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Hepatocyte Growth Factor- c-MET Signaling Mediates the
Development of Nonsensory Structures of the Mammalian
Cochlea and Hearing
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The stria vascularis is a nonsensory structure that is essential for auditory hair cell function by maintaining potassium concentration of
the scala media. During mouse embryonic development, a subpopulation of neural crest cell-derived melanocytes migrates and incor-
porates into a subregion of the cochlear epithelium, forming the intermediate cell layer of the stria vascularis. The relation of this
developmental process to stria vascularis function is currently unknown. In characterizing the molecular differentiation of developing
peripheral auditory structures, we discovered that hepatocyte growth factor (Hgf) is expressed in the future stria vascularis of the cochlear
epithelium. Its receptor tyrosine kinase, c-Met, is expressed in the cochlear epithelium and melanocyte-derived intermediate cells in the
stria vascularis. Genetic dissection of HGF signaling via c-MET reveals that the incorporation of the melanocytes into the future stria
vascularis of the cochlear duct requires c-MET signaling. In addition, inactivation of either the ligand or receptor developmentally
resulted in a profound hearing loss at young adult stages. These results suggest a novel connection between HGF signaling and deafness
via melanocyte deficiencies.
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We found the roles of hepatocyte growth factor (HGF) signaling in stria vascularis development for the first time and that lack of
HGF signaling in the inner ear leads to profound hearing loss in the mouse. Our findings reveal a novel mechanism that may
underlie human deafness DFNB39 and DENB97. Our findings reveal an additional example of context-dependent c-MET signaling
diversity, required here for proper cellular invasion developmentally that is essential for specific aspects of auditory-related

organogenesis. j

ignificance Statement

cific locations during vertebrate embryonic development. NC
cells differentiate to form a broad array of derivatives, including
neurons and glia of the peripheral nervous system, smooth mus-
cle, cartilage, craniofacial mesenchyme, and melanocytes (Mayor
and Theveneau, 2013). NC cells contribute to several inner ear
structures during embryonic development. For instance, NC cells
differentiate into Sox10™ glial cells in auditory and vestibular
ganglia (Sandell et al., 2014) and Tyrosinase-related protein 1

Introduction
The neural crest (NC) is comprised of specialized cells that arise
from the lateral border of the neural plate and migrate into spe-
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(Tyrpl)-positive melanocytes in the stria vascularis (Tachibana,
1999). Correlations between melanocyte deficiency and deafness
have been reported previously, related to mutations in human
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disorders, such as Waardenburg syndrome (Pingault et al., 2010).
Melanocytes derived from NC cells form the intermediate cell
layer of the stria vascularis in the cochlea (Tachibana, 1999). The
stria vascularis is a nonsensory structure of the mammalian co-
chlear duct that maintains endolymph homeostasis (Patuzzi,
2011). While it has been reported that the lack of intermediate
cells disrupts the functions of stria vascularis, causing deafness
(Steel and Barkway, 1989; Tachibana, 1999), the mechanism that
underlies their development has been unknown. As part of our
effort to study the molecular determinants of cochlear develop-
ment, we focus here on hepatocyte growth factor (HGF) and its
receptor tyrosine kinase, c-MET (MET). MET is involved in
epithelial-mesenchymal transitions during development (Son-
nenbergetal., 1993) and the development of neural crest-derived
lineages (Kos et al., 1999). We and others have shown that this
growth factor—receptor signaling system is involved in neuronal
differentiation, including dendritic morphology, synapse forma-
tion and maturation, and functional circuit maturation (Tyndall
and Walikonis, 2006; Judson et al., 2010; Qiu et al., 2011; Peng et
al., 2014) c-MET has also been implicated in autism risk (Camp-
bell et al., 2006, 2010; Rudie et al., 2012). Recently, Schultz et al.
(2009) showed that an autosomal-recessive, nonsyndromic hear-
ingloss, DFNB39, is caused by noncoding mutations of HGF. The
same group generated conditional Hgf knock-out mice with
Foxgl-Cre mice and found that the lack of Hgf in the mouse inner
ear caused deafness, a thinner stria vascularis, degeneration of
outer hair cells, and a hypoplastic spiral ganglion (Schultz et al.,
2009). Mujtaba et al. (2015) identified missense mutations in the
¢-MET locus from the DFNB97 family. Here, we show that both
ligand and receptor are expressed in a complementary pattern in
the region of the future stria vascularis of developing mouse co-
chlea. Moreover, tissue-specific gene disruption of Hgf or ¢-Met
revealed a crucial role of receptor signaling for proper incorpo-
ration of melanocytes into the stria vascularis, which, when dis-
rupted, results functionally in deafness.

