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Dietary Luteolin Reduces Proinflammatory Microglia
in the Brain of Senescent Mice
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Abstract

Brain microglia become dysregulated during aging and express proinflammatory cytokines that play a role in
cognitive aging. Recent studies suggest the flavonoid luteolin reduces neuroinflammation and improves learning and
memory in aged mice. However, if dietary luteolin reduces microglia activity in the brain of senescent mice is not
known. We hypothesized that feeding aged mice a diet with luteolin would reduce microglia activity. Adult (3—6
months) and aged (22-24 months) mice were fed American Institute of Nutrition (AIN)-93M or AIN-93M with
luteolin (6 g/kg) for 4 weeks and injected intraperitoneally with saline or lipopolysaccharide (LPS) before microglia
were isolated and stained for major histocompatibility complex (MHC) class IL, interleukin (IL)- 1/, and IL-6 for flow
cytometry. In saline-treated mice fed control diet, aging increased the proportion of microglia that stained for MHC
class IT (<3% for adults vs. 23% for aged), IL-1 (<2% for adults vs. 25% for aged), and IL-6 (<2% for adults vs. 25%
for aged), indicating an age-related increase in proinflammatory microglia. In saline-treated aged mice fed luteolin,
the proportion of microglia that stained for MHC class II, IL-1, and IL-6 was reduced by nearly half (to 12%, 13%,
and 12%, respectively). Interestingly, luteolin significantly reduced the proportion of microglia that stained for IL-1
and IL-6 in LPS-treated adult mice but not aged. Collectively, the results show that a diet supplemented with luteolin
inhibited brain microglia activity during aging and activation by LPS in adults. Therefore, luteolin may inhibit

neuroinflammation and improve cognition in the otherwise healthy aged by constraining brain microglia.

Introduction

MICROGLIA ARE THE RESIDENT MACROPHAGES of the
central nervous system. Under healthy conditions,
“resting”’ microglia randomly extend and contract arms with
filopodia-like protrusions to survey the microenvironment.'
In response to insult, however, microglia become activated
toward a proinflammatory profile. In this state, they direct
the movement of the protrusions toward the insult," take on a
deramified morphology that enables motility,> and/or ex-
press major histocompatibility complex (MHC) class II and
other markers indicative of inflammation.’

During aging the percentage of brain microglia that express
MHC class II increases and signs of neuroinflammation
emerge. For example, <3% of microglia isolated from the brain
of young adult mice stained positive for MHC class II com-
pared to >25% of microglia from brains of aged mice.* Most of
the MHC class II-positive microglia from aged mice were also
interleukin (IL)-1p-positive.* This is consistent with a prior
study where the proportion of IL-6-positive microglia was
higher if the donor mouse was 22-24 months old compared to

6-months or 1 week old.” A recent study suggests that micro-
glia from aged mice retain a prominent pro-inflammatory
profile and are less sensitive to the anti-inflammatory effects of
IL-4.° Reducing the proportion of microglia that are activated
is a priority for reducing age-related neuroinflammation.

Flavonoids are naturally occurring polyphenolic compounds
present in plants. The major sources of flavonoids in the human
diet include fruits, vegetables, tea, wine, and cocoa.’ Sig-
nificant evidence has emerged to indicate that consuming a diet
rich in flavonoids may inhibit cognitive aging. For example, in
a prospective study of individuals aged 65 years or older, di-
etary flavonoid intake was associated with improved cognitive
function over a 10-year period.® Furthermore, data from the
Chicago Health and Aging Project suggested that adherence to
a Mediterranean diet reduced the rate of cognitive decline.’
Numerous other studies have yielded consistent results with
older rats or mice showin% improved cognitive function when
fed a flavonoid-rich diet.'®"?

A recent study of healthy aged mice found improved
learning and memory and reduced expression of inflammatory
genes in the hippocampus when the flavonoid luteolin was
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included in the diet.'” Luteolin inhibits several transcription
factors that mediate inflammatory genes (e.g., NF-kB'* and
activator protein-1 [AP-1]"%) in microglia and is a potent ac-
tivator of nuclear factor erythroid 2-related factor 2, which
induces expression of genes encoding antioxidant enzymes.'®
Thus, dietary luteolin may improve cognitive function in the
aged by reducing exaggerated brain microglial cell activity.
Indirect support for a microglia-dependent mechanism comes
from a recent in vitro study where luteolin stimulated the
formation of filopodia and caused ramification of BV-2 cells (a
microglia cell line).!” Hence, the flavonoid luteolin is a natu-
rally occurring immunomodulator that may be effective in
reducing inflammatory microglia in the senescent brain.

In the present study, we hypothesized that feeding a diet
with luteolin would reduce primed microglial cell activity in
the brain of aged mice, as well as lipopolysaccharide (LPS)-
induced activation in aged and adult mice.

Materials and Methods
Animals and treatments

Adult (3—6 month old, n=39) and aged (22-24 month old,
n=42) male Balb/c mice from our in-house breeding colony
were used. Mice were housed in polypropylene cages and
maintained at 21°C under a reverse-phase 12-hour light/12-hour
dark cycle with ad libitum access to water and rodent chow.

