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Short relaxation times but long transient
times in both simple and complex
reaction networks

Adrien Henry and Olivier C. Martin

GQE-Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France

When relaxation towards an equilibrium or steady state is exponential at

large times, one usually considers that the associated relaxation time t,

i.e. the inverse of the decay rate, is the longest characteristic time in the

system. However, that need not be true, other times such as the lifetime of

an infinitesimal perturbation can be much longer. In the present work, we

demonstrate that this paradoxical property can arise even in quite simple

systems such as a linear chain of reactions obeying mass action (MA) kin-

etics. By mathematical analysis of simple reaction networks, we pin-point

the reason why the standard relaxation time does not provide relevant infor-

mation on the potentially long transient times of typical infinitesimal

perturbations. Overall, we consider four characteristic times and study

their behaviour in both simple linear chains and in more complex reaction

networks taken from the publicly available database ‘Biomodels’. In all

these systems, whether involving MA rates, Michaelis–Menten reversible

kinetics, or phenomenological laws for reaction rates, we find that the

characteristic times corresponding to lifetimes of tracers and of concentration

perturbations can be significantly longer than t.
1. Introduction
Networks have been used to model systems involving large numbers of com-

ponents, agents or species [1]. Of particular interest are the effects arising in

such systems either because of out-of-equilibrium dynamics or through equili-

brium phase transitions. Collective effects are generally associated with slow

dynamics, i.e. characteristic times that are much larger than the microscopic

times associated with elementary processes. In the present work, our focus is

on the emergence of large characteristic times in reaction networks close to

their steady state. There are many ways to define a characteristic time in a dyna-

mical system. The simplest is via the asymptotic relaxation towards the steady

state [2,3], relaxation which often will be exponential. If so, the amplitude of the

perturbation or ‘distance’ to the steady state will decay as exp(2t/t) at very

long times, from which one then defines t to be the relaxation time. Because

all eigenmodes of the linearized equations decay on a timescale shorter or

equal to t, it is common practice to assume that t is the longest characteristic

timescale in the system. As a consequence, one usually takes for granted the

rule of thumb that the steady states will pretty much be reached within two

or three times t and that any study can focus on just determining t [4]. In meta-

bolic networks, this rule of thumb is often used to classify different timescales

[3,5,6]. However that assumption is not always correct and refinements are

sometimes necessary when considering arbitrary characteristic times. Our

goal here is to investigate cases where much larger times can arise. The present

study focuses on reaction networks for specificity, but our framework is more

generally applicable to any system.

Reaction networks involve species that can transform one into another.

If the species are molecular, one can get insights into the dynamics of the
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system by introducing an isotopic tracer and by following in

time its incorporation into the different molecular species

[7]. Assume that the reaction network is in contact with out-

side reservoirs, and let tt be the time the tracer takes to exit

the system. Surprisingly, the maximum of tt, corresponding

to the tracer’s lifetime in the system [8–10] (and sometimes

called the mean residence time of the tracer), can be much

greater than t. The object of our work is to understand such

a possibility, pointing in particular to the danger of assuming

that t is the main and longest characteristic time in these

systems. For pedagogical reasons, we will begin by treating

one-dimensional networks because an in-depth analytical

treatment is feasible there, from which one can easily under-

stand the influence of network size. We will then study more

general systems using reaction networks published by other

authors. In all cases, we compare the behaviours of four
characteristic times in these systems, investigating the

causes that can render them non-informative or make their

ratios diverge.
0388
2. Model and methods
2.1. Reaction networks and our one-dimensional kinetic

models
A metabolic network consists of a set of reactions and associ-

ated metabolites. It is convenient to represent such a network

as a graph where the nodes are associated with metabolites;

these are linked together by edges when there is a reaction

that includes them as substrate and product. Such edges

may be uni- or bi-directional, accounting for the reversibility

of the associated reaction. Let there be N metabolites Mi (i ¼
1, . . . , N ) and define Ci as the concentration of Mi. We are

interested in the dynamics of the Ci, i.e. how these quantities

change with time and in the corresponding fluxes through

the different reactions. Specifically, we shall study the

dynamics close to the system’s steady state and we shall

probe the associated characteristic times. To facilitate the

mathematical understanding of these times, we shall first

focus on a particular kind of network consisting of a linear

chain of reactions. In that situation, we order the metabolites

from 0 to N þ 1 where the metabolite Mi is the product of

reaction Ri whose substrate is metabolite Mi2 1

M0$
v1 M1$

v2 � � �$vN MN $
vNþ1 MNþ1: ð2:1Þ

The metabolites M0 and MNþ 1 reside in infinite reservoirs

at the two extremities of the linear chain so their concen-

trations are constant. By convention, the forward direction

in such a chain goes from M0 to MNþ 1. Once the characteristic

times in this system are understood, we shall use the insight

thereby gained to probe the situation in more realistic

metabolic networks with branches and loops.