Materials and Methods

Mice. The following lines of mice were used in this study: Pax2-Cre
[Research Resource Identifier (RRID), MMRRC_010569-UNC; CD1
background], c-Met-floxed (Jackson stock #16974; RRID, IMSR_JAX:
016974; B6 background), Wntl-Cre (Jackson stock #22137; RRID,
IMSR_JAX:0022137; B6C3 hybrid), Z/EG (Jackson stock #3920;
RRID, IMSR_JAX:003920), ROSA™™/™% (Jackson stock #7676; RRID,
IMSR_JAX:007676), and Hgf-floxed (RRID, MMRRC_000423-UNC;
B6/129 hybrid). Genotyping was performed based on the primer infor-
mation provided by Mutant Mouse Resource and Research Center
(MMRRC) and The Jackson Laboratory for each stock mouse line. All
mice were maintained with free access to food and water and were used
for experiments under approved House Research Institute and Univer-
sity of Southern California Institutional Animal Care and Use Commit-
tee protocols.

Generation of Hgf and c-Met conditional knock-out mice. Conditional
knock-out mice were generated by the following mating procedure. Each
Cre line of either sex was crossed with a given floxed/floxed allele to
generate a Cre /= floxed/ " line. Then Cre ™ ~; floxed/ * mice of either
sex were crossed with floxed/floxed mice to generate the conditional
allele. Pax2-Cre mice were used to generate cochlear epithelium-specific
deletions of Hgf and ¢-Met. WntI-Cre was used to generate a neural
crest-specific deletion of c-Met. All data were obtained from a mix of
male and female mice.

In situ hybridization and Immunohistochemistry. Embryonic day 13.5
(E13.5) to postnatal day 1 (P1) heads were fixed in 4% paraformaldehyde
in PBS overnight at 4°C, sunk in 30% sucrose in PBS at 4°C, incubated in
Tissue-Tek O.C.T. compound (Sakura Finetek) at room temperature for
10 min, and frozen on dry ice. Sections, 14 um thick, were cut using a

J. Neurosci., August 3, 2016 - 36(31):8200—8209 « 8201

Leica 3050S cryostat. For the cochlear surface preparation, E18.5 or 8
week inner ears were fixed in 4% paraformaldehyde in PBS overnight at
4°C, and Reissner’s membrane and the stria vascularis were removed.
Digoxigenin-labeled antisense riboprobes were synthesized using stan-
dard protocols (Stern, 1998). The following probes were used: Hgf, c-Met
(Wu and Levitt, 2013), Igf-1 [Open Biosystems ID #4194295; 3" side of
the BamHI site (~1 kb) was used], Aldhla2 (gift from U. Driger, Uni-
versity of Massachusetts Medical School, Worcester, Massachusetts),
Connexin 26, Claudin 11, and Dct (gift from A. Kispert, Hannover Med-
ical School, Hannover, Germany). Additional details regarding probes
will be provided upon request.

The in situ hybridization procedure was modified from a published
protocol (Henrique et al., 1995). Detailed protocols are available upon
request. For immunohistochemistry, antibodies used in this study were
c-Met (R&D Systems, catalog #AF527; 1:100), Claudin 11 (Abcam, cata-
log #ab53041; RRID, AB_2276205; 1:500), Kcngql (Sigma, catalog
#SAB2501224; RRID, AB_10626617; 1:100), Kir4.1 (Abcam, catalog
#ab105102; RRID, AB_10714275; 1:300; Alomone Lab, catalog #APC-
035; RRID, AB_2040120; 1:300). Alexa Fluor or HRP-labeled secondary
antibodies (1:500) were from ThermoFisher Scientific. PBS, 0.1% Triton
X-100, and 10% serum solution were used for blocking and incubation
with antibodies. Color detection for HRP-labeled secondary antibody
was performed with InmPACT (Vector Laboratories). Each figure panel
represents the results from at least three animals. Sample images were
captured digitally using the Leica confocal SP5, Zeiss confocal LSM780,
Zeiss Axioplan2, and Keyence BZ9000.

