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We consider high-frequency homogenization in
periodic media for travelling waves of several
different equations: the wave equation for scalar-
valued waves such as acoustics; the wave equation
for vector-valued waves such as electromagnetism
and elasticity; and a system that encompasses
the Schrödinger equation. This homogenization
applies when the wavelength is of the order of the
size of the medium periodicity cell. The travelling
wave is assumed to be the sum of two waves:
a modulated Bloch carrier wave having crystal
wavevector k and frequency ω1 plus a modulated
Bloch carrier wave having crystal wavevector m
and frequency ω2. We derive effective equations
for the modulating functions, and then prove that
there is no coupling in the effective equations
between the two different waves both in the
scalar and the system cases. To be precise, we
prove that there is no coupling unless ω1 =ω2
and (k − m) �Λ ∈ 2πZd, whereΛ= (λ1λ2 . . . λd) is the
periodicity cell of the medium and for any two vectors
a = (a1, a2, . . . , ad), b = (b1, b2, . . . , bd) ∈ Rd, the product
a � b is defined to be the vector (a1b1, a2b2, . . . , adbd).
This last condition forces the carrier waves to be
equivalent Bloch waves meaning that the coupling
constants in the system of effective equations vanish.
We use two-scale analysis and some new weak-
convergence type lemmas. The analysis is not at the
same level of rigour as that of Allaire and co-workers
who use two-scale convergence theory to treat the
problem, but has the advantage of simplicity which
will allow it to be easily extended to the case where
there is degeneracy of the Bloch eigenvalue.
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1. Introduction
Periodic materials, or at least almost periodic materials abound in nature: crystals are one of
the most obvious, and prevalent, examples. Opals are another example, which consist of tiny
spherical particles of silica arranged in a face-centred cubic array, which act like a diffraction
grating to create the beautiful colours we see [1,2]. A sea mouse has a wonderful iridescence which
is caused by a hexagonal array of voids in a matrix of chitin [3]. Recently, it has been discovered
that chameleons change their colour by adjusting the lattice spacing of guanine nanocrystals
in their skins [4]. The word honeycomb is associated with bees, and the giant’s causeway in
Ireland consists of a hexagonal array of basalt columns. Many patterns of tiles are periodic.
Beautiful periodic structures, now also can be tailor made using three-dimensional lithography
and printing techniques [5–9] and of course two-dimensional periodic structures are even easier
to produce [10–12].

There has of course been tremendous interest in the properties of periodic structures. The
electronic properties of periodic structures were extensively studied (see [13]), it being realized
that the band structure of the dispersion diagram for Schrödinger’s equation is intimately
connected with whether a material is a conductor, insulator or semiconductor, and type of
semiconductor (according to whether there was a direct gap or indirect gap). Then came the
realization that the same concepts of dispersion diagrams and band gaps also apply at a
macroscopic scale, to electromagnetic and elastic wave propagation through periodic composite
materials [14–18]). This lead to explosive growth in the area. An immense bibliography on
the subject, with over 12 000 papers, approximately doubling every 2 years since 1987 (until
2008, which was when the bibliography ceased being updated) was complied by Dowling (see
http://www.phys.lsu.edu/∼jdowling/pbgbib.html). For an excellent review of the subject see
the book by Joannopoulos et al. [19] (see also Gorishnyy et al. [20] on acoustic band gap materials).

By suitably adapting the high-frequency homogenization approach of Craster et al. [21], we
prove that for different travelling waves in periodic medium, the effective equations in the bulk of
the material for the function that modulates the wave do not couple, i.e. waves having wavevectors
k/ε do not couple with waves having wavevectors m/ε: here ε is a small parameter characterizing
the length of the unit cell of periodicity, and we are looking at the homogenization limit ε→ 0.
Thus, the scaling is such that the short-scale oscillations in the waves are on the same scale as
the length of the unit cell, in contrast with the usual low-frequency homogenization where the
wavelength is much larger than the size of the unit cell. We assume, for simplicity, in this first
analysis that the Bloch equations are non-degenerate at these wavevectors. A treatment without
this assumption has been given by Brassart & Lenczner [22] for the wave equation. Then to
leading order we find that for the waves (k,ω1) and (m,ω2), the field (or potential) that solves
the equations takes the form

u(t, x) ≈ f (1)
0 (t, x)V(1)

0

(x
ε

)
e−i(k·(x/ε)−ω1(t/ε)) + f (2)

0 (t, x)V(2)
0

(x
ε

)
e−i(m·(x/ε)−ω2(t/ε)), (1.1)

here V(1)
0 (x/ε) e−i(k·(x/ε)−ω1(t/ε)) and V(2)

0 (x/ε) e−i(m·(x/ε)−ω2(t/ε)) are the Bloch solutions at the

wavevectors k/ε and m/ε, (in which V(1)
0 (x/ε) and V(2)

0 (x/ε) have the same unit cell of periodicity

as the periodic material we are considering) and the modulating functions f (1)
0 (t, x) and f (2)

0 (t, x)
satisfy the homogenized equation

∇g · ∇f (�)
0 (t, x) + ∂f (�)

0 (t, x)
∂t

= 0, �= 1, 2 (1.2)

and ω/ε = g(k/ε) is the dispersion relation. This effective equation admits as solutions, the
expected travelling waves

f (1)
0 (t, x) = h1(v1 · x − t) and f (2)

0 (t, x) = h2(v2 · x − t), (1.3)

here h1 and h2 are arbitrary functions and v1 and v2 are the group velocities which satisfy
vi · ∇g = 1. In the time harmonic case, where the waves are not travelling the first results on

http://www.phys.lsu.edu/~jdowling/pbgbib.html
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high-frequency homogenization are those of Birman & Suslina [23], which provides a rigorous
justification of high-frequency homogenization. That paper is difficult to follow unless one is
an expert in spectral theory, so in the appendix, we make the connection between the paper
of Birman & Suslina [23] and that of Craster et al. [21]. The approach of Craster et al. [21] is
straightforward and very reminiscent of the standard formal approach to homogenization (see
Bensoussan et al. [24], who furthermore homogenize a Schrodinger equation at high frequency).
One treats the large and small length scales as independent variables X and ξ that are coupled
when one replaces in the governing equations any derivative ∂/∂xj with ∂/∂Xj + (1/ε)∂/∂ξj.
This approach is not rigorous, so will need to be supplemented at some stage, by either a
rigorous analysis, or by supporting numerical calculations. Hoefer & Weinstein [25] have done
a careful rigorous analysis, with error estimates, for high-frequency homogenization applied to
the Schrödinger equation, where they keep higher terms in the expansion.