Reactions transform metabolites into other metabolites

but it is still necessary to specify the actual kinetics. When

a reaction happens spontaneously, without the need for a

catalyst, it can be modelled by a mass action (MA) rate law

where the net flux is given by

vMA
i ¼ aiCi�1 � biCi: ð2:2Þ

To be specific, one can consider using the standard conven-

tion whereby concentrations are measured in moles per litre

and fluxes in moles per litre per second. The parameter ai
(respectively, bi) is then the probability per second that a mol-

ecule of metabolite Mi2 1 (respectively, Mi) spontaneously

transforms into a molecule of metabolite Mi (respectively,

Mi2 1). Note that equation (2.2) gives the total flux which is

the forward flux minus the backward flux.

In practice, one is often interested in catalysed reactions

where the spontaneous rates are terribly low. For instance,

in biochemistry, most reactions are catalysed by enzymes; cat-

alysis can lead to enhancement of rates by a factor of 1010 or

more. For any such enzymatic reaction, the rate may be lim-

ited by the amount of enzyme and is no longer entirely

proportional to metabolite concentration. Generally, the

relationship between substrate concentration and reaction

rate grows linearly at low concentrations and then saturates

at high concentrations of substrate. The reaction kinetics in

this situation are typically modelled by the so-called revers-

ible Michaelis–Menten–Henri (MMH) Law [11]. In the case

of a reaction involving one substrate and one product, the

flux is given by

vMMH
i ¼ aiðCi�1=KðSÞi Þ � biðCi=KðPÞi Þ

1þ Ci�1=KðSÞi þ Ci=KðPÞi

: ð2:3Þ

Here, ai is the maximum rate in the forward direction,

reached when the substrate is in large excess and the product

is absent. Similarly, bi is the maximum rate in the backward

direction. The maximum forward rate is proportional to the

enzyme concentration and is often decomposed as a ¼ kcatE
with E being the enzyme concentration and kcat the maximum

number of reactions catalysed by one molecule of enzyme per

unit of time. KðSÞi and KðPÞi , called the Michaelis constants,

respectively for substrate and product, are characteristic con-

centrations which set the scale for when the reaction becomes

saturated in substrate or in product. For an MMH reaction in

the absence of the product, K(S) is the concentration for which

the rate is at half of its maximum value.
2.2. Determining steady states
When a physical system is not driven by outside forces, it

goes to its equilibrium state where all net reaction fluxes

are 0. In the context of our one-dimensional model, that can

only arise if the free energies of the two reservoirs are

equal, corresponding to tuning the concentrations so that

their ratio is the equilibrium one. Outside of that special

case, the system will be out of equilibrium and concentrations

will change in time until a steady state is reached which

necessarily will have non-zero fluxes. This steady state is gen-

erally unique if there are no regulatory processes but for our

study to be completely general, we will not assume unique-

ness of the steady state, we shall simply consider a stable

steady state and investigate its characteristic times.

To determine a steady state, we solve numerically the set

of steady-state equations dCi/dt ¼ 0. (We use the root finding

routine ‘find-root’ in Python.) For any set of kinetic par-

ameters or boundary conditions, e.g. the concentrations C0

and CNþ 1 in the one-dimensional models, this computation

leads to a steady-state concentration vector C ss. It is necessary

to check that the resulting steady state is linearly stable. This

check can be performed using the linearized equations about

the steady state. If dC is the (infinitesimal) difference between

the actual concentrations and those in the steady state, one



Table 1. Value of the A and B parameters for the four situations
considered. F and S ¼ ð1þ css=K ðSÞ þ css=KðPÞÞ are, respectively, the
flux and a measure of flux saturation in the steady state, the system being
by hypothesis homogeneous. The ‘c’ (respectively the ‘t’) appended to
MA and MMH denotes perturbed concentrations (respectively, tracer
concentrations).

parameter MA-c MA-t MMH-c MMH-t

A a a (a 2 F )/K(S)S a/K(S)S

B b b (b þ F )/K(P)S b/K(P)S
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has

ddC

dt
¼ JðcÞdC, ð2:4Þ

where J (c) is the N � N Jacobian matrix with indices i and j
going from 1 to N; the superscript ‘c’ refers to the fact that

it describes the (linearized) dynamics of (perturbed) concen-
trations. The steady state is stable if the real part of each

eigenvalue of the Jacobian is negative.

For the specific case of our one-dimensional models, one has

J
ðcÞ
ij ¼

Ai if j ¼ i� 1
�ðAiþ1 þ BiÞ if j ¼ i
Biþ1 if j ¼ iþ 1
0 otherwise,

0
BB@ ð2:5Þ

where the Ai and Bi are related to the terms entering equation

(2.2) for MA and equation (2.3) for MMH as specified in table 1.