Dct ™ cell counting. Serial frozen sections of E13.5 cochlea from each
genotype (four embryos each) were stained with Dct by in situ hybridiza-
tion. The number of Dct ™ cells near cochlear duct was counted in each
section. Because the cochlear duct turns, in single sections in which two
ducts exist, counts are corrected by a factor of 0.5.

Hematoxylin and eosin staining and measurement of the width of the
stria vascularis. Paraffin sections (5 wm thick) of 8-week-old cochlear
duct of each genotype (four animals each) were prepared. Sections con-
taining the midmodiolar region were stained using hematoxylin and
eosin. Images from the histological material were captured using the
Keyence BZ9000 microscope. The images were used to measure the
width of the stria vascularis, with a mean and SE calculated for each
genotype.

Hearing tests. Auditory brainstem response and distortion product
otoacoustic emission (DPOAE) protocols were performed to measure
the hearing ability of mutant mice of either sex and control littermates
between 4 and 6 weeks of age. Measurement for Hgf conditional
knock-out (Hgf-cKO) and c¢-Met; Pax2-Cre conditional knock out
(Met-Epi-cKO) mice was performed at the House Research Institute
(OPBREF system). Measurement for Met-Nc-cKO mice was performed
at the University of Southern California (USC). Briefly, mice were
anesthetized with an intraperitoneal injection of ketamine 80—100
mg/kg and xylazine 5-10 mg/kg. The core body temperature was
maintained with a thermostatically controlled heating blanket. Mice
were then placed on a warmed blanket, and stainless-steel electrodes
were placed subcutaneously at the vertex of the head and the auricle of
one ear with a ground electrode at the base of the tail. A speaker/
microphone combo with a customized special adapter was positioned
in the animal’s ear canal. The sonic stimulus was delivered through
the speaker as tone pips with a rise and a fall time of 0.5 ms and a total
duration of 5 ms at 4, 8, 12, 16, 24, and 32 kHz. Tone pips were
delivered from 20 to 110 dB SPL with 10 dB intervals at a rate of 35 per
second (OPBREF system) or from 20 to 100 dB SPL with 5 dB intervals
at a rate of 30 per second (USC system). Sound-induced electrical
responses were detected by the electrodes, recorded, and analyzed by
the automated software programs BioSigRP Software (Tucker Davis
Technologies for the OPBRF system) and EPL Cochlear Function Test
Suite (Massachusetts Eye and Ear for the USC system). DPOAE at
2f, — f, was collected by the microphone built into the speaker/
microphone combo. Two primary frequencies presented to the ear
were f; and f,. The f; level was 10 dB greater than the f, level; f,/f, =
1.2. The f,/f, levels were 35/25, 45/35, 55/45, 65/55, 75/65, and 85/75
dB (for OPBRF system) or 30/20, 40/30, 50/40, 60/50, 70/60, and
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Figure 1.

Hgf and c-Met are expressed in the developing mouse cochlea. A, At E15.5, Hgfis expressed in the future stria vascularis (sv; bracket). B, c-Met is expressed weakly in the entire cochlear

epithelium. Slightly higher expression s observed in Kolliker's organ (Ko) and the domain adjacent to future stria vascularis (arrow). A few c-Met * cells are observed in mesenchyme adjacent to the
future stria vascularis region (arrowheads). €, Igf-1 is expressed in the future stria vascularis (bracket). D, c-Met ™ (green) cells in the mesenchyme (similar cells in B) express a melanocyte marker,
tyrosinase (red). E, F, Higher magnification of the region of future stria vascularis indicated with a rectangle in D. Some of the c-Met *; Tyrosinase ™ cells appear to becoming incorporated into the
epithelium (arrowheads). G, At PO, Hgf is weakly expressed in the stria vascularis (bracket). H, c-Met is expressed in the intermediate layer of the stria vascularis (arrowheads) and the domain
adjacent to the stria vascularis (arrow) at P0. /, Connexin 26 ((x26) is expressed in the basal layer of the stria vascularis. J-L, Higher magnification of the stria vascularis in adult mice. Layers of basal
cells (b), intermediate cells (i) and marginal cells (m) are divided by white lines. c-Met protein (green) is colocalized with an intermediate cell marker, Kir4.1 (red).

