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This paper presents two new types of origami-
inspired mechanical metamaterials based on the
Miura-derivative fold patterns that consist of non-
identical parallelogram facets. The analytical models
to predict dimension changes and deformation
kinematics of the proposed metamaterials are
developed. Furthermore, by modelling the creases
as revolute hinges with certain rotational spring
constants, we derived analytical models for stretching
and bulk moduli. The analytical models are validated
through finite-element simulation results. Numerical
examples reveal that the proposed metamaterials
possess some intriguing properties, including
negative Poisson’s ratios and bulk modulus. The
work presented in this paper can provide a highly
flexible framework for the design of versatile tunable
mechanical metamaterials.

1. Introduction
Metamaterials, the man-made materials with unusual
physical properties that arise mainly from the arrange-
ment instead of the properties of constituent structures,
have aroused considerable research interest from scientists
and engineers in recent years and open up opportunities
for many state-of-the-art applications ranging from
invisibility cloaks [1–4] to solar photovoltaic [5,6],
seismic protection [7], ultra-effective sound absorption
[8,9] and mechanical metamaterials [10–14]. In this
context, origami, the art of folding a two-dimensional
(2D) sheet into a three-dimensional (3D) structure,
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offers an inspiring source for designing mechanical metamaterials. Of particular interest here
are rigid origami where all facets remain unbent with the creases acting as rotational hinges
during continuous folding, and a particular fold pattern, known as the Miura pattern, which
is constructed from a single repeated parallelogram facet and is both rigid- and flat-foldable.
In a pioneering article, Schenk & Guest [15] reported the deformation kinematics of two folded
cellular metamaterials based on the folded Miura pattern, which manifest negative in-plane
and positive out-of-plane Poisson’s ratios. Wei et al. [16] extended Schenk & Guest’s work by
considering the rotational stiffness of the creases and derived the stretching and bending rigidities
of Miura-folded metamaterials. Later on, Lv et al. [17] showed that the in-plane Poisson’s ratio of
Miura-folded metamaterials can in fact be both positive and negative when the whole size of
the Miura pattern instead of the size of a unit cell is taken into account. Silverberg et al. [18]
proposed a reprogrammable single-layered origami metamaterial design by introducing pop-
through defects into perfect Miura tessellations. More recently, Li & Wang [19] investigated
the pressure-dependent multi-stability properties of an individual fluid-filled tubular cell and
its dual cell configuration formed by stacking Miura unit cells. Filipov et al. [20] introduced
a new orientation to stack Miura patterns into rigid-foldable zipper-coupled tubes from which
reconfigurable cellular metamaterials can be built. In addition to the Miura pattern, Waitukaitis
et al. [21] studied the multi-stability characteristics of metasheets consisting of periodic rigid
degree-four vertices. Eidini & Paulino [22] proposed a new class of cellular folded metamaterials
constructed from the rigid-foldable BCH (basic unit cell with hole) pattern that combines origami
folding with kirigami.

In this paper, we extend the existing work on classic Miura-folded metamaterials to rigid-
foldable Miura-derivative fold patterns [23–25], which comprise quadrilateral facets that are not
all identical. We focus here primarily on periodical fold patterns so that the properties of the 3D
bulk system can be represented by those of a repeating unit cell, and parallelogram facets because
patterns containing non-parallelogram quadrilateral facets will lead to curved or irregular folded
shapes [23,24], making it quite challenging if not impossible to use them to design mechanical
metamaterials. Our work presented herein leads to metamaterial models that not only include
conventional Miura-folded metamaterials as the simplest cases but more importantly can be
tailored to exhibit a wide range of mechanical properties which would otherwise be difficult to
achieve with existing designs, thus substantially broadening the design space of origami-based
mechanical metamaterials.

The layout of this paper is as follows. The geometries of the Miura-derivative unit cell and its
stacked unit cell models are first introduced. Based on the stacked unit cell models, two types
of Miura-derivative metamaterials are proposed. The analytical models to predict in- and out-
of-plane Poisson’s ratios, and stretching and bulk moduli of the proposed metamaterials, are
derived and validated with the finite-element (FE) results. The properties of the Miura-derivative
metamaterials are discussed through several numerical examples based on a generic piecewise
periodic base function. Finally, a brief summary concludes the paper.

