing, because

higher copy number leads to higher protein concentration.

The control circuitry is implemented by expressing from the

same plasmid an intermediate protein x (hence the positive

arrow from d to x), which in turn represses the protein of

interest (the negative arrow from x to y). This type of circuit

topology is called an incoherent feed-forward loop and has

been widely studied in the systems biology literature [66]. If

the two forward branches are perfectly balanced, they

cancel each other’s action, and the net contribution from d
to y is zero, leading to perfect disturbance rejection. In one

of the genetic implementations proposed, protein x is a tran-

scriptional repressor of protein y, leading to a simple model

and steady state of the circuit given by

dx
dt
¼ ad� dx,

dy
dt
¼ bd

k þ x
� gy ) y ¼ bd

ga

d
dþ ðdk=aÞ ,

where k incorporates the dissociation constant of the binding

of x to the promoter site controlling y. Hence, y will depend

on d, unless dk/a is negligible compared with d as illustrated

in the plot of figure 4c. This shows that the two branches need

to exactly compensate each other in order for the disturbance

to be perfectly rejected. Feed-forward architectures may thus

be desirable, in general, to decrease the effect of a disturbance

but not necessarily for perfectly rejecting it, for which integral

feedback, when implementable, is better suited.
4.2.1. Relationship with integral feedback
Although a realistically implementable incoherent feed-

forward control circuit such as this one does not reach perfect

disturbance rejection, an ideal incoherent feed-forward con-

trol circuit in which k ¼ 0, that is, the two branches are

exactly compensating each other, reaches disturbance rejec-

tion, because y ¼ (bd)=(ga) is independent of d. In this case,
it can be shown that the system contains a hidden feedback

integral action, that is, there is a variable z such that

z(t) ¼ G
Ð t

0 (u� y) dt or equivalently _z ¼ G(u� y) with

u ¼ (bd)=(ga) [67]. Therefore, the ideal feed-forward control

circuit is mathematically equivalent to an integral feed-

back controller. This fact is a consequence of a much more

general principle from control theory called the internal

model principle [50], which implies that if a system perfectly

rejects (adapts to) a constant disturbance, then it must have a

feedback integral action within it. From a practical implemen-

tation point of view, having k ¼ 0 requires that the binding of

protein x to promoter sites controlling y is irreversible, which

is difficult to reach in practice, because even the strongest

binding always has some non-zero probability of unbinding.

This example illustrates some of the practical difficulties

encountered when trying to reach perfect disturbance rejec-

tion with a feed-forward control circuit. It is not surprising

that similar implementation challenges are encountered

when seeking to implement an explicit feedback integral

control as we detail in §4.3.
4.3. Implementations of negative feedback and their
challenges

We review molecular mechanisms available for the

implementation of negative feedback and discuss their phys-

ical constraints that make realization of feedback, especially

integral, challenging.
4.3.1. Negative feedback implementations
In general, there are two different philosophies to implement

negative feedback: inhibit the rate at which a protein is pro-

duced or enhance the rate at which it is degraded.

Transcriptional regulation is of the first type (figure 5a): the

output protein (y) binds with its own promoter (p) to inhibit

transcription. This type of regulation has been widely used in

the field of dynamic metabolic engineering to promote and/

or ‘robustify’ biofuel production under changing environ-

ments [72–75]. In [76], Oyarzún & Stan provided detailed

guidance on the selection of promoters and ribosome binding

sites that reflects the trade-offs and constraints of transcrip-

tional feedback for metabolic pathways. More broadly,

feedback control has been extensively used in metabolic

engineering, which is not the focus of this paper and an in-

depth review can be found elsewhere [77].

Recently, in addition to transcriptional regulation, the bio-

logical toolbox has significantly expanded. Negative feedback

at the translation level (translational feedback), where the

output protein inhibits its own translation without interfering

with transcription, was theoretically found to be potentially

superior to transcriptional repression at reducing stochasti-

city [78,79] in some scenarios, and at rejecting translational-

level disturbances, such as fluctuations in ribosomes [80].