It is also to be emphasized that there has been extensive work by Allaire and co-workers in
this area using the ideas of two-scale convergence introduced by Nguetseng [26] and Allaire [27]
particularly for the acoustic equation

∇ ·
(

a
(x
ε

)
∇u
)

= b
(x
ε

) ∂2u
∂t2 , x = (x1, x2, . . . , xd) ∈ Rd, (1.4)

assuming ellipticity for the tensor a, and positivity for the scalar b [22,28,29]. These assumptions
are also needed in our analysis to ensure unique solvability of the Bloch equation. The work
of Allaire et al. [29] goes further than us in that they prove the enveloping function converges
to that predicted by the two-scale analysis, and that they prove the enveloping function obeys
a Schrödinger type equation as expected from the paraxial approximation. At the level of our
analysis the dispersion of the enveloping function is absent, so further work needs be done to
account for it. We also emphasize that there is much older work in Bensoussan et al. [24] on
high-frequency homogenization of the Schrödinger equation. Particularly, we draw the reader’s
attention to the effective equations (4.33) and the formulae for the effective moduli both expressed
in terms of the derivatives of the dispersion formula and in terms of the solution to a cell
problem (see the discussion at the bottom of p. 352). In our analysis, we treat electromagnetism
and elasticity in one single stroke in §5, and we treat a general class of equations which
includes the Scrödinger equation in §6. Again we note that Allaire & Piatnitski [30] treated the
Schrödinger equation and Allaire et al. [31] treated Maxwell’s equations using the tool of two-scale
convergence.

Although much of the work discussed thus far is analytical, it is useful to note that these
types of effective media have been tested numerically and applied to interpret and design
experiments [32]. The most-striking behaviour occurs when the effective equations which
describe the macroscopic modulation of the waves are hyperbolic rather than elliptic: then
the radiation concentrates along the characteristic lines and the star-shaped patterns predicted
by high-frequency homogenization are seen in full finite-element simulations (see the figures
in [33,34]).

The main factor which influences the macroscopic equations one gets is the degeneracy of the
wave functions associated with the expansion point (see [35]). The simplest case, and the one
first treated by Birman & Suslina [23] and Craster et al. [21], is when there is no degeneracy. For
simplicity, and because this is the generic case, we will also assume there is no degeneracy. The
next section is then the homogenization of a model equation.

2. A scalar-valued wave travelling in a periodic medium
Our first aim is to homogenize the model equation

∇ ·
(

a
(x
ε

)
∇u
)

= b
(x
ε

) ∂2u
∂t2 , x = (x1, x2, . . . , xd) ∈ Rd, (2.1)



4

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160066

...................................................

where a : Rd → Rd×d is a symmetric matrix and b : Rd → R are also cell-periodic with the same cell
of periodicity. We assume, for simplicity, that the unit cell is a rectangular prism, though of course
we expect the analysis to go through for any Bravais lattice. This is the equation of acoustics when
u is the pressure, b(x/ε) is inverse of the bulk modulus of the fluid and a(x/ε) is the inverse of the
density, which we allow to be anisotropic (as may be the case in metamaterials).

We rewrite the equation in the form⎛
⎝ ∂

∂t
∇

⎞
⎠ · C

⎛
⎝ ∂

∂t
∇

⎞
⎠u(x, t) = 0, where C =

(
−b 0
0 a

)
. (2.2)

Denoting the new variable x0 = t and

∇̄ =
⎛
⎝ ∂

∂x0

∇

⎞
⎠ ,

we get the equation

∇̄ · (C∇̄u(x, t)) = 0. (2.3)

As is standard in homogenization theory we replace ∇̄ by ∇̄X + (1/ε)∇̄ξ , where X =
(x0, x1, x2, . . . , xd) is the slow variable and ξ = (ξ0, ξ1, ξ2, . . . , ξd) = X/ε is the fast variable. The
motivation for this is that if we have a function g(x, x/ε) = g(X, ξ ), then ∇̄ acting on g(x, x/ε) gives
the same result as ∇̄X + (1/ε)∇̄ξ acting on g(X, ξ ), with ξ and X treated as independent variables.
Thus, we are scaling space and time in the same way as we believe is appropriate when the
dispersion diagram is such that ∂ω/∂k has a non-zero finite value. At points where ∂ω/∂k is zero
we do not believe this is an appropriate scaling as indicated by Birman & Suslina [23] and later
by Craster et al. [21]. Thus, we assume that we are in the case when ∂ω/∂k has a non-zero finite
value and, therefore, making this replacement we arrive at

∇̄ξ · (C(ξ )∇̄ξu(X, ξ )) + ε∇̄ξ · (C(ξ )∇̄Xu(X, ξ ))

+ ε∇̄X · (C(ξ )∇̄ξu(X, ξ )) + ε2∇̄X · (C(ξ )∇̄Xu(X, ξ )) = 0. (2.4)

Now we choose to homogenize waves which on the short length scale look like Bloch solutions,
with frequencies ω1 and ω2 and wavevectors k and m, but which are modulated on the long
length scale. Our aim is to find the macroscopic equation satisfied by the modulation. We assume
that the wavenumber-frequency pairs (k,ω1) and (m,ω2) belong to the dispersion diagram. We
will prove later in §3 that any two different waves do not interact (do not couple).

We have, u(X, ξ ) is the sum of two waves,

u(X, ξ ) = u(1)(X, ξ ) + u(2)(X, ξ ), (2.5)

where for fixed X the functions u(1)(X, ξ ), u(2)(X, ξ ) as functions of ξ are Bloch functions, oscillating
at frequencies ω1 and ω2 and having wavevectors k and m, respectively. Thus, the functions
e−i(k·ξ ′−ω1ξ0)u(1)(X, ξ ) and e−i(m·ξ ′−ω2ξ0)u(1)(X, ξ ) are periodic in ξ ′ = (ξ1, ξ2, . . . , ξd) and independent
of ξ0. We seek a solution of equation (2.4) in the form

u(i)(X, ξ ) = u(i)
0 (X, ξ ) + εu(i)

1 (X, ξ ) + ε2u(i)
2 (X, ξ ) + · · · , i = 1, 2. (2.6)

Plugging in the expressions of u(1)(X, ξ ) and u(2)(X, ξ ) in (2.4), we get at the zeroth order,

2∑
i=1

∇̄ξ · (C(ξ )∇̄ξu(i)
0 (X, ξ )) = 0. (2.7)

From the uniqueness of the solutions to the Bloch equations, up to a multiplicative complex
constant, equation (2.7) implies that u(1)

0 (X, ξ ) and u(2)
0 (X, ξ ) can be separated in the fast and slow
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variables, i.e.

u(1)
0 (X, ξ ) = f (1)

0 (X)U(1)
0 (ξ ) and u(2)

0 (X, ξ ) = f (2)
0 (X)U(2)

0 (ξ ), (2.8)

where U(1)
0 (ξ ) and U(2)

0 (ξ ) solve the Bloch equations

∇̄ξ · (C(ξ ′)∇̄ξU(i)
0 (ξ )) = 0, i = 1, 2 (2.9)

and f (1)
0 (X) and f (2)

0 (X) are the modulating functions whose governing equation we seek to find.