80/70 (for USC system). The f, frequencies were 4, 8, 12, 16, and 24
kHz (for OPBREF system) or 5.6, 8, 11.3, 16, 22.6, and 32 kHz (for USC
system). DPOAE thresholds were defined by the visual inspection of
amplitude, which was always greater than the surrounding noise
floor. Results from both ears were essentially same. The results from
the right ear are presented.

Results

Hgf and c-Met are expressed in the developing cochlear duct
In an ongoing effort to determine the molecular differences
among structures in the developing cochlear duct, we analyzed

the developmental patterns of expression of the growth factor-
receptor combination of Hgf and c-Met. Expression of Hgf and
c-Met is first detected in the cochlear duct at E15.5 (Fig. 1A),
with little to no expression before this fetal age. Regional
markers such as Igf-1 indicate Hgf expression is located in the
prospective stria vascularis (Fig. 1A-C, brackets), whereas
c-Met is in a spatially complementary position, in the region
adjacent to the Hgf-expressing domain (Fig. 1B, arrow). In
addition, weak expression of both Hgfand c-Met is detected in
Kolliker’s organ at E15.5 (Fig. 1A, B, Ko), and a few c-Met ™
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cells are observed in the mesenchyme adjacent to the future
stria vascularis region (Fig. 1B, arrowheads). Immunohisto-
chemical analysis shows that the c-Met ™ cells in the mesen-
chyme express a melanocyte marker, tyrosinase, indicating
these cells are the melanocytes (Fig. 1D—F). At late gestation
and early postnatal stages, c-Met is expressed in a subset of the
stria vascularis cells (Fig. 1H, arrowheads), whereas there is
weak expression in the epithelium adjacent to the stria vascu-
laris (Fig. 1H, arrow). Immunohistochemical analysis shows
that c-MET is expressed in the adult organ of Corti. Double
labeling with Kir4.1 shows that c-MET * cells correspond to
the intermediate cells in the stria vascularis (Fig. 1J-L).

Intermediate cells are absent in the stria vascularis of
Hgf-cKO mutant cochlea

The patterns of expression of Hgf and ¢c-Met transcripts and pro-
teins are consistent with a role of HGF—c-MET signaling in the
development of the stria vascularis. To provide direct evidence
for such a role, we first performed conditional genetic studies to
delete the Hgf gene specifically in cochlear epithelium using
Pax2-Cre mice (Ohyama and Groves, 2004). The impact of elim-
inating HGF—c-MET signaling in the mutant epithelium was an-
alyzed by examining cell type-specific markers of the stria
vascularis at P1. The stria vascularis consists of three different cell
layers (Tachibana, 1999; Trowe et al., 2008, 2011), each of which
can be selectively labeled by specific transcripts: a basal cell layer
(Cldn11™, Connexin26%), an intermediate cell layer (Dct™,
Kir4.1%), and a marginal cell layer (Aldhla2™). At P1, the inter-
mediate cell marker, Dct, is missing in the cochlea of the Hgf-cKO
mouse, whereas cell-type-specific markers of the basal and mar-
ginal cells are present normally (Fig. 2). Immunostaining of adult
cochleas also show that marginal cells (KCNQ1 *) and basal cells
(Claudin11 ™) are still present, but there is an enduring loss of
intermediate cells (Kir4.1 ") in the Hgf~cKO mutant cochlea
(Figs. 2E,F).