Translational feedback has been experimentally implemented

in mammalian (HeLa) cells by using a ribosomal protein that

tightly binds mRNA to block translation (figure 5b). Within a

feedback architecture, this mechanism leads to a reduced

level of the output protein y, which can be tuned by adjusting

the binding strength [68]. A different approach to obtain

translational feedback is through increased mRNA degra-

dation, as experimentally tested in mammalian (HEK293)

cells [69]. This negative feedback design (figure 5c) is realized
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by a non-coding microRNA (z) that binds and then degrades

the protein y’s own mRNA (m), and by a ribozyme (r) that

cleaves the microRNA. The ribozyme is designed such that

its cleavage rate decreases in the presence of the output

protein y. Therefore, as y increases, z increases owing to the

reduced ribozyme cleavage rate, thus reducing m and

downregulating y, as a consequence.

Synthetic genetic negative feedback systems have been

implemented also by sequestration of scaffold proteins

(figure 5d). Scaffold proteins have specific interaction domains

to assist the assembly of protein complexes or colocalization of

signalling molecules [81]. In [70], the authors constructed a

novel negative feedback loop in bacteria E. coli that enables

input signal tracking, using a synthetic scaffold protein s and

a two-component signalling system with scaffold-dependent

phosphorylation (figure 5d). The two-component signalling

system consists of a histidine kinase (HK) donating a phos-

phate to the response regulator (RR), transforming the RR

into active RR*, which can activate transcription of output

protein y. This two-component system is designed such that

phosphotransfer occurs only when HK and RR are brought

into close proximity by the scaffold protein s. The output

protein y is a fusion of a fluorescence reporter and an anti-scaf-

fold that sequesters free scaffold protein, leading overall to a

negative feedback. Using the total amount of scaffold protein

s as a reference input, Hsiao et al. [70] demonstrate that y

can track the reference input concentration s (scaffold) over a

range of input concentrations. The feedback gain can be

tuned by relevant physical parameters, such as concentration

of RR and phosphatase.

In [71], the authors created a new recruitment site on

the Ste5 scaffold protein s with a leucine zipper (figure 5e).

The new recruitment site recruits negative pathway modula-

tor Msg5 (y), which is a phosphatase that dephosphorylates

the pathway output K*. The negative feedback is created by

the modulator y being expressed under the transcriptional
control of K*. The strength of the negative feedback can be

modulated by tuning the affinity of the matching leucine

zipper, or the promoter strength of Msg5. The dynamics of

the system with negative feedback displayed overshoot in

the temporal response under continued stimulation. A similar

feedback architecture finds application in modifying the

T-cell receptor (TCR) signalling pathway in Jurkat T cells to

precisely regulate the amplitude of T-cell activation [82].

This is practically important, because a challenge in adoptive

T-cell therapy is to limit the over-activation of T cells that

could lead to killing host cells or to life-threatening

immune responses. The synthetic genetic negative feedback

system of Wei et al. [82] addressed this challenge.

Less work is available on experimentally implementing

a negative feedback where mRNA ‘inhibits’ its own tran-

scription without interfering with translation. This type of

mechanism has been discovered in Nature [72], where intron-

based microRNAs in the human endothelial nitric oxide

synthase gene can directly inhibit their own transcription. In

synthetic biology, a potential implementation is by the

CRISPR/Cas transcriptional repression system [83], where

guide RNA recruits the Cas9 protein to block transcription.
4.3.2. Implementation challenges
The molecular mechanisms described so far can effectively

be used to implement negative feedback control systems.

However, it is unclear to what extent the gain G of the feed-

back controller can be increased and what consequences this

may have on host cell physiology if increasing it requires

increasing the concentrations of specific proteins. More

work is required to investigate the potential trade-offs.