It is then clear that U(1)
0 (ξ ) and U(2)

0 (ξ ) have the form

U(1)
0 (ξ ) = V(1)

0 (ξ ′) e−i(k·ξ ′−ω1ξ0) and U(2)
0 (ξ ) = V(2)

0 (ξ ′) e−i(m·ξ ′−ω2ξ0), (2.10)

where V(1)
0 and V(2)

0 are cell-periodic functions of ξ ′ solving

ω2
1b(ξ ′)V(1)

0 (ξ ′) + (−ik + ∇̄ξ ′ ) · a(ξ ′)(−ik + ∇̄ξ ′ )V(1)
0 (ξ ′) = 0

and ω2
2b(ξ ′)V(2)

0 (ξ ′) + (−im + ∇̄ξ ′ ) · a(ξ ′)(−im + ∇̄ξ ′ )V(2)
0 (ξ ′) = 0.

⎫⎬
⎭ (2.11)

At the first order, we get the following equation

2∑
i=1

∇̄ξ · (C(ξ ′)∇̄ξu(i)
1 (X, ξ ))

= −
2∑

i=1

[
∇̄ξ · (C(ξ ′)∇̄Xu(i)

0 (X, ξ )) + ∇̄X · (C(ξ ′)∇̄ξu(i)
0 (X, ξ ))

]
. (2.12)

Next, we take the complex conjugate of equations in (2.9) to get

∇̄ξ · (C(ξ ′)∇̄ξU(i)∗
0 (ξ )) = 0, i = 1, 2, (2.13)

where z∗ denotes the complex conjugate of z. Note that equation (2.12) can be written in the
following way

2∑
l=1

∇̄ξ · (C(ξ ′)∇̄ξu(l)
1 (X, ξ ))

= −
2∑

l=1

d∑
i,j=0

∂f (l)
0 (X)
∂Xj

(
2Cij(ξ

′)
∂U(l)

0 (ξ )
∂ξi

+ ∂Cij(ξ ′)
∂ξi

U(l)
0 (ξ )

)
. (2.14)

Assume now Q is a large rectangular cell in the coordinate system ξ . Following the idea ([24,

p. 307]; see also Craster et al. [21]), we multiply equation (2.14) by U(p)∗
0 , for p = 1, 2 and taking the

average over Q of both sides of the obtained identity we get

1
Q

∫
|Q|

2∑
l=1

U(p)∗
0 ∇̄ξ · (C(ξ ′)∇̄ξu(l)

1 (X, ξ )) dξ

=
2∑

l=1

d∑
i,j=0

∂f (l)
0 (X)
∂Xj

1
|Q|

∫
Q

U(p)∗
0

(
2Cij(ξ

′)
∂U(l)

0 (ξ )
∂ξi

+ ∂Cij(ξ ′)
∂ξi

U(l)
0 (ξ )

)
dξ , (2.15)

where Q =∏d
i=0[0, ai] and |Q| is the volume of Q.
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Let us show the left-hand side of (2.15) goes to zero when Q → ∞ by which we mean ai → ∞
for i = 0, 1, 2, . . . , d. Indeed, after an integration by parts, we get

∫
Q

2∑
l=1

U(p)∗
0 ∇̄ξ · (C(ξ ′)∇̄ξu(l)

1 (X, ξ )) dξ

=
∫
∂Q

2∑
l=1

U(p)∗
0 n · (C(ξ ′)∇̄ξu(l)

1 (X, ξ )) dS −
∫

Q

2∑
l=1

∇̄ξU(p)∗
0 C(ξ ′)∇̄ξu(l)

1 (X, ξ ) dξ , (2.16)

where n is the outward unit normal to ∂Q. On the other hand, we have by multiplying (2.13) by
u(l)

1 (X, ξ ) and integrating the obtained equality over Q by parts, we get

∫
∂Q

2∑
l=1

u(l)
1 (X, ξ )n · (C(ξ ′)∇̄ξU(p)∗

0 (ξ )) dS −
∫

Q

2∑
l=1

∇̄ξU(p)∗
0 C(ξ ′)∇̄ξu(l)

1 (X, ξ ) dξ = 0. (2.17)

Thus by combining (2.16) and (2.17), we get

∫
Q

2∑
l=1

U(p)∗
0 ∇̄ξ · (C(ξ ′)∇̄ξu(l)

1 (X, ξ )) dξ

=
∫
∂Q

2∑
l=1

u(l)
1 (X, ξ )n · (C(ξ ′)∇̄ξU(p)∗

0 (ξ )) dS +
∫
∂Q

2∑
l=1

U(p)∗
0 n · (C(ξ ′)∇̄ξu(l)

1 (X, ξ )) dS. (2.18)

Taking into account the continuity and the periodic structure of the functions ∇̄ξu(l)
1 , ∇̄ξU(p)∗

0 and
the tensor C(ξ ′), we have the estimate∣∣∣∣∣

∫
Q

2∑
l=1

U(p)∗
0 ∇̄ξ · (C(ξ ′)∇̄ξu(l)

1 (X, ξ )) dξ

∣∣∣∣∣≤ MHd−1(∂Q),

where Hd−1(∂Q) is the d − 1 dimensional Hausdorff measure in Rd, i.e. it is the surface measure,
and M is a sufficiently large constant. Our claim follows now from the obvious equality

lim
Q→∞

Hd−1(∂Q)
|Q| = 0.

In other words, this condition over the supercell Q, which is the analogue of the solvability
condition that was over a unit cell in Craster [21], gives us the following equations:

2∑
l=1

d∑
j=0

d(l)
jp

∂f (l)
0 (X)
∂Xj

= 0, for p = 1, 2, (2.19)

where the coefficients entering these homogenized equations are given by

d(l)
jp = lim

Q→∞

d∑
i=0

1
|Q|

∫
Q

U(p)∗
0

(
2Cij(ξ

′)
∂U(l)

0 (ξ )
∂ξi

+ ∂Cij(ξ ′)
∂ξi

U(l)
0 (ξ )

)
dξ ,

j = 0, 1, . . . , d, p, l = 1, 2. (2.20)

As will be seen in the §3, the formula (2.20) can be significantly simplified.