2. Unit cell geometry
A typical unit cell of the Miura pattern is illustrated in figure 1a, where the mountain and
valley creases are indicated by the blue and red lines or vice versa. The pattern can be
defined by the longitudinal and transverse crease lengths a and b and an oblique angle γ1.
Without loss of generality, γ1 is always taken as an acute angle throughout the paper. The
other oblique angle γ2 is determined by γ1 through the relationship γ1 + γ2 = π because all
the parallelogram facets are identical in this case. If γ2 and b2 are made independent of γ1
and b1, a generalized form of the Miura unit cell can be obtained, as shown in figure 1b.
Comparable to the Miura pattern, the generalized form also has one degree of freedom of folding
motion that can be characterized by a single parameter. Here, we employ ξ1 ∈ [0, γ1] (figure 1c)
as the parameter to describe folding. The outer dimensions of the folded pattern, defined by
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Figure 1. (a) A typical unit cell of the Miura pattern; (b) a generalized Miura unit cell pattern; and (c) the folded state of a
generalized Miura unit cell. (Online version in colour.)

the dimensions of the smallest virtual box that can accommodate the folded pattern, are then
given by

w =
2∑

i=1

bi

√
1 − cos2 γi sec2 γ1 cos2 ξ1, (2.1)

s = 2a cos γ1

cos ξ1
+ v (2.2)

and h = a cos γ1

√
tan2 γ1 − tan2 ξ1, (2.3)

where v is determined as

v = max

{
b1 cos ξ1,

2∑
i=1

bi cos γi cos ξ1

cos γ1

}
. (2.4)

The detailed derivation of equations (2.1)–(2.4) is provided in the electronic supplementary
material, section A.

Consider now an arbitrary periodic function y = f (x) with period T, which is referred to as the
base function in the sequel. A single period of the base function is first discretized into N + 1
points A0, A1, . . . , AN , as shown in figure 2a. Rejoining these points with straight-line segments
results in a piecewise polyline, upon which a unit cell of a periodic Miura-derivative pattern can
be generated, as shown in figure 2b, where the i-th oblique angle γi and the i-th transverse crease
length bi are obtained as

γi = tan−1
(

�xi

f (xi) − f (xi−1)

)
and bi = �xi

sin γi
. (2.5)
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Figure 2. (a) A single period of a periodic base function y = f (x) with period T ; (b) a unit cell of a periodic Miura-derivative
pattern; and (c) the folded state of a Miura-derivative unit cell. (Online version in colour.)

Again, we employ ξ1 ∈ [0, γ1] (figure 2c) to parametrize its folding motion. According to
equations (2.1) and (2.2), the outer dimensions wu and su of the folded unit cell are obtained as

wu =
N∑

i=1

bi

√
1 − cos2 γi sec2 γ1 cos2 ξ1 (2.6)

and

su = 2a cos γ1

cos ξ1
+ vu, (2.7)

where vu is determined as

vu =
m∑

i=1

bi cos γi cos ξ1

cos γ1
, (2.8)

where m ∈ [1, N] and f (xm) = max{ f (x1), . . . , f (xN)}, and the height hu = h.

3. Stacked geometry
Two or more of the folded Miura-derivative unit cells discussed above of independent heights
can be stacked in the z direction, leading to a multi-layered folded structure. There are two types
of stacking sequence between successive layers, namely mountain–valley (M–V) stacking and
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Figure 3. (a) An M–V stacked unit cell; (b) a V–V stacked unit cell. (Online version in colour.)
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Figure4. (a)M–Vand (b) V–V stackedmetamaterials consistingofn1 stackedunit cells in the in-plane transverse (W) direction,
n2 in the in-plane longitudinal (S) direction and n3 in the stacking (H) direction. (Online version in colour.)

valley–valley (V–V) stacking, as illustrated in figure 3. For both cases, four constraints must be
met so that the two layers are practically stackable and the stacked assembly is still rigid-foldable:
b1

i = b2
i , i = 1, . . . , N, w1

u = w2
u, s1

u = s2
u, and v1

u = v2
u, where superscripts 1 and 2 denote the layer

numbers. Substituting equations (2.6)–(2.8) into these constraints yields

a1 cos γ 1
i = a2 cos γ 2

i , i = 1, . . . , N. (3.1)