By contrast, the molecular mechanisms, if any, that may

be used to implement an in-cell integral feedback controller

are still the subject of intense investigation [84–87]. A major

difficulty of implementing an explicit integral action is due
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to the unavoidable presence of dilution caused by cell

growth [88]. In fact, for the concentration of a species z to be

the pure integral of a signal s, we must have dz=dt ¼ sðtÞ,
but because z is subject to dilution within a growing and divid-

ing cell, we will always have an added rate 2dz, leading to

dz=dt ¼ sðtÞ � dz: Therefore, z(t) will not be the pure integral

of s(t). Physically, if s were a constant production rate, then a

pure integrator would want the concentration of z to grow to

infinity according to z(t) ¼ st. However, the presence of

dilution always forces z(t) to saturate to a constant value

given by s/d. One may be tempted to think that, if s is large

enough and z is kept at sufficiently low values, this issue

may be overcome. Unfortunately, this is a misleading argu-

ment, because, within an integral control architecture, the

objective is to make s(t) approach zero, at which point the inte-

gral variable z may be large to compensate for steady-state

error and disturbances (refer to equation (3.1), where at

steady state y ¼ u/K and z ¼ u/K 2 d ). Even assuming that

this is a non-issue, another significant difficulty is stability of

the closed loop system as we illustrate next.

Briat et al. [85] proposed a novel feedback structure for

biochemical reactions that can achieve perfect set-point regu-

lation named ‘antithetic integral feedback’. Although the

authors consider a stochastic model, the basic idea can be

explained with the simplified deterministic model

dx
dt
¼ kz1 � x,

dz1

dt
¼ u� z1z2 and

dz2

dt
¼ x� z1z2,

ð4:1Þ

where x represents the concentration of the output protein to

be regulated, z1 and z2 are ‘controller species’, and u is a

reference input (e.g. the desired x concentration). A change

of variable z ¼ z1 2 z2 results in dz/dt ¼ u 2 x, and therefore,

as long as system (3.2) is stable, as t!1, we have dz/dt ¼
u 2 x ¼ 0, and the output tracking error x–u tends to 0

exactly. However, this system may be unstable. This technical

problem is circumvented by the authors in [85] by studying

its stochastic counterpart, and by mathematically showing

that the mean of the stochastic output converges to the refer-

ence input for a large class of biomolecular systems with such

structure. Most importantly, the stochastic model guarantees

robust adaptation even in the presence of noise and at low

molecule counts. Further experimental and theoretical studies

are required to determine the performance and trade-offs of

these types of integral controllers and how the issue of

dilution may be overcome.

A component that is ubiquitous in any control system

(proportional or integral) but difficult to realize biologically

is a signal subtractor, used to find the error between the

output y and reference input u in the standard feedback

set-up (figure 3b–d ). A recent study by Cosentino et al. [89]

provides a set of biochemical reactions whose output can

be approximated by the difference of the two inputs, given

that a time-scale separation condition holds. In particular,

the authors show that the negative feedback implemented

using scaffold protein in [70] functions as an effective signal

subtractor, leading to the observed tracking property under

negative feedback.

Finally, cell-free systems, where circuits are studied in cell

extracts in vitro, provide appealing testing platforms to accel-

erate synthetic circuits prototyping, and to deepen our

understanding of natural systems [90,91] by removing

issues such as cellular context dependence, noise and cell
heterogeneity, and cell growth. Synthetic negative feedback

loops, together with many other synthetic biology parts,

such as the toggle switch and the repressilator, have been suc-

cessfully reconstructed in cell-free systems [92,93]. Because

experimental results have suggested that circuit performance

in a cell-free system highly resembles its in-cell counterpart

[91], cell-free systems can potentially serve as a rapid control-

ler prototyping platform, similar to a wind tunnel for fluid

dynamics, to investigate more sophisticated in vivo control

strategies.
5. In-cell feedback control: from modules to
systems

We recall that a fundamental property a circuit component

is expected to have when we perform bottom-up design

is modularity, that is, the input/output behaviour of the

component should remain unchanged upon connection

with other components. Failure of modularity forces a

designer to re-engineer the entire system from scratch any

time a new component is added, leading to an endless and

combinatorial design process. In this section, we review engin-

eering solutions that leverage high-gain negative feedback to

enhance modularity.