3. Wave coupling analysis
In this section, we consider the following question: is there interaction between any two different
waves? Let us look to see if there is interaction in the homogenized equations between waves
corresponding to points (k,ω1) and (m,ω2) on the dispersion diagram. To that end, we must
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analyse the coupling coefficients in the homogenized equations. We have seen in §2 that the
homogenized equations are given by

2∑
l=1

d∑
j=0

d(l)
jp
∂f (l)

0 (X)
∂Xj

= 0, for p = 1, 2, (3.1)

where the coefficients entering these homogenized equations are given by

d(l)
jp = lim

Q→∞

d∑
i=0

1
|Q|

∫
Q

U(p)∗
0

(
2Cij(ξ

′)
∂U(l)

0 (ξ )
∂ξi

+ ∂Cij(ξ ′)
∂ξi

U(l)
0 (ξ )

)
dξ ,

j = 0, 1, . . . , d, p, l = 1, 2. (3.2)

Furthermore, we denote by Λ=∏d
i=1[0, λi] the cell of periodicity and Λdiag = (λ1, λ2, . . . , λd)-ist

diagonal. Given d-vectors, k = (k1, k2, . . . , kd) and m = (m1, m2, . . . , md) denote

k � m = (k1m1, k2m2, . . . , kdmd). (3.3)

The next theorem gives a necessary condition for coupling between the waves u1 and u2.

Theorem 3.1. For the waves (k,ω1) and (m,ω2) to couple, it is necessary, that ω1 =ω2 and
(k − m) �Λdiag/2π ∈ Zd.

Proof. The proof of the theorem is based on lemma B.5. We have to show that the coefficients d(l)
jp

vanish for l �= p, if one of the conditions in the theorem is not satisfied. It is clear that the integrand
of d(l)

jp has the form e±i(ω1−ω2)ξ0 W(ξ ′), thus the integral over the over the volume of |Q| will vanish

by lemma B.5, as the coefficient of the exponent e±i(ω1−ω2)ξ0 does not depend on ξ0. On the other
hand, if ω1 =ω2, then d(l)

jp will have the form e±i(k−m)ξ ′
W(ξ ′), where W(ξ ′) is a periodic function

in ξ ′ with the cell period of that of the medium. Therefore, again, an application of lemma B.5
completes the proof. �

Theorem 3.2. Any two different waves (k,ω1) and (m,ω2) do not couple.

Proof. By theorem 3.1, for the waves (k,ω1) and (m,ω2) to couple one must have ω1 =ω2
and (k − m) �Λdiag/2π ∈ Zd. We can without loss of generality assume, making a change of
variables if necessary, that the cell of periodicity Λ of the medium is an n-dimensional unit cube,
i.e. λi = 1, for i = 1, 2, . . . , d. Thus, we have (k − m) �Λdiag/2π = k − m/2π , thus the condition
(k − m) �Λdiag/2π ∈ Zd yields ki − mi = 2πqi, for i = 1, 2, . . . , d and some qi ∈ Z. The last set of
equations and the fact that the medium cell of periodicity is a unit cube imply the wave u1 is a
scalar multiple of u2, which completes the proof. �

Remark 3.3. For the coefficients d(l)
jp , one has

d(l)
jp = 0, if l �= p,

due to the non-coupling of different waves.

Combining now the above results with the result in §2, we arrive at the following:

Theorem 3.4. The effective equation associated to (2.1) for the wave (k,ω) is given by

d∑
j=0

dj
∂f0(X)
∂Xj

= 0, (3.4)

where the coefficients entering this homogenized equation are given by

dj = lim
Q→∞

d∑
i=0

1
|Q|

∫
Q

U∗
0

(
2Cij(ξ

′)
∂U0(ξ )
∂ξi

+ ∂Cij(ξ ′)
∂ξi

U0(ξ )

)
, j = 0, 1, . . . , d (3.5)

and U0 solves the Bloch equation (2.9).
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The next theorem gives a simplification of formula (3.5).

Theorem 3.5. The formula (3.5) can be simplified to

dj =
d∑

i=0

1
|Λ|

∫
Λ

U∗
0

(
2Cij(ξ

′)
∂U0(ξ )
∂ξi

+ ∂Cij(ξ ′)
∂ξi

U0(ξ )

)
, j = 0, 1, . . . , d (3.6)

and U0 solves the Bloch equation (2.9).

Proof. The proof is a direct consequence of lemma B.5. Recalling the formula (2.10) for the
function U0(ξ ) and plugging in the expression of U0(ξ ) into the formula (3.5) and calculating the
partial derivatives, all the exponents cancel out and one is left with a function f (ξ ′) integrated over
a time–space supercell Q. The integration in time is balanced by the denominator |Q| and thus we
are left with the integral of f (ξ ′) over a space supercell. Finally, an application of lemma B.5 with
the value ξ = 0 completes the proof. �

4. The case of vector-valued waves
In this section, we allow for vector potentials u having n components and we consider a system
of n equations in d dimensions:

∇ ·
(

a
(x
ε

)
∇u
)

= b
(x
ε

) ∂2u
∂t2 , x = (x1, x2, . . . , xd) ∈ Rd, (4.1)

which reads in components as follows:

d∑
j=1

∂

∂xj

⎛
⎝ n∑

k=1

d∑
l=1

aijkl

(x
ε

) ∂uk

∂xl

⎞
⎠=

n∑
k=1

bik

(x
ε

) ∂2uk

∂t2 , i = 1, 2, . . .n and x ∈ Rd, (4.2)

where a is a fourth-order tensor that has the usual symmetry aijkl = aklij, b ∈ Rn×n is a symmetric
matrix and u : Rd → Rn is a vector field. It is assumed that a and b are cell-periodic. These
equations appear most naturally in the context of elastodynamics, where u(x) is identified as the
displacement field, a(x) as the elasticity tensor, having the additional symmetries aijkl = ajikl = aijlk,
and b(x) is the (possibly anisotropic) density. The three-dimensional electromagnetic equations of
Maxwell can also be expressed in this form [36] with u(x) representing the electric field, b(x) the
dielectric tensor and the components of a being related to the magnetic permeability tensor μ(x)
through the equations,

aijkl = −eijpeklq{μ−1}pq, (4.3)

in which eijp is the completely antisymmetric Levi–Civita tensor, taking values +1 or −1 according
to whether ijp is an even or odd permutation of 123 and being zero otherwise.

Like in §2, we rewrite system (4.2) in the following form⎛
⎝ ∂

∂t
∇

⎞
⎠ · C

⎛
⎝ ∂

∂t
∇

⎞
⎠u(x, t) = 0, where C = (Cijkl), 1 ≤ i, k ≤ n, 0 ≤ j, l ≤ d (4.4)

and the tensor C derives from the tensor a and the matrix b as follows:

Cijkl = 0 if jl = 0, j + l ≥ 1,

Ci0k0 = −bik if 1 ≤ i, k ≤ n,

and Cijkl = aijkl if 1 ≤ i, j, k, l.