Three-dimensional bulk metamaterials can be constructed by repeating the M–V and/or V–V
stacked unit cells in all three orthogonal directions. We focus here on the two generic models
shown in figure 4, each having n1 stacked unit cells in the in-plane transverse (W) direction, n2 in
the in-plane longitudinal (S) direction and n3 in the stacking (H) direction. Based on the unit cell
geometry discussed above, the total outer dimensions of the models can be written as

W|M−V = W|V−V = W = n1w1
u, (3.2)

S|M−V = S|V−V = S = n2s1
u + (1 − n2)v1

u, (3.3)

H|M−V = n3(h2
u + h1

u) (3.4)

and H|V−V = h1
u + n3(h2

u − h1
u), (3.5)
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where it is assumed, without loss of generality, that h2
u ≥ h1

u. The total volume occupied by the
bulk system is then obtained as

V = W × S × H. (3.6)

A hand-folded card model of the bulk metamaterials consisting of 3 × 3 × 3 M–V stacked unit
cells is shown in the electronic supplementary material, movie S1.

4. Poisson’s ratios of Miura-derivative metamaterials
The deformation of the Miura-derivative metamaterial can be characterized by an in-plane
Poisson’s ratio νSW = −εS/εW and two out-of-plane Poisson’s ratios νHW = −εH/εW and νHS =
−εH/εS, where εW = dW/W, εS = dS/S and εH = dH/H are the infinitesimal strains in the W, S
and H directions, respectively. Using equations (3.2)–(3.5), the Poisson’s ratios are obtained as

vSW|M−V = vSW|V−V = − (2n2α
1 cos γ 1

1 / cos2 ξ1 − ∑m
i=1(b1

i cos γ 1
i / cos γ 1

1 ))(∑n
i=1

(
n1b1

i sec γ 1
1 cos2 γ 1

i cos ξ1

/√
cos2 γ 1

1 − cos2 γ 1
i cos2 ξ1

)) · W
S

,

(4.1)

vHW|M−V =
n3a1

(
1
/√

tan2 γ 2
1 − tan2 ξ1 + 1

/√
tan2 γ 1

1 − tan2 ξ1

)
(∑N

i=1

(
n1b1

i sec2 γ 1
1 cos2 γ 1

i cos4 ξ1

/√
cos2 γ 1

1 − cos2 γ 1
i cos2 ξ1

)) .
W

HM−V
, (4.2)

vHW|V−V ≈
n3a1

(
1
/√

tan2 γ 2
1 − tan2 ξ1 − 1

/√
tan2 γ 1

1 − tan2 ξ1

)
(∑N

i=1

(
n1b1

i sec2 γ 1
1 cos2 γ 1

i cos4 ξ1

/√
cos2 γ 1

1 − cos2 γ 1
i cos2 ξ1

)) .
W

HV−V
(4.3)

and νHS = −νHW/νSW, (4.4)

where it is assumed in equation (4.3) that n3 � 1.
Several immediate findings can be made from equations (4.1)–(4.4). First, for the Poisson’s

ratios to be real, the square root terms must be positive. As a result, the range for ξ1 is obtained as

max{χi} ≤ ξ1 ≤ min{γ j
1}, i = 1, . . . , N j = 1, 2, (4.5)

where χi equals zero if γ 1
i > γ 1

1 or cos−1(| cos γ 1
1 / cos γ 1

i |) if γ 1
i ≤ γ 1

1 . This implies that the Miura-
derivative metamaterials are in most cases neither flat-foldable nor developable (i.e. all layers
unfold flat at the same time); in other words, their volume will never become zero, a property
known as self-locking. Next, νWH of the M–V stacked metamaterial is always positive, and hence
its height will reduce as it expands in the W direction. On the contrary, νWH of the V–V stacked
metamaterial is always negative, making it an auxetic material in the W–H plane. Third, the
in-plane Poisson’s ratio may transit from a positive value to a negative one when

m∑
i=1

bi cos γ 1
i > 2a1 cos2 γ 1

1 , n2 ≤
m∑

i=1

bi cos γ 1
i

2a1 cos2 γ 1
1

, (4.6)

and the critical value for ξ1 is given by

ξ1 = cos−1

√√√√ 2n2a1 cos2 γ 1
1∑m

i=1 bi cos γ 1
i

. (4.7)