5.1. The limits of modularity in genetic circuits
Although highly desirable, modularity is not a natural property

of biomolecular systems, because the connection of an upstream

system to a downstream one alters the state of the upstream com-

ponent [94]. This fact is due to the physical process by which two

components are connected: a connection implies that a commu-

nicating species of the upstream system binds to species of the

downstream system, leading to new reaction rates that were

not present when the upstream system was in isolation. These

additional rates ‘load’ the communicating species and make it

(temporarily) unavailable to the reactions of the upstream

system, leading therefore to substantial changes in the upstream

system’s behaviour. This can be appreciated by considering as

an illustration the connection of a genetic clock, such as that of

[53], to downstream genetic targets that regulate, for example,

the production of a fluorescent reporter used for characteriza-

tion (figure 6a). While the isolated clock displays sustained

oscillations, connection to the downstream reporter system

quenches the oscillations. This phenomenon not only creates

difficulties in measuring the clock’s species for module charac-

terization, but also more broadly prevents the clock’s signal

being sent to downstream systems, as desired, for example,

in applications where downstream processes need to be

synchronized [95]. A number of experimental studies on recon-

stituted protein systems, on genetic circuits in E. coli and in yeast,

and on in vivo natural systems have characterized these effects

of retroactivity [39,96–100]. Notable effects of retroactivity

include the slowdown of the temporal response of the upstream

system’s communicating species and changes in the upstream

system’s steady-state input–output characteristics. These effects

become more prominent as the concentration and/or affinity of

downstream targets or substrates to which the communicating

species binds increase.

In order to make the loading problem amenable to a sol-

ution that can leverage control systems tools, it was proposed

to capture the additional reaction fluxes that appear any time
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a connection is performed as a signal s called retroactivity to
the output (figure 6a). This signal can be viewed as a disturb-

ance that alters the output of the upstream system once it is

connected to a downstream one. For example, if y is a tran-

scription factor expressed in the upstream system with rate

H(u), and y binds downstream target sites p to form complex

C according to yþ p O
kon

koff

C, we will have

dy
dt
¼ HðuÞ � dyþ s with s ¼ �konypþ koffC,

in which s ¼ 0 if the upstream system is in isolation (not

connected to the downstream system). Accordingly, the pro-

blem of retroactivity mitigation can be viewed as the problem

of engineering the system upstream of the load such that

the effect of s on y is mitigated. This is a standard distur-

bance attenuation problem in the control theory sense

as illustrated in §3. A system that is able to mitigate the

effect of s on y also applies a small retroactivity (r), called

retroactivity to the input, to its upstream system, called an insu-
lation device. Hence, an insulation device could be placed

between any upstream system (i.e. the clock) and a
downstream load (i.e. the fluorescence reporter) such that

the load is transferred to the insulation device and hence

the upstream system signal is reliably transmitted to the

downstream load (figure 6b).
5.2. Explicit high-gain negative feedback to design
insulation devices

As described in §3, disturbance attenuation can be solved by

the implementation of a high-gain negative feedback mech-

anism, as shown in a simplified block diagram in figure 6c.

Basic block diagram algebra leads to

y ¼ G
1þ KG

uþ s
1þ KG

) y � u
K

as G! 1,

illustrating that as the gain G increases the contribution of s to y
becomes negligible when compared with the contribution of u
to y. The challenge is to implement this high-gain negative