In all the parametrized models we examined, we found a

single steady state and it was stable, so hereafter all eigen-

values of J (c) will implicitly be assumed to have a negative

value for their real part.
2.3. Defining four characteristic times
tc: The first characteristic time is the relaxation time defined as

�1=l
ðcÞ
1 , where l

ðcÞ
1 is the real part of the leading eigenvalue

of J (c) having the largest real part (closest to 0 from the nega-

tive side). Because this time is defined via the linearized

dynamics for the concentrations about the steady state, we

shall refer to it as tc.

Tt: The second characteristic time is the previously men-

tioned tracer lifetime (or mean residence time), which we

denote by Tt. The motivation for introducing this quantity

comes from tracer experiments in chemical networks where

isotopic labels are used to follow atoms as reactions progress.

Instead of introducing a perturbation to concentrations, this

approach labels atoms of one metabolite Mk at t ¼ 0 without

changing any concentrations. In practice, this labelling affects

only a fraction of the molecules. The effect of this labelling is

also to leave the fluxes unperturbed. The system stays in its

steady state, it is just that some of these molecules become

labelled. Note that when a labelled metabolite is tranformed

into another, tracers follow via the labelled atoms. (See

also the electronic supplementary material.)

Let us study the time evolution of the concentrations of

these tracers Ct ¼ fCt;1, Ct;2, . . . , Ct;Ng (the subscript ‘t’

is for tracer). Let Css ¼ fCss
1 , Css

2 , . . . , Css
Ng be the steady-state

concentrations of the metabolites (labelled or not). Consider

the reaction Ri and let f
ðfÞ
i be its forward flux and f

ðbÞ
i its back-

ward flux in the steady state. Then the change in the labelled
concentration Ct,i will include an incoming term given by the

rescaled forward flux f
ðfÞ
i Ct,i�1=Css

i�1 because all metabolite

molecules (labelled or not) have an equal probability of parti-

cipating in the reaction Ri. As a result, the dynamics of the

tracer concentrations is

dCt

dt
¼ JðtÞCt: ð2:6Þ

In the specific case of the one-dimensional models, we

have

J
ðtÞ
ij ¼

f
ðfÞ
i

Css
j

if j ¼ i� 1

�ðfðfÞi =Css
i�1 þ f

ðbÞ
i�1=Css

i�1Þ if j ¼ i

f
ðbÞ
i

Css
i

if j ¼ iþ 1

0 otherwise:

0
BBBBBBBBB@

ð2:7Þ

Note that these linear dynamics are exact even if Ct,i is not

infinitesimal. In general, the matrix J (t) has no reason to be iden-

tical to J (c). By exponentiating, one has the expression for the

labelled concentrations at all times: CtðtÞ ¼ expðtJðtÞÞCtð0Þ:
The lifetime of the tracer is then defined to be the integral

over time of the proportion of the labelled atoms that are still

present in the system. This quantity depends on the site at

which the tracer is initially introduced. We thus define the

tracer lifetime Tt as the largest such time when considering all

possible initial sites

Tt ¼ max
choice of initial perturbation site

Ð1

0 jCtðtÞjdt
jCtð0Þj

 !
: ð2:8Þ

In the above equation, jCt(t)j is the norm of the corre-

sponding vector. For our study, we use the L1 norm

(jCtðtÞj ¼
P

i jCi
tðtÞj) because it makes more sense for an

atomic tracer which is conserved until it is pushed out of

the system. Note also that Tt in equation (2.8) is the direct

analogue of the mean lifetime of a decaying positive scalar
quantity; the norm allows one to extend the notion to a

vector in a straightforward manner.

Tc: The previous definition of lifetime of a tracer can be

generalized to the lifetime of any quantity and in particular

to a perturbation applied to steady-state concentrations.

Suppose one introduces at t ¼ 0 an infinitesimal perturba-

tion in the concentrations, dC(0). In what follows, and just

as for tracers, this vector at t ¼ 0 will have a non-zero

component only for a single metabolite of the system.