If inequality (4.6) is not satisfied, the in-plane Poisson’s ratio will always be negative. νHS may
also change signs under the same condition given by inequality (4.6). Therefore, given that n2 is
sufficiently large, all three Poisson’s ratios of the V–V stacked metamaterial are negative, implying
that it expands in all directions, and for the M–V stacked metamaterial, only the in-plane Poisson’s
ratio is negative, meaning that the height contracts as the in-plane expansion occurs. Physically,
the negative out-of-plane Poisson’s ratios found in the V–V stacked metamaterials arise from the
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coupled stacking order in which the odd-numbered layers, having a smaller height, are tucked
in the even-numbered layers. As the in-plane dimensions of the V–V stacked metamaterials
are increased, the separation distance between two adjacent even-numbered layers increases
due to flattening of the odd-numbered layers. As a result, the total height of the V–V stacked
metamaterial can actually increase, leading to negative out-of-plane Poisson’s ratios.

5. Stretching and bulk moduli of Miura-derivative metamaterials
To derive the stretching and bulk moduli of the Miura-derivative metamaterial when it is
modelled as rigid origami, we assume that all longitudinal creases in each layer have a hinge
spring constant k1 per unit length, all transverse creases have a hinge spring constant k2 per unit
length, the elastic energy is stored only in the creases which act as rotational hinges, and the total
elastic energy U of the metamaterial is the summation of the elastic energy in each layer. As a
result, U can be expressed as

U = n3

2∑
j=1

⎛
⎝n2

n1N−1∑
i=1

k1aj(β j
i − β

j
i0)2 + n1(2n2 − 1)

N∑
i=1

1
2

k2bj
i(α

j
i − α

j
i0)2

⎞
⎠ , (5.1)

where α
j
i and β

j
i are the dihedral angles of the i-th transverse and longitudinal creases in a Miura-

derivative unit cell, respectively, α
j
i0 and β

j
i0 are the natural dihedral angles in the undeformed

state, and the superscript j denotes the layer number in a stacked unit cell. According to the
minimum total potential energy principle, the total potential energy E of the metamaterial is then
given by

E = U −
∫ ξ1

ξ10

fw
dW
dξ ′

1
dξ ′

1 −
∫ ξ1

ξ10

fs
dS
dξ ′

1
dξ ′

1 −
∫ ξ1

ξ10

fh
dH
dξ ′

1
dξ ′

1, (5.2)

where fw, fs and fh are the external forces applied in the W, S and H directions, respectively. The
external forces at equilibrium state are then obtained using the condition dE/dξ1 = 0, which reads

fw
dW
dξ1

+ fs
dS
dξ1

+ fh
dH
dξ1

= dU
dξ1

. (5.3)

Using equation (5.3), the uniaxial forces in the W, S and H directions at equilibrium can be
determined as

f̄ w = dU
dξ1

/
dW
dξ1

, f̄ s = dU
dξ1

/
dS
dξ1

, f̄ h = dU
dξ1

/
dH
dξ1

. (5.4)

The stretching moduli of the metamaterial associated with the W, S and H directions are
obtained as

kw = dσw

εW
, ks = dσs

εs
, kh = dσh

εh
, (5.5)

where σw = f̄ w/(SH), σs = f̄ s/(WH) and σh = f̄ h/(WS) are the uniaxial stresses at equilibrium.
Finally, the bulk modulus of the metamaterial is obtained as KV = −dp/(dV/V), where p =
−dU/dV is the hydrostatic pressure. The detailed derivations for kw, ks, kh and KV are provided
in the electronic supplementary material, section B.