Melanocytes fail to incorporate into the cochlear epithelium
in the absence of HGF

To determine the onset of defects of the stria vascularis in the
Hgf-cKO mutant cochlea, we analyzed the expression of interme-
diate cell markers during early cochlear development. Interme-
diate cells are thought to be melanocytes derived from NC cells
(Tachibana, 1999). At E13.5, Dct" melanocytes are observed
around the ventral side of the cochlear epithelium (Fig. 3A, upper
side, arrowheads). The number of melanocytes approaching the
cochlear epithelium appears to be unaffected in the absence of
HGF (Figs. 3A,C). AtE15.5, melanocytes are attached to the basal
side of a domain of cochlear epithelium where the prospective
stria vascularis forms (Fig. 3B). In the normal cochlea, these me-
lanocytes begin integrating into the layer of future marginal cells
of the cochlear epithelium from the basal turn of the cochlea at
E15.5 (Fig. 3B, bracket). In contrast, melanocytes remain on the
basal surface of the cochlear epithelium in Hgf-cKO mutant co-
chlea without forming an organized intermediate cell layer (Fig.
3B, arrowheads). At P1, few Dct ™ cells are detected outside of the
cochlear epithelium of the Hgf-cKO mutant cochlea, although
occasionally a few pigmented cells were observed as partially in-
corporated into the epithelium (Fig. 2D, arrowheads). This par-
tial incorporation was unusual, and may be due to incomplete
Cre-loxP recombination in the Pax2-Cre mice (Fig. 2G). These
results indicate that melanocytes are present at the epithelial-
mesenchymal boundary, but fail to incorporate into the cochlear
epithelium in the absence of HGF.
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Melanocytes fail to incorporate into the cochlear epithelium
due to NC cell-specific deletion of c-Met

The Pax2-Cre conditional gene knock-out system inactivates
genes in otic placode-derived inner ear epithelium (Ohyama and
Groves, 2004). c-Met is expressed not only in a part of cochlear
epithelium, but also in melanocytes during and after integration
of melanocytes into the stria vascularis (Figs. 1B,E). Thus, we
analyzed the effects of conditionally deleting c-Met specifically in
NC cells using the WntI-Cre line (Danielian et al., 1998; Chai et
al., 2000). Expression of the neural crest marker gene (Dct) indi-
cates that c-Met-deficient neural crest cells arrive at the base of the
stria vascularis, but fail to incorporate into the epithelium. The
disruption appears indistinguishable from Hgf cKO driven by
Pax2-Cre (compare Figs. 2, 3, Met-Nc-cKO). Together, the anal-
yses of the two conditional mutant lines indicate that the signal-
ing mediating melanocyte incorporation into the stria vascularis
is due to HGF secretion from the cochlear epithelium that acti-
vates the c-Met receptor on NC cells.

Epithelial-specific deletion of c-Met also causes defects in
melanocyte incorporation into the stria vascularis

As noted above, c-Met is expressed not only in the melanocytes,
but also in the cochlear epithelium (Fig. 1B). To thoroughly ex-
amine a putative role for c-MET receptor activation in the differ-
ent inner ear cell types, we next examined the effects of the loss of
c-Met specifically in the cochlear epithelium using Pax2-Cre
mice. We confirmed that Hgf expression in the cochlear epithe-
lium is not affected in the Met-Epi-cKO mutant cochlea (data not
shown). Surprisingly, there was a non-cell-autonomous effect on
melanocyte incorporation in the stria vascularis due to the ab-
sence of c-Met specifically in cochlear epithelium (Figs. 2, 3, Met-
Epi-cKO). The lack of incorporation appears as robust as seen in
the Hgf and NC ¢-Met deletion lines. Immunostaining of adult
cochleas revealed the presence of marginal cells (KCNQ1 ) and
basal cells (Claudin11 ™), but there is an enduring loss of inter-
mediate cells (Kir4.1 *) in Hgf-cKO, Met-Nc¢-cKO, and Met-Epi-
cKO mice, indicating that inactivation of Hgf, NC c-Met, and
epithelial c-Met all cause a failure of normal incorporation of
melanocyte-derived intermediate cells in the stria vascularis
(Figs. 2E,F).