Then according to equation (2.5), dCðtÞ ¼ expðtJðcÞÞdCð0Þ:
In direct analogy with equation (2.8), we define the

concentration lifetime Tc as

Tc ¼ max
choice of initial perturbation site

Ð1

0 jdCðtÞjdt
jdCð0Þj

 !
, ð2:9Þ

providing a third characteristic time of our system, referred to

as the lifetime of a concentration perturbation. To be comple-

tely general, both here and for the tracer lifetimes, the vectors

of concentrations should be taken as the deviations of their

values from their long time limit. Indeed, if there were no

reservoir and thus no exit possible of the atoms, the long

time limit of the perturbation or tracer concentration would

not be 0.

tt: Our fourth and last characteristic time is tt, defined as

�1=l
ðtÞ
1 , where l

ðtÞ
1 is here the real part of the leading
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eigenvalue of J (t). It corresponds thus to the usual relaxation

time but for the tracer molecules rather than for the

metabolite concentrations, thus the subscript ‘t’.
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Figure 1. Decrease with time of jCtj, the L1 norm of the vector of concen-
trations of a tracer. Identical results apply to jdCj, the L1 norm of the vector
of perturbed concentrations. The initial perturbation at t ¼ 0 is localized at a
site in the middle of the chain of reactions. The y-axis is on a log scale so
that one can see the asymptotic exponential decay as a straight line of slope
21/t: t20 ¼ 4.92, t50 ¼ 5.65 and t100 ¼ 5.78. All N MA reactions have
a ¼ 2 and b ¼ 1. Cases with N ¼ 20, 50 and 100 are shown.
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3. Behaviour of characteristic times in the one-
dimensional models

As can be seen from the four characteristic times defined in the

previous section, we distinguish two aspects of a metabolic

system: (i) the dynamics of an infinitesimal perturbation in

the concentration of metabolites and (ii) the spreading and

drift of tracers. Both aspects can be considered, whether the

reaction kinetics are given by MA or by MMH rate laws. In

each case, one can define both the standard relaxation time

based on the asymptotic decay rate and a lifetime which

measures the characteristic time needed for the system to

return close to its steady state. In the case of a linear chain of

reactions with the same kinetic parameters, that homogeneity

allows us to obtain some results analytically. For instance, in

the case of MA, the linearized dynamics (given in terms of

J (t) and J (c)) are independent of the steady state considered.

Thus, the characteristic times will be independent of the sign

and intensity of the flux going through the network: the con-

centrations of M0 and MNþ 1 are irrelevant! Furthermore, the

Jacobian matrices are sufficiently simple for one to obtain in

closed form the eigenvectors and eigenvalues. In the case of

an MMH framework, when one performs the linearization

about the steady state, the resulting system is homogeneous

only if the steady state itself is homogeneous, which requires

that all the metabolites have the same concentrations. When

this is the case, we again obtain the steady state in closed

form. And just as for MA, the eigenvectors and eigenvalues

can be derived analytically, which gives us then the formulae

for tc and tt. Unfortunately, for both MA and MMH, the study

of the lifetimes Tt and Tc requires resorting to numerical

methods to exploit equations (2.8) and (2.9) (see the electronic

supplementary material for details). Nevertheless, these algor-

ithms are relatively straightforward as they reduce to

calculating exponentials of the matrices J (t) and J (c) and per-

forming the integrations in equations (2.8) and (2.9). For the

initial perturbation, for simplicity we take dC(0) and Ct(0) to

vanish everywhere except on one site where it is set to 1. It

results in N possibilities to measure the lifetime, to remove

the dependence on the site we choose to define Tt or Tc as

the maximum over the N possibilities.

3.1. Long transient times drive the gap between
lifetimes and relaxation times

The integral in equation (2.8) depends on CtðtÞ ¼
expðtJðtÞÞCtð0Þ which can be written using spectral decom-

position as a sum of N terms, each term being associated

with one eigenmode and having the time dependence

expðtlðtÞi Þ, where l
ðtÞ
i is the associated eigenvalue. When

N ¼ 1, Ct(t) is a constant times a single decaying exponential.

Plugging into equation (2.8) then reveals that Tt ¼ tt. The

paradox whereby Tt can be much larger than tt arises when

N�1: It is true that each of the N terms contributing to the

spectral decomposition of Ct(t) decays in magnitude at least

as fast as exp(2t/t) but that does not mean that the sum of

these terms has that behaviour on timescales comparable to

t. Indeed, the terms are not all of the same sign, and their
cancellations can lead to long transients before the asymptotic

behaviour (the exponential decay) prevails. To illustrate this,

we show in figure 1 the L1 norm of Ct(t) as a function of t in

our toy model consisting of a linear chain with a’s and b’s

identical across MA reactions. At large times, one sees the

exponential decay (a straight line on this semi-log plot) but

this asymptotic behaviour may set in at times only much

longer than t itself. The cancellation at short times just men-

tioned is particularly striking: the curve is very flat for a very

long time before it begins to decrease. That waiting time con-

tributes to the large difference between Tt and tt: one must

wait for tracer molecules to be transported through the

system. Note that the property of having a very flat curve

at initial times is due to the conservation of particles within

the system, justifying our use of the L1 norm instead of the

L2 norm.