feedback mechanism through a biomolecular process that

can realize sufficiently high gains. To address this question,

it is useful to re-arrange the block diagram as illustrated in



rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:2016038

12
figure 6c. This indicates that we should realize a large input

amplification G along with a similarly large negative feedback

gain KG on the output where retroactivity acts. A number of

ways have been proposed to implement such a mechanism

within an insulation device [94]. One implementation that

was experimentally realized and validated uses a covalent

modification cycle as shown in figure 6c [101]. Here, the

input amplification G is realized by having a sufficiently

large reservoir of inactive protein yin, which upon presentation

of the input u is turned into the active output y. This output, in

turn, is actively degraded with a rate proportional to the

amount of phosphatase P, which converts y back to yin. There-

fore, we have G/ yin and KG/ P: It is worth highlighting that,

because yin and P are both large, the output y may be very

small, yet it stays insensitive to large loads imparted by down-

stream targets. This high-gain futile cycle can effectively

attenuate the retroactivity to the output in the presence of

time-varying inputs u as illustrated in various modelling

studies [94], in experiments on reconstituted systems [97],

and in experiments on genetic circuits in E. coli [101].
0

5.3. Implicit high-gain negative feedback through time-
scale separation

While the futile cycle of figure 6c provides a powerful and

highly tunable way of attenuating the retroactivity to the

output, it is subject to a stringent design trade-off. Attenuat-

ing retroactivity to the output s requires high gains as

implemented through large substrate yin and phosphatase P

amounts. However, a large amount of substrate yin imparts

a significant load to the input kinase u that binds to it. There-

fore, in this system, attenuating retroactivity to the output s
potentially leads to increased retroactivity to the input r,

which results in a load-induced slowdown of the input u.

This trade-off has been mathematically characterized in

[102] and experimentally demonstrated in [101].

To overcome this limitation and hence obtain an insula-

tion device that could attenuate retroactivity to the output s
while keeping a low retroactivity to the input r, a two-stage

device was proposed as illustrated in figure 6d. The output

cycle of the device is designed to be a high-gain negative

feedback system just like the futile cycle described above, in

which high gains are realized through large substrate and

phosphatase amounts. The input cycle, by contrast, is

designed to have lower amounts of substrate zin and phos-

phatase P* such that the loading applied to the input u is

small (small retroactivity to the input r). We can view it as

a ‘low-gain’ stage in the sense that it is using low amounts

of cycle proteins. Despite the low amount of cycle proteins,

this cycle still effectively mitigates the load-induced slow

down owing to large amounts of yin binding to z if the

input u evolves on the time scale of gene expression. In

fact, load-induced delays occur at the faster time scale of the

z-cycle (seconds) and are therefore negligible in the time

scale of the input u (minutes to hours). This time-scale separ-

ation-based mechanism for insulation allows effective

buffering of the genetic circuits from retroactivity by connect-

ing them through fast signalling systems. This mechanism for

retroactivity attenuation was implemented in yeast through a

two-stage system in which the first stage is a phosphorylation

cycle, and the second stage is a phosphotransfer system, result-

ing in almost complete retroactivity attenuation [39].
Mathematically, and under suitable stability conditions,

this mechanism for disturbance attenuation is equivalent to

high-gain negative feedback, wherein ‘high gains’ are

implicitly realized through fast time scales [103,104]. This

can be intuitively explained by considering the differential

equation describing the rate of change of u and the faster

rate of change of y

du
dt
¼ fuðu, tÞ and

dy
dt
¼ G0fyðu, yÞ,

where G0�1 quantifies that the time scale of y is much faster

than that of u. If the y-subsystem is stable, and, for illustration

purposes, we assume that u(t) is a small amplitude signal,

we can use the linear approximation fy(u, y) � bu� ay, with

b,a . 0, so that dy=dt � G(u� Ky) with G ¼ G0b and K ¼ a/b.

This is in the standard high-gain negative feedback form, but

no explicit negative feedback was engineered. Because no expli-

cit negative feedback needs to be engineered, these devices are

substantially easier to implement through biomolecular core

processes, where there are plenty of different time scales at

which reactions occur. However, identifying the structures of

signalling systems that qualify as insulation devices still requires

more research.
6. In-cell feedback control: multicellular
coordination

Our discussion of in-cell feedback control so far has focused

solely on intracellular control, where feedback is implemen-

ted in each cell and cells function independent of each other.

Many applications, however, require programming functions

over space and these are enabled only by multicellular coordi-

nation. The ability to program spatial patterns of cells

could potentially impact applications such as regenerative

medicine that need coordinated self-organization of cells, for

example in engineered stem cell organoids [105]. A number

of works have demonstrated that, in principle, programmed

cell coordination is possible, such as in dark–light edge detec-

tors [106,107], spatial patterning [108–110], density-based gene

activation [111] and microbial consortia [112], where multiple

microbial populations interact to improve a product’s yield.