Loss of HGF-c-MET signaling in cochlear epithelium results
in distinct malformations of the stria vascularis and tectorial
membrane

We further analyzed the phenotype of postnatal cochlea of Hgf
and c-Met conditional mutant mice. The tectorial membrane
that covers the apical surface of auditory hair cells (Fig. 4A) is
malformed in the Hgf-cKO cochlea. We observed an abnormal
cell layer surrounding the tectorial membrane, which appears
to disrupt the attachment of the tectorial membrane to the
hair cell stereocilia (Fig. 4B). These results are consistent with
the observation of Schultz et al. (2009) using FoxgI-Cre mice
to generate Hgf-cKO mice. In contrast to Hgf-cKO mutant
mice, the morphology of the tectorial membrane in both Met-
Nc-cKO and Met-Epi-cKO mutant mice appears normal (Fig.
4B). Measures of the width of the stria vascularis in adult
Hgf-cKO, Met-Nc-cKO, and Met-Epi-cKO mutant mice re-
vealed a statistically significant thinning compared to wild-
type mice (Fig. 4C).
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Figure 3.

Melanocytes fail to be incorporated into the stria vascularis of Hgf or c-Met mutant mice. A, At E13.5, in situ hybridization of a melanocyte marker, Dct, indicates that a similar number

of melanocytes (arrowheads) exists in mesenchyme adjacent to the cochlear epithelium of control, Hgf-cKO, Met-Nc-cKO, and Met-Epi-cKO mice. The mean number of Dct * cells is indicated in C. B,
Depiction of melanocyte incorporation into the future stria vascularis (sv) from the basal turn of the cochlear duct (bracket) in control cochleaat E15.5. The melanocytes remain outside of the cochlear
epithelium near the future stria vascularis region in the three conditional mutant mouse lines (arrowheads). €, The number of Dct * cells near the F13.5 cochlear duct for each genotype (4 embryos
represented by four different symbols) was counted from serial sections. Each number per cochlear duct was plotted, and the mean cell number per duct is presented with the SEM.

<«

Figure2. Intermediate cellsare absent in the cochlea of Hgf and c-Met mutants at postnatal
day 1. A, B, At postnatal day 1, basal cell markers, Claudin11 (Cldn11) and Connexin26 (Cx26),
are expressed in the stria vascularis (sv) of Hgf; Pax2-Cre conditional knock-out mouse (Hgf-
K0), neural crest cell-specific c-Met; Wnt1-Cre conditional knock-out mouse (Met-Nc-cK0), and
cochlear epithelium-specific c-Met; Pax2-Cre conditional knock-out mouse (Met-Epi-cKO0). C, A
marginal cell marker, Aldh1a2, is expressed in the absence of HGF—c-MET signaling. D, An
intermediate cell/melanocyte marker, Dct, is not observed in the stria vascularis of any of the
three conditional mutant mouse lines. Note that a few pigmented cells in the Hgf-cKO may be
incorporated into the epithelium (arrowheads) and a few cells remain in the mesenchyme near
the cochlear epithelium (Met-Nc-cKO, asterisks). £, Immunofluorescence images show a mar-
ginal cell marker, KCNQ1 (green), and a basal cell marker, Claudin11 (red), are expressed in adult
stria vascularis. F, An intermediate cell/melanocyte marker, Kir4.1 (green) is not expressed in
the stria vascularis (SV) of any of the three conditional mutant mouse lines, while itis expressed
in the spiral ligament (SL) of all four genotypes. G, Cre-loxP reporter signals (green) of E15.5
cochlear duct in Pax2-Cre and Wnt7-Cre animals. Note that Pax2-Cre does not exhibit 100%
efficiency in the cochlear epithelium. RM, Reissner's membrane.

Auditory hair cells develop normally at birth, but are
malformed and degenerated in the adult mutant cochlea in
the absence of HGF-c-MET signaling

We analyzed development of the auditory hair cells in Hgf- and
c-Met-deficient cochleae. At birth, both inner and outer hair cells
appear to be properly formed, and the morphology of the organ
of Corti appears normal (Figs. 5A,B). However, by 8 weeks of
age, the cell bodies of surviving hair cells appear to be malformed
in contrast to control littermates (Figs. 5C,D). In Hgf and c-Met
mutant cochlea, most outer hair cells have degenerated at the
basal turn of the cochlea (Fig. 5E). In contrast, at the mid-to-apex
turn, it appears that fewer inner and outer hair cells are missing
(Figs. 5C,D).