3.2. Dependence of the characteristic times on N
Let us begin with the relaxation times tt and tc. Assuming the

reactions to all have the same kinetic parameters and that the

steady state is also homogeneous (cf. previous remarks), the

relaxation time (be it tc or tt) can be obtained by using the trans-

lation invariance of J (c) and J (t). Each eigenvector is a product of

a sine and an exponential (see the electronic supplementary

material). The formula for the eigenvalues leads to

t ¼ 1

Aþ B� 2
ffiffiffiffiffiffiffi
AB
p

cos (p=ðN þ 1Þ)
, ð3:1Þ

where the quantities A and B are, respectively, the forward and

backward probability of transition per unit time in the equations

linearized about the steady state, entering in J (c) for tc and in J (t)

for tt. They depend on whether one considers MA or MMH

reaction kinetics and whether one considers a concentration per-

turbation or a tracer, the different cases being enumerated in

table 1.

The values of tt and tc in the MA and MMH cases are

given by a standardized formula (equation (3.1)), it is just

that the proper A and B coefficients must be used. To under-

stand qualitatively the behaviour of these relaxation times,
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note first that for MA kinetics, J (t) ¼ J (c) so tt ¼ tc. Further-

more, consider fixing (A þ B)/2 to a value Z and letting

A 2 B go to 0 in equation (3.1). It is easy to see in such a

limit (this applies of course to both the MA and MMH frame-

works) that t exhibits two different regimes, one for small

chains and one for long chains. For a short chain,

N � Ncross ¼ 2Zp=ðA� BÞ, the characteristic times grow
quadratically with the number N of metabolites in the chain,

a feature characteristic of diffusing systems for the simple

reason that if A ¼ B, the dynamics is purely diffusive. This

is illustrated by the inset of figure 2a. By contrast, when N
is much above this crossover value, tt and tc become inde-

pendent of the chain length as can be seen directly by

setting to 1 the cosine in equation (3.1). This feature is illus-

trated in the main part of figure 2a. To obtain some

physical insight into why this large N behaviour arises (and

thus without mathematically analysing equation (3.1)), let

us examine the leading eigenvector of the Jacobian matrix.

Its entries depend exponentially on the index i of the node

and so its profile is mainly concentrated on a few metabolites

(about Ncross) at the end of the network. As illustrated in

figure 3, if one increases the number of metabolites, that lead-

ing eigenmode just gets shifted, keeping very accurately the

same profile when measured from the end of the chain.

Because this profile determines the eigenvalue, we conclude

that increasing N hardly affects this leading eigenvalue

which itself determines t. Thus, tc and tt become independent

of N at large N.

One may also justify the hierarchy t MA
t ¼ tMA

c ,

t MMH
t , t MMH

c in several limits. First, note that t in equation

(3.1) scales with the measure of flux saturation S when using

MMH kinetics (cf. table 1). As a result, if saturation effects

become important, tMMH
t and tMMH

c will grow to be much

larger than tMA
t ¼ t MA

c : Second, if we consider the expression

for t in the limit of small A 2 B, we see that Ncross will be larger

when considering perturbations in the concentrations than

when considering tracers. As a result, the large N limit will

set in later for perturbations in the concentrations than when

following tracers, leading to tMMH
t , tMMH

c :

Moving on now to the Tc and Tt lifetimes, we found no

way to derive closed-form expressions analogous to equation
(3.1). Nevertheless, it is possible to understand qualitatively a

number of features. In particular, one can again distinguish

between two regimes. If A 2 B is small, the behaviour for

small N is diffusion-like again so Tc and Tt increase quadra-

tically with N. By contrast, for long chains, if A = B, one

has a regime where Tc and Tt grow linearly with N.

Arguments similar to the ones presented in the context of

the relaxation times t can be invoked to explain these two

regimes as follows. In small networks, the diffusion to the

two sides of the chain dominates over the mean drift towards

one end of the chain. By contrast, within large networks, and

assuming A . B, most of the transient time dominating Tt

and Tc is dedicated to the transport of the molecules to the

N þ 1 end, therefore that transient time is roughly equal to

N divided by the drift velocity (which is proportional to

(A 2 B)). We illustrate these different behaviours in

figure 2b, where one sees again that the various cases

behave similarly with the network length. (We already

noted that for MA kinetics, J (t) ¼ J (c); as a consequence one

has Tt ¼ Tc there, just as one has tt ¼ tc in figure 2a.)
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3.3. Effect of the flux saturation on the characteristic
times

The major differences between MA and MMH come from the

effect of the flux saturation. In the case of the MA rate laws,

there is no saturation while saturation effects can be impor-

tant in MMH kinetics. This difference can lead to much

larger characteristic timescales in MMH than in MA when-

ever the concentrations are larger than K(S) or K(P).