Luteolin supplementation was determined as previously
described.'® In short, before starting the experiment, all mice
were provided American Institute of Nutrition (AIN)-93M diet
(Research Diets, New Brunswick, NJ)l&19 for a 1-week ac-
climation period. Thereafter, control mice continued on AIN-
93M diet, while luteolin-fed animals were switched to AIN-
93M containing 6 g luteolin/kg diet. Luteolin was purchased
from Shaanxi Sciphar Biotechnology (Xian, China) and ho-
mogeneously blended into the AIN-93G control diet, pelleted,
and preserved in a manner to ensure the stability of luteolin.
Food intake was measured daily, while body weight was
measured weekly for the duration of the study. Food intake and
body weight changes were similar for the treatment groups.

After 4 weeks, mice from each dietary treatment were
injected intraperitoneally (i.p.) with saline or 0.03 mg/kg
(about 1 pg/mouse) Escherichia coli LPS (serotype
0127:B8; Sigma, St. Louis, MO). Thus, the eight treatments
comprised the 2x2x2 factorial arrangement of age (adult
vs. aged), diet (control vs. luteolin supplemented), and LPS
(saline vs. 1 ug). Mice were killed 4 hours after injection for
microglia isolation (described below). Food intake during
the 4-hour postinjection period was determined. All proce-
dures were in accordance with the NIH Guidelines for the
Care and Use of Laboratory Animals and were approved by
the Institutional Animal Care and Use Committee.

Microglia isolation

Microglia from whole brain were isolated as described
previously, with few modifications.* Mice were euthanized and
whole brains were collected, placed in sterile phosphate-
buffered saline (PBS), and then homogenized by passage
through a 70-um cell strainer in Dulbecco’s PBS (DPBS)
supplemented with 0.2% glucose. Homogenates were centri-
fuged (600 g for 6 minutes at 10°C) and resulting pellets were
resuspended in a 70% isotonic Percoll (GE-Healthcare) sup-
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plemented with phenol red (0.01%) at room temperature. The
suspension was centrifuged (2000 g for 20 minutes) on a dis-
continuous Percoll density gradient and microglia were col-
lected from the interphase between the 70% and 50% Percoll
layers. Cells were washed with DPBS and then resuspended in
PBS-0.5% BSA/0.01% sodium azide solution (flow buffer).
Each isolation yielded ~3x 107 viable cells from both adult
and aged mouse brains.

Extracellular and intracellular flow cytometric analysis

Flow cytometric analysis of microglial surface and intra-
cellular markers was performed based on the BD Cytofix/Cy-
toperm Plus  Fixation/Permeabilization  protocol (BD
Biosciences, San Jose, CA), as described previously, with a few
modifications.* In brief, isolated cells were incubated in
DMEM (BioWhittaker, Cambrex, MD) with 10% fetal bovine
serum (Hyclone, Logan, UT), 200 mM glutamine, 100 U/mL
penicillin/streptomycin (Invitrogen, Carlsbad, CA), and Bre-
feldin A (BD Biosciences) at 37°C in a humidified incubator
under 5% CO,, for 4 hours. After washing and blocking Fc
receptors with the anti-CD 16/CD32 antibody (eBioscience, San
Diego, CA), cells were incubated with anti-CD11b-
allophycocyanin (APC), anti-CD45™ fluorescein isothiocyanate
(FITC), and anti-MHC-II-R-phycoerythrin (PE) antibodies
(eBioscience). Next, cells were fixed and permeabilized with
the BD Cytofix/Cytoperm™ solution, washed and resuspended
in the BD Perm/Wash™ buffer, and incubated with either anti-
IL-1B-PE or anti-IL-6-PE (eBioscience) for 30 minutes. Cells
were washed in the BD Perm/ Wash™ buffer and resuspended
in a flow buffer.

Expression of surface and intracellular antigens was de-
termined using a Becton-Dickinson LSR II Flow Cytometer
(Red Oaks, CA). Thirty thousand events were collected and
microglia were identified by CD11b* and CD45"'°% expres-
sion.?’ Gating was determined based on fluorescently labeled
isotype antibodies for APC, FITC, PE (eBiosciences), and
unstained samples as controls. Flow data were analyzed using
FCS Express software (De Novo Software, Los Angeles, CA).

Statistical analysis

StatView and Statistical Analysis System software (SAS
Inst., Cary, NC) were used for data analysis. All data were
subjected to a three-way ANOVA to determine significance
of main factors (age, luteolin, and LPS) and all main factor
interactions. When appropriate, post hoc Student’s ¢ test of
least square means was used to determine if treatment means
were significantly different from one another (p <0.05). All
data are presented as mean+ SEM.