⎫⎪⎪⎬
⎪⎪⎭ (4.5)

Remembering that t = x0, we arrive at

∇̄ · (C∇̄u(x, t)) = 0. (4.6)
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Replacing now ∇̄ with ∇̄X + (1/ε)∇̄ξ , where X = (X0, X1, . . . , Xd) is the slow variable and
ξ = (ξ0, ξ1, . . . , ξd) is the fast variable, we arrive at the system of equations

∇̄ξ · (C(ξ )∇̄ξu(X, ξ )) + ε∇̄ξ · (C(ξ )∇̄Xu(X, ξ ))

+ ε∇̄X · (C(ξ )∇̄ξu(X, ξ )) + ε2∇̄X · (C(ξ )∇̄Xu(X, ξ )) = 0. (4.7)

We adopt the same strategy as in §2, but with a slight difference: as we already know, that there
is no coupling between two different waves, we seek the solution to (4.7) in the form of one wave
(rather than the two of (2.5)) corresponding to the pair (m,ω) on the dispersion diagram:

u(X, ξ ) = u(X, ξ ), (4.8)

where the vector e−i(m·ξ ′−ωξ0)u(X, ξ ) is periodic in ξ ′ = (ξ1, ξ2, . . . , ξd) and independent of ξ0. Next,
we assume that the vector u has the expansion

u(X, ξ ) = u0(X, ξ ) + εu1(X, ξ ) + ε2u2(X, ξ ) + · · · . (4.9)

At the zeroth order, we get the system

∇̄ξ · (C(ξ )∇̄ξu0(X, ξ )) = 0.

This has the solution u0(X, ξ ) = f0(X)U0(ξ ), where f0 is a scalar and U0 : Rd+1 → Rn is a vector such
that e−i(m·ξ ′−ωξ0)U0(ξ ) is periodic in ξ ′ = (ξ1, ξ2, . . . , ξd) and independent of ξ0, and that the vector
U0 solves the system of the Bloch equations:

∇̄ξ · (C(ξ )∇̄ξU0(ξ )) = 0. (4.10)

At the first order, we get the following system

∇̄ξ · (C(ξ )∇̄yξu1(X, ξ )) = −[∇̄ξ · (C(ξ )∇̄Xu0(X, ξ )) + ∇̄X · (C(ξ )∇̄ξu0(X, ξ ))]. (4.11)

We can then calculate

∇̄X(f0(X)U0(ξ )) =
(
∂f0(X)
∂Xl

Uk
0(ξ )

)
lk

,

thus

∇̄X · (C(ξ )∇̄ξu0(X, ξ )) =
d∑

j=0

∂

∂ξj

⎛
⎝ d∑

l=0

n∑
k=1

Cijkl(ξ )
∂f0(X)
∂Xl

Uk
0(ξ )

⎞
⎠

=
d∑

j,l=0

∂f0(X)
∂Xl

n∑
k=1

(
∂Cijkl(ξ )

∂ξj
Uk

0(ξ ) + Cijkl(ξ )
∂Uk

0(ξ )
∂ξj

)
. (4.12)

We have similarly

∇̄X · (C(ξ )∇̄ξu0(X, ξ )) =
d∑

j,l=0

∂f0(X)
∂Xl

n∑
k=1

Cilkj(ξ )
∂Uk

0(ξ )
∂ξj

, (4.13)

thus we finally obtain

∇̄ξ · (C(ξ )∇̄ξu1(X, ξ ))

=
d∑

j,l=0

∂f0(X)
∂Xl

n∑
k=1

(
∂Cijkl(ξ )

∂ξj

Uk
0(ξ ) + (Cijkl(ξ ) + Cilkj(ξ ))

∂Uk
0(ξ )
∂ξj

)
, i = 1, 2, . . . , n. (4.14)

Proceeding like in §2, we multiply the system (4.14) by the field U∗
0 and then integrate the obtained

identity over the cell Q to eliminate the vector u1. This gives the following result:
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Theorem 4.1. By the analogy of theorem 3.5, the system (4.1) homogenizes to the following equation:

d∑
l=0

dl
∂f0(X)
∂Xl

= 0, (4.15)

where the coefficients dl entering the homogenized equation are given by the formulae:

dl = 1
|Λ|

∫
Λ

d∑
j=0

n∑
i,k=1

[
∂Cijkl(ξ )

∂ξj

Uk
0(ξ )Ui∗

0 (ξ )

+ (Cijkl(ξ ) + Cilkj(ξ ))
∂Uk

0(ξ )
∂ξj

Ui∗
0 (ξ )

]
dξ , l = 1, 2, . . . , d. (4.16)

5. A general case applicable to the Schrödinger equation
Let x = (x0, x1, . . . , xd) and x′ = (x1, x2, . . . , xd). Here x0 could represent the time, and x′ the
remaining spatial coordinates. We aim to homogenize the problem(

G
∇ · G

)
= Lε

(
x′

ε

)(∇u
u

)
, (5.1)

where u(x) : Rd+1 → R is the unknown, Lε(x′) : Rd → R(d+2)(d+2) is a Hermitian matrix that is cell-
periodic in x′ ∈ Rd.

To see the connection with the Schrödinger equation, we assume ψ(x) denotes the
wave function, where x = (x0, x′) and x0 = t denote the time coordinate while x′ the spatial
coordinate, V(x′) the time independent electrical potential, Φ(x′) = (Φ1(x′),Φ2(x′),Φ3(x′)) the time
independent magnetic potential, with b = ∇ × Φ the magnetic induction, e the charge on the
electron, and m its mass. Using the Lorentz gauge, and noting that V(x′) is independent of time,
Φ(x′) can be taken to have zero divergence. Let us also choose units so that h̄, which is Planck’s
constant divided by 2π , has the value 1. We assume both V(x′) and Φ(x′) are periodic functions
of x′ with the same unit cell. Following Milton [37], the Schrödinger equation in a magnetic field
can be written in the form

⎛
⎜⎜⎝

qt

qx
∂qt

∂t
+ ∇′ · qx

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 − i
2

0
−I
2m

ieΦ

2m

+ i
2

−ieΦ

2m
−eV

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
∂ψ

∂t
∇′ψ
ψ

⎞
⎟⎟⎠ , (5.2)

where qt(t, x) is a scalar field and qx(t, x′) a vector field, and where ∇′, and ∇′· are the gradient
and divergence with respect to x′. Expanding out this in matrix form gives

qt = − i
2
ψ ,

qx = − 1
2m

∇′ψ + ieΦ

2m
ψ ,

and
∂qt

∂t
+ ∇′ · qx = − (∇′)2ψ

2m
+ i∇′ · (eΦψ)