Furthermore, for highly saturated enzymes, the characteristic

times can be very different depending on whether one

observes a tracer or a perturbation of concentration. Consider

a reaction that is near saturation. Introducing a perturbation

in the substrate will not greatly change the flux of that reac-

tion and as a result it will take a long time to dissipate the

perturbation away. On the other hand, a tracer is essentially

unaffected by saturation effects. Indeed, it is not because

the reaction is saturated that the tracers cannot participate

in the reactions. In effect, the tracers freely pass into reactions

that are saturated. The main consequence of this phenom-

enon is that in MMH tc can be much larger than tt (and Tc

can be much larger than Tt).

To investigate quantitatively this phenomenon of particu-

lar relevance when interpreting kinetic properties from tracer

measurements, let us increase saturation effects by reducing

K(S). K(P) could also have been reduced, but when doing so,

the flux in the network may reverse which unnecessarily

complicates the analysis. Using the parameters of table 1

in equation (3.1) and taking the limit of small K(S) gives the

following asymptotic behaviour at small K(S) of the two

relaxation times associated with a tracer (tt) and with a

concentration perturbation (tc):

tt�
1

a
ð3:2aÞ

tc� aþ2
aþb

KðPÞ
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

c
aþb

KðPÞ
1þaþb

KðPÞ

� �s
cos

kp

Nþ1

� � !�1

=KðSÞ

ð3:2bÞ

We see from these equations that tt becomes independent of

the saturation while tc diverges linearly with 1/K(S). Note

that the measure of flux saturation S ¼ 1 þ css/K(S)þ css/K(P)

scales in the same way for small K(S). In figure 4, we show

the dependence of the ts and the Ts on the saturation S for

both a tracer and a concentration perturbation, assuming

MMH rate laws. Not surprisingly, Tc is strongly affected by

S, just as tc is.
4. Behaviour of characteristic times in more
general metabolic networks

4.1. Effects of disorder in a one-dimensional reaction
network

In the disordered (i.e. heterogeneous) case we now consider,

the rates ‘a’ and ‘b’ for the different reactions are taken to be

independent random variables. Because every rate is a posi-

tive variable, we draw it from a lognormal distribution, i.e.

the natural logarithm of a rate ri is distributed according to

a Gaussian of mean m and standard deviation s. Conse-

quently, the mean of ri is �m ¼ expðmþ s2=2Þ and its

variance is �s2 ¼ ðexpðs2Þ � 1Þ expð2mþ s2Þ. We impose �m
to be equal to the value of the rate in the homogeneous case.

An appealing feature of that way of introducing disorder is

that the mean drift velocity of a marked molecule in MA

remains unchanged, being equal to its disorder average,

E[ai 2 bi]. We are then left with the parameter �s which can go

from 0 to 1 and quantifies the intensity of the disorder. In prac-

tice, we use the same coefficient of variation (CV) for the ‘on’

and the ‘off’ reaction rates, corresponding to a single measure

of intensity of disorder: CV ¼ �sa=a ¼ �sb=b:
For weak disorder, one expects little change in the values

of the characteristic times (tc, tt, Tc, Tt) compared with the

homogeneous case. However, for stronger disorder, the

characteristic times typically do increase significantly with

CV. To identify the typical behaviour, we have determined

these characteristic times for 10 000 realizations of the dis-

order and calculated the median values. For tt and tc, we

illustrate our results in figure 5a in the case of MA, where

those two quantities are equal. The relaxation time increases

relatively mildly (cf. the scales) at low CV but increases more

markedly when CV becomes larger than 30%. Furthermore,

instead of having a limit at large N as happens in the absence

of disorder, it seems that the presence of disorder makes

the relaxation time diverge slowly as N!1, perhaps

logarithmically.

Consider now the effects of disorder on the lifetimes. In

MA, Tt ¼ Tc, even in the presence of disorder. We display

in figure 5b the dependence of these quantities on N for sev-

eral values of CV and see that disorder has little effect as long

as CV is small. This can be justified by noticing that the drift

velocity of a molecule at site i is ai 2 bi2 1 and its ensemble

average (as in an annealed approximation) is the same as

without disorder, namely a 2 b. At large disorder, this argu-

ment fails because the quenched and annealed averages are

very different. A simple way to see this is to consider an

extreme case where fluctuations are large. Clearly, a very

large value of ‘a’ at one site will not compensate a very

small value at another site. As expected, at large CV, effects

of disorder become very significant. The reason should be

clear: Tt and Tc are sensitive to unfavourable reactions (for

instance, where a is small) throughout the whole set of reac-

tions. Finally, just as for relaxation times, it seems that the
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Table 2. Values of the characteristic times tc, tt, Tc and Tt in seconds for the four manually curated models [14 – 17] which we have studied. All are available
in the Biomodels repository [12].

time (s) tt tc Tt Tc

model 1 [14] 3.14 6.21 6.61 46.4

model 2 [15] 11.6 7.54 35.9 11,12

model 3 [16] 2.83 � 1022 5.05 0.109 12.4

model 4 [17] 2715 4.34 � 105 1.18 � 104 9.50 � 105
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presence of disorder increases the median values of lifetimes

by a factor that diverges slowly (perhaps logarithmically) as

N!1.