6. Validation
To validate the analytical models for Poisson’s ratios and moduli discussed above, we simulated
the motion of a V–V stacked unit cell FE model in ABAQUS� (3DS, France), as shown in figure 5.
In the FE model, the oblique angles γ 1 and transverse crease lengths b are taken as

γ 1(rad) = [0.97, 0.65, 0.97, 2.17, 2.49, 2.17] (6.1)

and
b (mm) = [6.93, 8.49, 6.93, 6.93, 8.49, 6.93]. (6.2)

The longitudinal crease lengths a1 and a2 and the initial folding angle ξ10 are taken as 16 mm
and 18 mm and 0.92 rad, respectively. All creases are modelled as revolute hinges with a unified
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Figure 5. A V–V stacked unit cell FE model. (Online version in colour.)
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rotational spring constant equal to 0.1 N mm rad−1 mm−1 where two adjacent facets are tied
together along their common crease with the rotational degrees of freedom being set free and
the torsional spring implemented using a revolute-type connector element inserted at the centre
of the crease. The facets are meshed using S4R shell elements with a thickness and average size of
1 mm and are assigned a Young’s modulus equal to 200 GPa. The nodes on the thick dashed and
dash-dotted lines are constrained in the z- and x-directions, respectively, and nodes 1 and 2 are
constrained in the y-direction. In the load cases for kw, ks and kh, nodes 2, 3 and 4 are displaced
along the x, y and z axis, respectively, and the forces acting on them together with the outer
dimensions of the model are measured to calculate the Poisson’s ratios and moduli using a central
difference algorithm. The Poisson’s ratios versus W curves and the stiffness curves obtained from
the FE simulations and the analytical models are shown in figure 6a,b, respectively. Excellent
agreement between the FE and analytical results is observed, which provides solid evidence for
the validity of the analytical models.

7. Examples
To demonstrate the properties of Miura-derivative metamaterials, we consider here a piecewise
periodic base function shown in figure 7a. A single period of the base function is naturally
discretized into N = 2M straight-line segments that have the same projections of length A on the
y axis. The acute angles θi, i = 1, 2, . . . , N, between the straight-line segments and the y axis satisfy
the following recursive relationship:

(θi+1)λ =
{

(θi)λ − δ, i = 1, 2, . . . , M

(θi)λ + δ, i = M + 1, . . . , N − 1,
(7.1)

where θmax = θ1, θmin = θM+1, λ �= 0 and δ = ((θmax)λ − (θmin)λ)/M. The i-th oblique angle γ 1
i and

transverse crease length bi of the first layer are obtained as

γ 1
i =

{
θi, odd i

π − θi, even i
(7.2)

and

bi = A
cos θi

. (7.3)

The oblique angles γ 2
i , i = 1, 2, . . . , N, of the second layer are then determined using equation (3.1).

A 3D rendering of the bulk metamaterial corresponding to the base function is shown in figure 7b.
It is shown above that the Miura-derivative metamaterials have auxetic material properties,

implying that during motion their volume and density will change. Therefore, the capability of
the metamaterial to change its volume is of interest. To investigate this property, we employ here
ηV = (Vmax − Vmin)/Vmax as a measurement. Figure 8a shows ηV versus θmin curves with different
θmax values ranging from 30◦ to 75◦ where λ = 1, A = 5, N = 10, a1 = 10, a2 = 15 and n1,2,3 = 10. The
same values for A, N, a1, a2 and n1,2,3 are used throughout this section. It is shown that the V–V
stacked metamaterials have larger volume variations than the M–V stacked metamaterials do.
For the V–V stacked cases, the volumetric change increases and decreases with the increases in
θmin and θmax, respectively. For the M–V stacked cases, while the volumetric change still increases
with the increase in θmin, there exist singular points (the black dots) on the curves, before and
after which the minimum volume state switches from ξ1 = ξ1 max to ξ1 = ξ1 min (figure 8b), and
the volumetric change increases and then decreases with the increase in θmax. Figure 8c shows
ηV versus θmin curves with different λ values, where θmax = 60◦. For the V–V stacked cases, the
volumetric change increases with the decrease in λ. For the M–V stacked cases, it is noted that
singular points only exist for positive λ and the volumetric change decreases with the decrease in
λ before the singular points and then increases afterwards.