In a multicellular coordination problem, although control

action still takes place in individual cells through activation

or repression of suitable genes, cells have access to the ensem-

ble state of the entire population as obtained through

diffusible signalling molecules. From a control theoretic per-

spective, this could be viewed as an example of cooperative

control, where a large population of autonomous agents

(cell) are interconnected through (cell–cell) communication,

and the decision of each agent contributes to the collective be-

haviour of the population. Synthetic genetic cooperative

feedback control systems have been built for a number of pur-

poses. In the work by You et al. [113], a population control

circuit autonomously maintains the density of E. coli at a

desired level (figure 7). The rationale of this control system

is as follows. Within each individual cell, LuxI is constitu-

tively expressed to catalyse the synthesis of signalling

molecule AHL, which can diffuse freely across the mem-

brane. As the number of cells N increases, AHL

concentration (A) increases, activating expression of a killer

gene (E) in the circuit. The negative feedback system thus

consists of N ! A! E s N (see red dashed line in
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Figure 7. Coordinated population control system [113]. LuxI and LuxR are
produced constitutively in each cell. LuxI catalyses the synthesis of small mol-
ecule AHL, which can diffuse freely across the membrane. As cell number
grows, AHL concentration increases, binding with LuxR to activate a ‘killer
gene’ to reduce cell count. Blue arrows indicate biochemical reactions,
black arrows show the diffusion of AHL across the membrane, and dashed
red arrows show the population control feedback loop.
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figure 7). Experimental validation of the system shows robust

regulation of cell density under various growth conditions.

Furthermore, steady-state population size can be tuned

through the AHL degradation rate constant, which plays a

major role in the ‘cell–cell communication strength’. Multicel-

lular feedback control has recently found its application to

generate scale-invariant patterns in a bacterial population

[109], where a core-ring fluorescence pattern is formed

whose size preserves a constant ratio with the size of the

population.

In part owing to the mathematical difficulties of analysing

large-scale, nonlinear multi-agent systems, the theoretical

study of multicellular feedback control is challenging, and

only limited results have been published. For example,

Vignoni et al. [114] developed a mathematical model for a

multicellular feedback control circuit, where AHL is involved

in both negative autoregulation and cell–cell communication.

The authors found, by analysing the model, that such a feed-

back system is stable, and can reduce variability of gene

expression in the population. Were this theoretical result

validated experimentally, multicellular control could be a

powerful tool to complement existing in-cell control mechan-

isms, such as negative autoregulation, to reduce heterogeneity

in gene expression and improve robustness to environmen-

tal perturbations. Additional theoretical and experimental

research is required to understand the robustness, stability

and performance of these systems.
7. In silico feedback control
Although the advances in implementing in-cell control sys-

tems to regulate cellular processes are remarkable, our

ability to control processes tightly and robustly is often hin-

dered by the genetic nature of living cells. Specifically, as

discussed in §4.3, all control ‘algorithms’ must be

implemented through biochemical core processes, which

pose significant constraints to the level of sophistication

that controllers can take. Furthermore, in-cell feedback con-

trollers have to cope with a noisy and variable cellular

environment, and thus the control signals themselves are cor-

rupted by noise and uncertainty. Finally, there are some

applications, such as the control of cell differentiation or de-

differentiation (reprogramming), in which it may be desirable
not to genetically and permanently modify the cells being

controlled.

In silico control is an application of feedback control to syn-

thetic biology, with the intention to complement in-cell control

mechanisms to compensate for the aforementioned difficulties.

An in silico feedback control system can be decomposed into

four basic modules: measurement, control, actuation and

the cellular processes to be controlled, that is, the plant

(figure 1c). Using microscopy [115–117] or flow cytometry

[118], a measurement module measures the reporter fluor-

escence intensity of either a cell population [115–118] or a

single cell [116,117]. Measured data are then sent to a compu-

ter, where they are processed to infer the state of the cell

(filtered), and sent as an input to the control algorithm to com-

pute a desirable control input in silico. The control input is then

actuated by applying external stimuli to the target cellular pro-

cesses to be controlled. Major actuation methods include

exposing the cell to light of a specific wavelength (optogenetics

techniques) [116,118], changing osmotic pressure [117] or

changing inducer concentration [115]. The feedback loop is

closed when the cell responds to these stimuli through in-cell

biomolecular reactions, which bring a change to the reporter

fluorescence captured by the measurement module.