Loss of HGF-c-MET signaling in the cochlea causes deafness

Next, we examined the functional impact of the failure of inter-
mediate cell development due to the absence of HGF-c-MET
signaling. Constitutive Hgf-null or c-Met-null mutant embryos
die before birth (Bladt et al., 1995; Schmidt et al., 1995; Uehara et
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Absence of HGF— c-MET signaling causes thinning of the stria vascularis. A, Representative paraffin sections of hematoxylin and eosin—stained cochlear ducts from adult

Hgf-cKO, Met-Nc-cKO, and Met-Epi-cKO mice. The images illustrate that the gross morphology of the mutant cochleae is similar to that of controls. B, Higher-magnification images of
tectorial membrane (TM; rectangle in A) show an ectopic cell layer surrounding the tectorial membrane of Hgf-cKO mice (arrowhead). €, The widths of the stria vascularis (SV in 4) from
8-week-old cochlear ducts from each genotype (four animals represented by four different symbols) are plotted and expressed as the mean = SEM. The mean width of mutant stria

vascularis in all three genotypes is significantly reduced (Student’s ¢ test, p << 0.01).

al., 1995). However, Hgf-cKO and ¢-Met-cKO mutant mice gen-
erated with Pax2-Cre and WntI-Cre mice survive postnatally.
Thus, we were able to test auditory functions in young adult
mutant mice at 4—6 week of age. Compared to wild-type mice,
there is a threshold shift of 40—-70 dB (SPL) across all tested
frequencies measured in all mutants, indicating that mice in
which either Hgf or c-Met is deleted suffer from profound hearing
loss (Fig. 6). In addition, there are no detectable levels of distor-
tion product otoacoustic emission at any of the frequencies ana-
lyzed in the mutant mice (data not shown).

Discussion
The molecular mechanisms underlying the complex develop-
ment of the cochlea to achieve normal hearing have been chal-

lenging to discern (Heller, 2013). Here, we have focused on the
role of signaling through the receptor tyrosine kinase c-MET and
its only known ligand, HGF. During cochlear development, NC
cell-derived melanocytes are incorporated into the region of the
future stria vascularis of cochlear epithelium to form the inter-
mediate layer of the stria vascularis (Tachibana, 1999). Little is
known about the original location and migrating pathway of the
neural crest cells destined to migrate toward the stria vascularis.
There appear to be three critical steps of melanocyte incorpora-
tion: (1) the melanocytes approach the stria vascularis region in
response to unknown attractants; (2) the melanocytes adhere to
the cochlear epithelium at specific locations; and (3) the melano-
cytes incorporate into the cochlear epithelium. The present study
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suggests that HGF—c-Met signaling, either directly in melanocytes ~ Direct and indirect roles of the HGF—c-MET signaling

or indirectly in epithelial cells, is required specifically for step 3.  pathway in melanocyte incorporation into cochlear

The failure of the cells to form the intermediate cell layer by  epithelium

incorporation results subsequently in cochlear structural and ~ We found that HGF-c-MET signaling in either melanocytes or
profound hearing deficits. cochlear epithelial cells is necessary for melanocyte incorporation
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into cochlear epithelium. This was an unexpected result, suggest-
ing that cell autonomous and nonautonomous mechanisms
likely work in concert to direct proper integration of melano-
cytes. Melanocytes adhere to the future stria vascularis region of
the cochlear epithelium in the absence of HGF—c-MET signaling.
While currently unknown, the subsequent incorporation pro-
cesses that is dependent on HGF—c-MET signaling may underlie
cytoskeletal remodeling and modulation of extracellular matrix
to promote cell invasion into the stria vascularis. A direct signal-
ing effect on incorporation is consistent with the involvement of
c-MET activation by HGF in cell migration and other motogenic
processes (Bladt etal., 1995; Birchmeier and Gherardi, 1998; Beil-
mann etal., 2000; Zhang and Vande Woude, 2003). We identified
greater c-Met expression in a domain adjacent to the future stria
vascularis of cochlear epithelium compared to other regions of
cochlear epithelium (Fig. 1B, arrow). It is not clear whether
HGF-c-MET activation in this domain is required for melano-
cyte incorporation in a non-cell-autonomous manner.