Figure 9 shows the Poisson’s ratios versus ξ1 curves with different θmin values ranging from
45◦ to 60◦ where θmax = 60◦ and λ = 1. It is shown that the two out-of-plane Poisson’s ratios of
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Figure 7. (a) A piecewise periodic base function defined by equation (7.1); and (b) a 3D rendering of the bulk metamaterial
corresponding to the base function. (Online version in colour.)
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the V–V stacked metamaterials are always opposite to those of the M–V stacked counterparts and
slightly lower in magnitude than the latter. For both the M–V and V–V stacked cases, the absolute
values of the in-plane Poisson’s ratio νSW and the out-of-plane Poisson’s ratio νHW increase with
the increase in θmin while θmin has negligible influence on νHS. The influence of λ on the Poisson’s
ratios is illustrated in figure 10, where θmax = 60◦ and θmin = 45◦. It is shown that the νSW and νHW

versus ξ1 curves become smoother as λ reduces. Again, λ shows no influence on νHS.
Of particular interest here are the elastic responses of the Miura-derivative metamaterials.

Figure 11 shows the stretching moduli versus ξ1 curves with different θmin values where θmax =
60◦, λ = 1 and ξ10 = 59.5◦. It is shown that the V–V stacked metamaterials are generally stiffer than
the M–V stacked type. As θmin decreases, the in-plane modulus ks and the through-the-thickness
modulus kh increase while the in-plane modulus kw initially decreases. For the standard Miura
case, i.e. θmin = θmax, kw reduces to zero as ξ1 decreases, whereas for other cases kw becomes
infinite at both the lower and upper bounds of ξ1. Figure 12 shows the influences of λ on the
stretching moduli, where θmax = 60◦, θmin = 45◦ and ξ10 = 59.5◦. It is shown that kw increases and
ks and kh decrease with the increase in λ. Finally, the influence of θmin and λ on the bulk modulus
Kv is illustrated in figure 13a,b, respectively. It is shown that Kv increases as θmin decreases
while it first increases and then decreases as λ decreases. It is interesting to note that the bulk
moduli of the V–V stacked metamaterials are always positive while those of the M–V stacked
metamaterials range from negative infinity to positive infinity. This unusual property of the M–V
stacked metamaterials arises from the fact that the volume V in this case is not a monotonic
function of ξ1 (figure 8b). Setting dV/dξ1 = 0 allows us to determine the critical value of ξ1 at
which the bulk modulus of the M–V stacked metamaterial shifts from +∞ to −∞.

8. Summary and final remarks
In this paper, we have used patterns consisting of non-identical parallelogram facets to design
3D mechanical metamaterials. Depending on the stacking sequence between successive layers,
two types of metamaterials are proposed. We show that the changes in the dimensions of the
proposed metamaterials can be parametrized by a single folding parameter ξ1, based on which
the analytical models to predict deformation kinematics characterized by Poisson’s ratios are
developed. Moreover, introducing rotational spring constants to the creases that are modelled
as revolute hinges enables us to obtain analytical expressions for stretching and bulk moduli of
the proposed metamaterials.
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The intriguing properties of the Miura-derivative metamaterials are demonstrated through
several numerical examples based on a periodic piecewise base function. The main findings
include: (i) the Miura-derivative metamaterials possess the self-locking property arising from
the restraints on the folding parameter ξ1, (ii) the V–V stacked metamaterials are subject to
greater volume variations and have higher stretching stiffness than the M–V stacked ones, (iii)
the V–V stacked metamaterials have negative Poisson’s ratios in all three orthogonal planes
whereas only the in-plane Poisson’s ratio of the M–V stacked ones is negative, and (iv) the Miura-
derivative metamaterials have infinite stretching and bulk moduli wherein the bulk modulus
of the M–V stacked metamaterials even varies from −∞ to +∞, which may lead to some unique
vibration and acoustic behaviours [26]. In general, the geometric and mechanical properties of the
Miura-derivative metamaterials have a broad design space, varying among different sets of base
function parameters and folding states, not to mention that there are numerous other possible
base function forms that have not been investigated. In this context, our work provides a highly
flexible framework for the design of versatile tunable mechanical metamaterials. Moreover, by
taking the limit of �xi in figure 2a towards zero, the piecewise polyline in figure 2b will eventually
convert into a smooth curve of arbitrary shape and the folding of the longitudinal creases into
the bending of an infinite narrow strip of the sheet material along each crease. In this manner,
the work presented in this paper opens up the opportunity for future study of curved-creased
metamaterials.
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