Existing studies [115–118] in this field differ most signifi-

cantly in the control algorithm in silico, and in the cellular

process to be controlled. For example, Toettcher et al. [116]

and Menolascina et al. [115] applied a proportional–integral

(PI) control algorithm. A PI controller requires minimal

knowledge of the controlled process, and can eliminate any

steady-state mismatch between measured and desired

output (§3). In [116], protein–protein interaction processes

form the plant to be controlled, and because these inter-

actions have a characteristic time scale of seconds, a fast

set-point tracking performance was observed. On the con-

trary, in [115], the process controlled is (cascaded) gene

expression, which has a significant input/output lag result-

ing in a more difficult plant to control (see §3). However,

constant and time-varying reference signal tracking were

still successfully accomplished for a complicated synthetic

network in yeast, which has five genes and feedback loops.

More sophisticated feedback control algorithms were

implemented in [118] and [117]. In particular, the fluorescence

measurements are sent through a Kalman filter to a model pre-

dictive controller (MPC) [50]. As a consequence, an accurate

model of the cellular process to be controlled is required.

The Kalman filter provides an optimal estimate of the state

of the cell, which is then used by the predictive controller to

compute an optimal control input that minimizes deviations

between a desired and the future model-predicted output. In

[118], fluorescence expression from an optogenetically con-

trolled promoter is robustly regulated. The controlled cellular

process in [117] includes a high-osmolarity glycerol signal cas-

cade, which itself has an internal negative feedback loop that

ensures adaptation. A system that can achieve adaptation is

minimally responsive to control inputs, and is notoriously

hard to control dynamically, especially using standard control-

lers such as the PI controller. With MPC, however, the authors

in [117] were able to demonstrate robust and tight control of

gene expressions to track both constant and time-varying

references on both the population and the single cell level.

A current obstacle to the practical application of in silico
control lies in the output measurement process. Most of the

test circuits studied [115,117,118] involve control and
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measurement of the same protein, a fluorescence reporter.

When the species to be controlled is not the fluorescent repor-

ter itself, which is the case in most practical applications, an

indirect measurement approach is required. For example, a

gene-expression step can be added where a fluorescence repor-

ter responds to changes in concentration of the species to be

controlled. This type of strategy, however, will lead to delayed

and noisy measurements, which are a major challenge for any

feedback controller. While a simple PI controller may be unsui-

table in this case, an advanced model-based controller, such as

MPC, combined with estimators may be more promising.

However, this requires a trustworthy model of the cellular

processes to be controlled, which are typically subject to sub-

stantial noise and uncertainty. More research is required to

understand how to overcome these challenges.
 rface
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8. Summary
In this review, we have described some of the main achieve-

ments of feedback control designs in synthetic biology.

Classical control designs have been extended or directly

applied to make synthetic genetic circuits more reliable in

the presence of noise, less sensitive to variability in the gen-

etic context, more robust to loading and coordinated across

many cells. We have also highlighted many open problems,

especially those related to the stringent physical constraints
that biomolecular hardware poses on in-cell feedback control

implementations. These include resource limitations that

restrict the extent to which gains can be increased in high-

gain feedback designs; cell growth effects that, among

others, make the implementation of exact integral feedback

very challenging; and cell–cell heterogeneity that asks for

coordinated control techniques, for which applicable theory

is needed. In silico feedback control bypasses some of these

difficulties, because the controller is implemented in a com-

puter, but some challenges remain to make it a practical

solution. Therefore, while the many successes of control

design in synthetic biology show great promise for comple-

menting and leveraging on-going efforts of parts

characterization, discovery/invention and tuning, many

unique challenges need to be overcome, which are likely to

require new methods and theories.
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