4.2. Networks with branches and loops
Although quite a few biosynthetic pathways include succes-

sive steps forming a linear chain of enzymatic reactions, the

one-dimensional systems considered so far remain toy

models because in all known organisms, large-scale bio-

chemical metabolic networks have numerous branches

and loops. It is thus necessary to consider how characteris-

tic timescales might be affected by such structures. Rather

than produce artificial networks including those features, it

is more relevant to study directly the various kinetic

models of metabolism that have been proposed in the litera-

ture. The repository ‘Biomodels’ [12,13] provides the gold

standards for such models both because the models must

past tests to be deposited and because their availability

ensures that they can be compared to state of the art.

Focusing further on those models that have been manually

curated, we are left with only a handful of cases. The

reason for this paucity of models is that measuring kinetic

constants of enzymes is a very difficult task so almost

always when building a kinetic model the modeller has to

use indirect methods to overcome the problem of dealing

with many unknown parameters. We studied four of these

models, published in [14–17].

For each of those four kinetic models, we first downloaded

its SBML specification [13] from the repository and exported
the ordinary differential equations into Python code that can

be processed. Once in our format, we determined the steady

state of the network of reactions and we then computed the

matrices J (t) and J (c). The associated leading eigenvectors and

eigenvalues were obtained using the inverse power method,

thereby providing the values of tt and tc. Furthermore,

numerical integration was used to compute Tt and Tc accord-

ing to equations (2.8) and (2.9), but see also the electronic

supplementary material for additional details.

The initial perturbation was taken to be localized on any

metabolite of the network. The global lifetime is chosen as the

maximum these perturbation lifetimes.

In table 2, we provide the values of the four characteristic

times for each of the Biomodels studied. The first model [14]

contains the reactions for glycolysis in Saccharomyces cerevisiae
(baker’s yeast). It has 17 reactions, mostly of the reversible

MMH type, and there are 14 internal metabolites. Glucose

is an external metabolite which enters the metabolism and

then gets transformed. A total of three compounds can be

excreted, all irreversibly. The characteristic times of this

model are modest, from a few seconds to a few minutes.

Further inspection shows that the ordering of these four

values follows the same pattern as in our one-dimensional

toy model, namely

tt , tc , Tt , Tc: ð4:1Þ

These inequalities can be motivated as follows. First, we expect

tt , tc and Tt, Tc whenever there are Michaelis–Menten reac-

tions subject to saturation effects. Indeed, the saturation of flux
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in a reaction can prevent a concentration fluctuation from

being evacuated but it will not prevent labelled atoms from

going through (i.e. from participating to the flux). Secondly,

in our toy model, the ts are relatively insensitive to processes

inside the network: they depend mainly on reactions close to

the excreted metabolites. By contrast, the Ts depend on drift

throughout the whole network. Thus, if the network is large

one can expect the Ts to be larger than the ts.

The other models partly follow this same pattern (cf.

table 2). Model 2 contains the reactions for glycolysis and

the pentose phosphate pathway in Escherichia coli [15]. It

has 48 reactions and 17 internal metabolites, but we needed

to remove the model’s explicit time dependence to allow a

steady state. The main difference with model 1 is the

organism considered and the glucose steady state uptake

rate (3.1 mmol s21 l21 compared to 1.5 mmol s21 l21). The

innequalities equation (4.1) are not respected since tt . tc

and Tt . Tc. Model 3 contains the glycolysis and the pentose

phosphate pathway, but for a human cancer cell. It has 29

reactions and 34 internal metabolites. The inequalities of

equation (4.1) are satisfied except that tc . Tt. This ‘discre-

pancy’ may be due to the fact that the diameter of the

network is modest while saturation effects are important.

Model 4 contains the reactions for the biosynthesis of pur-

ines in E. coli [17]. It has a total of 29 reactions and 18 internal

metabolites. The main difference compared to the other three

models is that the formalism uses kinetics that are neither MA

nor MMH: the forward and backward rates of the reactions

are fractional powers of the concentrations of the metabolites.