2m
− i

2
∂ψ

∂t
= − ieΦ

2m
∇′ψ + i

2
∂ψ

∂t
− eVψ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.3)

where (∇′)2 is the Laplacian with respect to x′. Upon eliminating qx and qt, these imply the
familiar form for Schrödinger’s equation in a magnetic field:

i
∂ψ

∂t
= 1

2m
[i∇′ + eΦ]2ψ + eVψ . (5.4)
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Setting G = (qt, qx), ∇ = (∂/∂t, ∇′) and u =ψ , we see that Schrödinger’s equation in a magnetic
field can be expressed in the form(

G
∇ · G

)
= L(x′)

(
∇u
u

)
, with L(x′) =

(
a b(x′)

(b(x′))T∗ c(x′)

)
, (5.5)

where

a =
⎛
⎝0 0

0
−I
2m

⎞
⎠ , b(x′) =

⎛
⎜⎜⎝

− i
2

ieΦ(x′)
2m

⎞
⎟⎟⎠ , c(x′) = −eV(x′). (5.6)

With appropriate scaling, this is of the form (5.1).
Equation (5.1) will be called a constitutive relation, as it relates u and its gradient ∇u to G

and its divergence ∇ · G through the matrix Lε . Let X = (X0, X1, . . . , Xd) be the slow variable and
let ξ = X/ε be the fast variable. Furthermore, we denote ξ ′ = (ξ1, ξ2, . . . , ξd). We assume that the
matrix Lε has the form

Lε =

⎛
⎜⎜⎝

a(ξ ′)
b(ξ ′)
ε

(b(ξ ′))T∗

ε

c(ξ ′)
ε2

⎞
⎟⎟⎠ ,

where we assume that a ∈ R(d+1)×(d+1) is a real symmetric matrix, b ∈ C(d+1)×1 is a complex
divergence free field and c ∈ R is a real function. With our choice of the Lorentz gauge, b(x) is
divergence free for the Schrödinger equation in a magnetic field.

Next, we expand u and G in powers of ε :

G = G0 + εG1 + ε2G2 + · · ·
and u = u0 + εu1 + ε2u2 + · · · .

⎫⎬
⎭ (5.7)

After replacing ∇ by ∇X + (1/ε)∇ξ and equating the coefficients of the same power of ε on both
sides of (5.1), we obtain the following equations in orders of ε−1 and ε0, respectively:

— [Order ε−1].

G0(X, ξ ) = a(ξ ′)∇ξu0(X, ξ ) + b(ξ ′)u0(X, ξ )

∇ξ · G0 = c(ξ ′)u0(X, ξ ) + (b(ξ ′))∗∇ξu0(X, ξ )

from which we get the Bloch equation for u0 :

∇ξ · (a(ξ ′)∇ξu0) + (b(ξ ′) − (b(ξ ′))∗) · ∇ξu0 − c(ξ ′)u0 = 0. (5.8)

— [Order ε0]. In the zeroth order, we get the following system

G1(X, ξ ) = a(ξ ′)(∇Xu0(X, ξ ) + ∇ξu1(X, ξ )) + b(ξ ′)u1(X, ξ )

∇x · G0 + ∇ξ · G1 = (b(ξ ′))∗(∇xu0(X, ξ ) + ∇ξu1(X, ξ )) + c(ξ ′)u1(X, ξ ),

from where we get by eliminating G0 and G1,

∇ξ · (a(ξ ′)∇ξu1) + (b(ξ ′) − (b(ξ ′))∗) · ∇ξu1 − c(ξ ′)u1

= −∇X · (a(ξ ′)∇ξu0) − ∇ξ · (a(ξ ′)∇xu0) − ∇X · (b(ξ ′)u0) + (b(ξ ′))∗ · ∇Xu0. (5.9)

Next we assume, uj(X, ξ ) is such that the functions ei(kξ ′−ωξ0)uj(X, ξ ) are periodic in ξ ′ and
do not depend on ξ0. We, furthermore, assume that u0(X, ξ ) solves the Bloch equation
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(5.8) and thus is separable in the fast and slow variables, namely we get

u0(X, ξ ) = U0(ξ ′)f0(X). (5.10)

We have that

− ∇x · (a(ξ ′)∇ξu0) − ∇ξ · (a(ξ ′)∇xu0) − ∇X · (b(ξ ′)u0) + (b(ξ ′))∗ · ∇Xu0 =

= −
d∑

i,j=0

∂f0(X)
∂Xj

(
2Cij(ξ

′)
∂U0(ξ )
∂ξi

+ ∂Cij(ξ ′)
∂ξi

U0(ξ ) − (bj(ξ
′) + (bj(ξ

′))∗)U0

)
.

Thus, we get combining with (5.10),

∇ξ · (a(ξ ′)∇ξu1) + (b(ξ ′) − (b(ξ ′))∗) · ∇ξu1 − c(ξ ′)u1

= −
d∑

i,j=0

∂f0(X)
∂Xj

(
2Cij(ξ

′)
∂U0(ξ )
∂ξi

+ ∂Cij(ξ ′)
∂ξi

U0(ξ ) − (bj(ξ
′) + (bj(ξ

′))∗)U0

)
. (5.11)

Next, we multiply equation (5.11) by U∗
0 and integrate over Q̄ to eliminate u1 and obtain

the effective equation. We proceed by the analogy of (2.14)–(2.20). First, by taking the
complex conjugate of Bloch equation (5.8), we get

∇ξ · (a(ξ ′)∇ξU∗
0) − (b(ξ ′) − (b(ξ ′))∗) · ∇ξU∗

0 − c(ξ ′)U∗
0 = 0, (5.12)

thus by multiplying equation (5.12) by u1 and integrating over a rectangle Q by parts and
using the divergence-free property of b, we get

0 =
∫

Q
u1(∇ξ · (a(ξ ′)∇ξU∗

0) − (b(ξ ′) − (b(ξ ′))∗) · ∇ξU∗
0 − c(ξ ′))U∗

0) dξ

=
∫

Q
U∗

0(∇ξ · (a(ξ ′)∇ξu1) + U∗
0(b(ξ ′) − (b(ξ ′))∗) · ∇ξu1 − c(ξ ′)u1)dξ

+ surface term, (5.13)

thus by the analogy of (2.14)–(2.20), we get

lim
Q→∞

1
|Q|

∫
Q

U∗
0(∇ξ · (a(ξ ′)∇ξu1) + U∗

0(b(ξ ′) − (b(ξ ′))∗) · ∇ξu1 − c(ξ ′)u1) dξ = 0. (5.14)

Finally, combining (5.14) and (5.11) we arrive at the effective equation

d∑
j=0

dj
∂f0(X)
∂Xj

= 0, (5.15)

where by the analogy of theorem 3.5, one has

dj =
d∑

i=0

1
|Λ|

∫
Λ

U∗
0

(
2Cij(ξ

′)
∂U0(ξ )
∂ξi

+ ∂Cij(ξ ′)
∂ξi

U0(ξ ) − (bj(ξ
′) + (bj(ξ

′))∗)U0

)
dξ . (5.16)