Despite the fact that Hgf and c-Met mutant mice present pro-
found deafness in all range of frequencies at young adult stages,
hair cells remained in mid-to-apex region of the cochlea (Figs.
5C,D). Determining whether the surviving hair cells retain
mechanosensory functions will require additional studies. Kik-
kawa et al. (2009) reported that HGF protects hair cells from
aminoglycoside ototoxicity. It is thus possible that HGF—c-MET
signaling is important for longer-term survival of hair cells or
under conditions of cytotoxic stress. Since a similar degree of hair
cell loss occurs at the base of the cochlea in Hgf and c-Met mutant
mice (Fig. 5E), it is likely that malformation and loss of the hair
cells are caused indirectly by malfunction of the stria vascularis.

Melanocyte deficiency and deafness

As noted above, correlations between albinism and deafness have
been described for over 150 years. The findings presented here
provide a possible molecular mechanism for the relationship be-
tween NC-derived melanocytes and deafness. Human genetic
studies show that rare mutations in HGF and ¢-MET (DFNB39
and DFNB97) cause deafness (Schultz et al., 2009; Mujtaba et al.,
2015). Based on the three conditional mutant mouse models re-
ported here, we suggest that defects in the stria vascularis is suf-
ficient to cause hearing loss and may underlie deafness in these
patients. A number of genes identified in Waardenburg syn-
drome indicate deficiencies in NC specification, such as PAX3
and SNAIL2, and melanocyte differentiation, such as MITF and
SOX10 (Pingault et al., 2010). Mutations have been identified in
EDNRB and EDN3 in Waardenburg syndrome types IVa and
IVDb, respectively (Shah et al., 1981; Pingault et al., 2010). In the
mouse, Ednrb is expressed in NC cells, and Edn3 is expressed in
the epithelial layer of the stria vascularis around E15 to E17 (data
not shown). Thus, these genes also may be involved in melano-
cyte incorporation into the stria vascularis. Our present findings
reveal that the mouse homologues of the deafness genes DFNB39
(Hgf) and DFENB97 (c-Met) mediate the final step of the incor-
poration process of neural crest cell-derived melanocytes into the
stria vascularis. The normal developmental invasion of these
NC-derived cells is reminiscent of the pathological role that
HGF-c-MET signaling plays in cancer metastasis (Mazzone and
Comoglio, 2006; Gherardi et al., 2012). HGF is also called “scatter
factor,” promoting motility and invasiveness of the epithelial
cells (Naldini et al., 1991; Trusolino et al., 2010). During em-
bryogenesis, HGF—c-MET signaling is known to control the
epithelial-to-mesenchymal transition and migration of myo-
genic precursors into the limb bud (Bladt et al., 1995; Dietrich et
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al., 1999). Activating mutations of MET can cause metastatic
cancer progression, such as in head and neck cancers (Di Renzo et
al., 2000). Peinado et al. (2012) reported that metastatic melano-
mas secret exosomes including active MET that “educate” bone
marrow progenitor cells by increasing mobility and tumor niche
by altering the extracellular matrix. Thus, the findings here sug-
gest that such biological activity via c-MET receptor activation by
HGF is a normal part of regulating an invasion mechanism that is
crucial for organogenesis during embryonic development.

In conclusion, we have shown a unique role for the HGF and
c-MET receptor tyrosine kinase signaling pathway in the devel-
opment of the stria vascularis of the mouse cochlea, a nonsensory
epithelium. The disruption of the formation of the intermediate
cells thus results in deafness, which likely is relevant to syndromic
human deafness caused by rare mutations in the HGF or c-MET
genes. Further analysis is needed to discern the physiological cor-
relates of remaining hair cell dysfunction, and the downstream
molecular mechanisms mediating HGF-c-MET signaling that
enable migrating melanocytes to integrate into the cochlear epi-
thelium to form the stria vascularis.
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