Such fractional powers are often used phenomenologically

to parametrize allosteric or regulatory effects; they have

the drawback that the flux may rise very steeply when start-

ing with low concentrations. Although equation (4.1) is

qualitatively respected, this model may have further pathol-

ogies as suggested by the huge values of all the four

characteristic times.
5. Discussion and conclusion
In dissipative systems, relaxation is often driven by the local

dynamics, and as a result characteristic times of the system

(and in particular relaxation times) are comparable to that

of the individual processes. However, in systems where

atoms or other particles are conserved, the diffusion and

drift of the conserved quantities can significantly increase

system characteristic times. Pure diffusion provides a

simple example of this effect: on a linear lattice of N nodes,

the characteristic times of the whole system grow as N2.

Our work in this paper focuses on the consequences of

drift. For simplicity, we do this in the context of reaction net-

works operating close to their steady state. If a concentration

fluctuation is introduced relative to the steady state, its damp-

ing will generally be associated with both a spreading out

(diffusion) and also an overall drift. The timescale for evacu-

ating such a perturbation is what we call its lifetime T (cf.

equations (2.8) and (2.9)), though in other contexts it can be

referred to as the mean residence or transit time. In the

absence of drift, corresponding to a simple diffusive

regime, the lifetime T scales as the square of the diameter

of the network, a scaling that also arises for the standard

measure of the time to return to equilibrium, i.e. the relax-

ation time t. In most systems, t corresponds in fact the
longest characteristic time and there are no further subtleties.

However, for almost any reaction network of interest, one has

both diffusion and drift. More generally, out of equilibrium

systems will have fluxes, and such fluxes may drive con-

served particles out of the network. In the presence of such

drift, a perturbation’s lifetime T can scale as the diameter of

the network, divided by a characteristic drift velocity which

is related to the presence of flux and provides the drift inten-

sity. Interestingly, in this out-of-equilibrium situation, the

relaxation time t is no longer informative about the timescale

of the (slow) process which evacuates perturbations. In

particular, in our toy model consisting of a homogeneous

linear chain of reactions, t does not grow with the system

size while T grows linearly. This can be understood quite

intuitively from figure 1 where we see that a perturbation

must first drift to the end of the network before the asympto-

tic behaviour (an exponential decay at the rate 1/t) sets in.

The perturbation’s lifetime can thus be much longer than the relax-
ation time. We showed analytically how that happened in our

one-dimensional homogeneous systems. Indeed, in the pres-

ence of drift, the linearized dynamics can be decomposed

into eigenvectors, but the leading eigenvector determining t

is concentrated near the metabolites that can be excreted.

As a result, t is quite insensitive to the size of the network

while T inevitably increases with network size since the eva-

cuation of a perturbation requires it to cross some fraction of

the diameter of the network. When studying the extension to

a non-homogeneous system of reactions, it was necessary to

take a numerical approach. In our toy one-dimensional

network, we introduced heterogeneities into the individual

reaction rates. For mild heterogeneities, we find that the

effects are small, but as one increases the CV of the reaction

rates, the effects of disorder become significantly stronger,

increasing in particular the median values of t and of T. Inter-

estingly, these heterogeneities drive t to grow with system

size as illustrated in figure 5. Empirically, this growth with

N is slow, perhaps only logarithmic with N. Similarly, in

the presence of disorder, it seems that T grows a bit faster

than N, perhaps logarithmically faster.

The overall phenomena found are most easily understood

when the reactions obey MA, but they arise also for MMH

reaction laws. For this last case, the presence of a saturation

of the flux with concentration of metabolites exacerbates the

difference between characteristic times associated with concen-

trations versus tracers as is illustrated in figure 4. This is

expected because when the network has a bottleneck due to

an enzyme becoming saturated, diffusion and drift are ineffec-

tive for evacuating an excess concentration while the dynamics

of tracers will be barely affected. This feature of tracers means

that although they form an irreplaceable tool for measuring

fluxes, their naive use can lead one to severely underestimate

the longest characteristic times in such reaction networks.

Given any model network with specified dynamics, it is

possible to estimate its relaxation times and lifetimes (cf.

equations (2.8) and (2.9)) in the context of concentration

perturbations or of tracers. The four associated characteristic

times will typically follow the inequalities given in equation

(4.1) as they do in the one-dimensional models. If a case

leads to anomalous results, either because the inequalities

are violated or because some of the characteristic times

are unreasonable (too short or too long), the reason for

the anomaly should be found or the reliability of the

model should be questioned. We encountered precisely this
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situation for the model [17] from the Biomodels database. The

authors of that model introduced kinetic laws which reflect a

control by some downstream products upon upstream reac-

tion rates, control in the spirit of what is known to arise in

several case studies of biosynthetic pathways. Such feedback

could possibly lead to having Tc . Tt but nevertheless raises

a flag as to possible artefacts coming from the peculiar and

unorthodox form of the kinetic laws introduced in [17]. The

fact that the characteristic times in this model are about a

million times larger than expected certainly adds currency

to the claim that the model might be defective in some way.
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