6. Simplifying the effective equation
In this section, we relate the dispersion relation ω= g(k) and the effective coefficients.
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(a) The scalar case
Assume we have the effective equation (3.4) for a single wave (k,ω). Identifying X0, X1, . . .Xd
with t, x1, . . . xd, we can rewrite it in the following way:

a1 · ∇f0(t, x) + b1
∂f0(t, x)
∂t

= 0. (6.1)

Assume ε > 0 is small enough, and suppose the pair (k + εδk,ω + εδω) also lies on the dispersion
relation. Since g(k + εδk) = g(k) + εδk · ∇g(k) + O(ε2), we have δω= δk · ∇g(k) + O(ε). We know
one solution of the wave equation is the Bloch solution

u(x, t) = ei[(k+εδk)·(x/ε)−(ωεδω)(t/ε)]Vε
(x
ε

)
, (6.2)

where with x/ε = ξ ′, Vε(ξ ′) satisfies Bloch equations

(ω + εδω)2b(ξ ′)Vε(ξ ′) + (−i(k + εδk) + ∇̄ξ ′ ) · a(ξ ′)(−i(k + εδk) + ∇̄ξ ′ )Vε(ξ ′) = 0 (6.3)

and Vε(ξ ) is periodic in ξ . With appropriate normalizations to ensure this has a unique solution
for Vε(ξ ′), we can write

Vε(ξ ′) = V0(ξ ′) + ∂Vε(ξ ′)
∂ε

∣∣∣∣
ε=0

ε + O(ε2). (6.4)

So (6.2) has the expansion

u(x, t) = f (t, x)U0(ξ ′) + O(ε), with f (t, x) = ei(δk·x−δωt). (6.5)

Then it is clear that the function f0 = ei(δk·x−δωt) must solve equation (6.1) from which we get

i(a1 · δk − b1∇g(k) · δk) = 0, for all δk ∈ Rd,

from where we get

a1 = b1∇g(k). (6.6)

Thus, the effective equation becomes

∇g · ∇f0(t, x) + ∂f0(t, x)
∂t

= 0, (6.7)

Note that the solution of this equation is the travelling wave packet

f0(t, x) = h(v · x − t)),

where h is an arbitrary function that has first partial derivatives, and v is the group velocity
which satisfies v · ∇g = 1. As mentioned in the introduction this effective equation fails to capture
dispersion which is captured in the approach of Allaire et al. [29].

(b) The vector case
As effective equations (4.15) in the vector case are exactly the same as in the scalar case, then we
get the same relation as in the scalar case.
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Appendix A
Here we make the connection between the results of Birman & Suslina [23] and those of Craster
et al. [21]. The first thing that is relevant is eqn (1.12) of Birman & Suslina [23], where they expand
at the edge Es of a band-gap (where Es may represent an energy or frequency) a minimum or
maximum of the dispersion diagram as a quadratic form, involving quadratic functions b(±).
These quadratic functions determine the ‘effective coefficients’ that enter the homogenized
equations of Craster et al. [21]. In that formula (1.12), the ξ (±) is the wave vector k = ξ , one expands
around. (They assume there may be j = 1, 2, . . .m± such wavevectors attaining the same energy
Es, but here, for simplicity, we assume there is just one.) The ψs±(x, ξ ) at the top of p. 3685 is
the eigenfunction, or Bloch function, associated with Es. The main result is that the resolvent (2.1)
approaches (2.2). The connection is clearer if one writes out what this means. Let us suppose there
is a source term g(x). Then if you are interested in solving [A − (λ− ε2κ2)]u = g, where κ is chosen
so (λ− κ2) is in the gap, and ε ∈ (0, 1], the solution is u = S(ε)g, where S(ε) is the resolvent. Birman
and Suslina say that when ε is small, the result is approximately the same as solving u = S0(ε)g, i.e.

[bj(D) + ε2]
(

u
ψs±

)
=
(

g
ψs±

)
. (A 1)

Here u/ψs± can be identified with the modulating function f of Craster et al. [21], bj(D) is the
effective operator, D is the operator −i∇ (see point 3 in introduction). Thus the analysis of
Birman & Suslina [23] applies even when there are source terms g �= 0 and allows for expansion
points ξ (±) which are not necessarily at k = ξ (±) = 0 or at the edge of the Brillouin zone. The reason
Birman & Suslina [23] assume one is in the gap is to make sure the solution is localized, which is
easier for the mathematical analysis.

Appendix B
Definition B.1. Assume Q =∏d

i=1[ai, bi] ⊂ Rd is a rectangle. Then we write Q → ∞ if
bi − ai → ∞, for all i ∈ {1, 2, . . . , d}.

The next two lemmas will be crucial in the process of homogenization.

Lemma B.2. Assume f : R → R is periodic with a period T> 0 and f ∈ L2(0, T). Then for any b �= 0
there holds:

lim
a→∞

1
a

∫ a

0
f (x) eibx dx = 0, if

Tb
2π

/∈ Z

and lim
a→∞

1
a

∫ a

0
f (x) eibx dx = 1

T

∫T

0
f (x) eibx dx, if

Tb
2π

∈ Z.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B 1)

Proof. Note that if a = mT + r, where 0 ≤ r< T and m ∈ Z, m ≥ 0, then we have

1
a

∫ a

0
f (x) eibx dx = 1

a

∫mT+r

0
f (x) eibx dx

= 1
a

∫mT+r

mT
f (x) eibx dx + 1

mT + r

m−1∑
j=0

∫ (j+1)T

jT
f (x) eibx dx

= 1
a

∫mT+r

mT
f (x) eibx dx + 1

mT + r

m−1∑
j=0

∫T

0
f (x) eib(x+jT) dx

= 1
a

∫mT+r

mT
f (x) eibx dx + 1

mT + r

m−1∑
j=0

eibTj
∫T

0
f (x) eibx dx. (B 2)
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We have by the Schwartz inequality that∣∣∣∣∣1a
∫mT+r

mT
f (x) eibx dx

∣∣∣∣∣≤ 1
a

∫T

0
|f (x)| dx ≤

√
T

a
‖f‖L2(0,T) → 0, as a → ∞. (B 3)

On the other hand, we have

1
mT + r

m−1∑
j=0

eibTj
∫T

0
f (x) eibx dx = m

mT + r

∫T

0
f (x) eibx dx, if bT = 2π l

and
1

mT + r

m−1∑
j=0

eibTj
∫T

0
f (x) eibx dx = (1 − eibTm)

(mT + r)(1 − eibT)

∫T

0
f (x) eibx dx, if bT �= 2π l.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(B 4)

In the first case, we get

lim
a→∞

1
a

∫ a

0
f (x) eibx dx = lim

m→∞
m

mT + r

∫T

0
f (x) eibx dx

= 1
T

∫T

0
f (x) eibx dx, (B 5)

In the second case, we have again by the Schwartz inequality that∣∣∣∣∣ (1 − eibTm)
(mT + r)(1 − eibT)

∫T

0
f (x) eibx dx

∣∣∣∣∣≤ 2
√

T‖f‖L2(0,T)

a|1 − eibT| , (B 6)

thus we get

lim
a→∞

1
a

∫ a

0
f (x)eibx dx = 0.

�

The next lemma is generalization of lemma B.2.

Lemma B.3. Let the functions f , g : R → R have periods T1, T2 > 0 respectively. Assume that f ∈
L2(0, T1) and g ∈ L2(0, T2) and ∫T1

0
f (x) dx = 0. (B 7)

Then one has:

lim
a→∞

1
a

∫ a

0
f (x)g(x) dx = 0, if

T1

T2
/∈ Q

and lim
a→∞

1
a

∫ a

0
f (x)g(x) dx = 1

nT1

∫nT1

0
f (x)g(x) dx, if

T1

T2
= m

n
, m, n ∈ Z.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B 8)

Proof. Assume first that T1/T2 = m/n, where m, n ∈ N, thus nT1 = mT2. We have for any a> nT1,
that a = knT1 + r, where 0 ≤ r< nT1 and k ∈ N. Then we have by the periodicity of f and g that

1
a

∫ a

0
f (x)g(x) dx = 1

knT1 + r

∫ knT1

0
f (x)g(x) dx + 1

knT1 + r

∫ knT1+r

knT1

f (x)g(x) dx

= k
knT1 + r

∫nT1

0
f (x)g(x) dx + 1

knT1 + r

∫ knT1+r

knT1

f (x)g(x) dx. (B 9)

It is clear that

lim
a→∞

k
knT1 + r

∫nT1

0
f (x)g(x) dx = lim

k→∞
k

knT1 + r

∫nT1

0
f (x)g(x) dx

= 1
nT1

∫nT1

0
f (x)g(x) dx,
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and by the Schwartz inequality∣∣∣∣∣ 1
knT1 + r

∫ knT1+r

knT1

f (x)g(x) dx

∣∣∣∣∣≤ 1
knT1

∫nT1

0
|f (x)g(x)| dx

≤ 1
knT1

‖f (x)‖L2(0,nT1)‖g(x)‖L2(0,nT1)

→ 0

as k → ∞, thus the case T1/T2 = m/n is proved. Assume now that T1/T2 /∈ Q. By the Fourier
expansion, we have that

f (x) =
∞∑

n=−∞
an e2iπnx/T1

in the L2(0, T1) sense. Denote Pn(x) =∑n
k=−n ak e2iπkx/T1 , then

Pn(x) → f (x) in L2(0, T1),

thus for any ε > 0, there exists N ∈ N such that

‖f (x) − PN(x)‖L2(0,T1) ≤ ε. (B 10)

If a = k1T1 + r1 = k2T2 + r2 where k1, k2 ∈ N and 0 ≤ r1 < T1, 0 ≤ r2 < T2, then we have by the
Schwartz inequality that for big enough a there holds,

1
a

∣∣∣∣
∫ a

0
f (x)g(x) dx −

∫ a

0
PN(x)g(x) dx

∣∣∣∣
≤ 1

a

∫ a

0
|f (x) − PN(x)||g(x)| dx

≤ 1
a
‖f (x) − PN(x)‖L2(0,a)‖g(x)‖L2(0,a)

≤ 1
a

√
k1 + 1‖f (x) − PN(x)‖L2(0,T1)

√
k2 + 1‖g(x)‖L2(0,T2)

≤ ε‖g(x)‖L2(0,T2)√
T1T2

√
(k1 + 1)(k2 + 1)√

k1k2

≤ 2ε‖g(x)‖L2(0,T2)√
T1T2

, (B 11)

which implies that it suffices to prove the lemma for PN(x) instead of f (x). From the condition∫T1
0 f (x) dx = 0, we get a0 = 0, thus

PN(x) =
−1∑

k=−N

ak e2iπkx/T1 +
N∑

k=1

ak e2iπkx/T1 .

Now, an application of lemma B.2 to each of the summands ak e2iπkx/T1 completes the proof. �

Lemma B.4. Let f , g : R → R and T1, T2 > 0 be such that f (x) is T1-periodic, g(x) is T2-periodic and
T1/T2 /∈ Q. Furthermore, assume that f (x) ∈ W1,2(0, T1) and g(x) ∈ L2(0, T2). Then

lim
a→∞

1
a

∫ a

0
f ′(x)g(x) dx = 0. (B 12)

Proof. The proof directly follows from lemma B.3 as
∫T1

0 f ′(x) dx = 0 by the periodicity of f . �
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Lemma B.5. Assume the function f (ξ ) : Rd → R is cell-periodic and continuous with a cell of
periodicity R =∏d

i=1[0, Ti]. Then for any vector λ= (λ1, λ2, . . . , λd) ∈ Rd one has

lim
Q→∞

1
|Q|

∫
Q

f (ξ ) eiλ·ξ dξ = 0, if Tjλj �= 2π l, ∈ Z for some j ∈ {1, 2, . . . , d},

lim
Q→∞

1
|Q|

∫
Q

f (ξ ) eiλ·ξ dξ = 1
|R|

∫
R

f (ξ ) eiλ·ξ dξ , if Tjλj = 2π lj, lj ∈ Z, j = 1, 2, . . . , d.

Proof. The proof is straightforward as this is a consequence of the previous lemma. It has easier
to see that

lim
Q→∞

1
|Q|

∫
Q

f (ξ ) eiλ·ξ dξ = lim
l→∞

1
ld|R|

∫
l·R

f (ξ ) eiλ·ξ dξ ,

where l ∈ N. If Tiλi = 2π li, li ∈ Z, i = 1, 2, . . . , d then we have

1
ld|R|

∫
l·R

f (ξ ) eiλ·ξ dξ = 1
|R|

∫
R

f (ξ ) eiλ·ξ dξ ,

for all l ∈ N. Assume now the set I = {j : Tjλj �= 2π l, l ∈ Z} ∩ {1, 2, . . . , d} is not empty. Then we have
by the analogy of the proof of lemma B.2 and the Fubini theorem

1
ld|R|

∫
l·R

f (ξ ) eiλ·ξ dξ ≤ C
l|I|

→ 0 as l → ∞, (B 13)

where C is a constant depending on the value M = maxR |f (x)|. The proof is finished now. �
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