Results
Microglia isolation

Approximately 90%-95% of the viable cells isolated
from adult mice (n=39) were microglia (CD11b*/CD45"")
(Fig. 1a), while 85%-90% of the viable cells isolated from
aged mice (n=42) were microglia (Fig. 1b). In the case of
both adult and aged mice, less than 3% of the viable cells
isolated were macrophages (CD11b*/CD45"¢"). Based on
these findings, the expression of proinflammatory markers
was investigated in CD11b* stained cells (i.e., microglia)
from adult and aged mice and analyzed using flow cytometry.
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Isolation of microglia from adult and aged mouse brain. Representative dot blots of isolated cells that were

incubated with antibodies for extracellular markers CD11b and CD45 and analyzed by flow cytometry. Microglia were
identified by CD11b*/CD45'Y staining. (a) Approximately 90%-95% of the viable cells isolated from adults were CD11b*/
CD45", (b) while 85%-90% of the viable cells isolated from aged mice were CD11b*/CD45"".

Effects of dietary luteolin on microglia
in brain of aged mice

Adult and aged mice on the two dietary treatments were
injected i.p. with saline or LPS and microglia were isolated
and stained for MHC class II, IL-1f, and IL-6. Only one
significant three-way interaction was detected for IL-1f (age
X luteolin x LPS, n=8-11, p=0.05), so for clarity of pre-
sentation, data from saline-treated mice are presented sep-
arate from LPS-treated mice.

Figure 2 shows the mean percentage of MHC class II-
positive microglia from saline-treated adult and aged mice
fed control and luteolin-supplemented diets. In saline-treated

mice fed control diet, aging increased the proportion of mi-
croglia that stained positive for MHC class II (<3% for adults
vs. 22% for aged, n=8-11 p<0.001). In saline-treated adult
mice, dietary luteolin did not affect the proportion of mi-
croglia that were MHC class II-positive (2% for adult control
vs. 2% for adult luteolin, n =8-11), but in saline-treated aged
mice, the proportion of microglia that stained positive for
MHC class II was reduced by luteolin (22% for aged control
vs. 12% for aged luteolin, n=9-11, age x diet, p <0.05).
Similar results were evident when microglia were stained
for IL-1/ and IL-6 (Figs. 3 and 4). In saline-treated mice fed
control diet, aging increased the proportion of microglia that
stained positive for IL-1f (<2% for adults vs. 25% for aged,
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(a) Percentage of major histocompatibility complex (MHC) class II-positive microglia isolated from brains of

adult and aged mice after 4-week consumption of control or luteolin-supplemented diet and (b) representative two-color dot
blots from each condition. Values are mean+SEM (n=8-11). Labeled means without a common letter differ, p <0.001.
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FIG. 3.

(a) Percentage of interleukin (IL)-1f-positive microglia isolated from brains of adult and aged mice after 4-week

consumption of control or luteolin-supplemented diet and (b) representative two-color dot blots from each condition. Values
are mean*SEM (n=8-11). Labeled means without a common letter differ, p <0.05.

n=8-11, p<0.0001) and IL-6 (<2% for adults vs. 25% for
aged, n=8-11, p<0.001). In saline-treated adult mice, di-
etary luteolin did not affect the proportion of microglia that
were IL-1f- or IL-6-positive (<2% for adult control vs. <2%
for adult luteolin, n=8-11, for IL-1§ and IL-6), but in
saline-treated aged mice, the proportion of microglia that
stained positive for IL-1f (25% for aged control vs. 14% for
aged luteolin age x diet, n=9-11, p<0.05) and IL-6 (25%

for aged control vs. 13% for aged luteolin age X diet, n=9—
11, p<0.05) was reduced by luteolin.

Effects of dietary luteolin on the response
to peripheral immune stimulation

Figure 5 shows the effects of age and diet on the proportion of
microglia expressing the inflammatory markers after injection
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FIG. 4. (a) Percentage of IL-6-positive microglia isolated from brains of adult and aged mice after 4-week consumption of

control or luteolin-supplemented diet and (b) representative two-color dot blots from each condition. Values are mean*
SEM (n=8-11). Labeled means without a common letter differ, p <0.05.
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FIG. 5. Percentage of MHC class II-positive (a), IL-1p-
positive (b), and IL-6-positive (¢) microglia isolated from
brains of adult and aged mice after 4-week consumption of
control or luteolin-supplemented diet and injection of lipo-
polysaccharide (LPS). Values are mean+SEM (n=8-11).
Labeled means without a common letter differ, p <0.04.

of LPS. As observed in other similar studies, LPS did not affect
MHC class II expression by microglia in either the adult or aged
brain (Fig. 5a), although a trend for an age x diet x LPS inter-
action (n=_8-11, p <0.06) suggested the reduction of microglia
expressing MHC class II in aged mice fed luteolin was reduced
when the immune system was stimulated. Peripheral injection of
LPS increased the proportion of microglia that stained positive
for IL-1 and IL-6 (Fig. 5b, ¢). The number of cytokine-positive
microglia trended higher when derived from aged mice, but the
LPS x age interaction was not significant (p=0.19 and p=0.20
for IL-1p and IL-6, respectively, n=8-11), which suggests that
the dose of LPS used did not elicit the maximal inflammatory

BURTON ET AL.

0.8+
1 Adult W Aged
< a
» 0.6
£ a
o
o a
E 0.44 a a,b
3
£ b
b
'§ 0.2+
ooll L s | i
Saline LPS Saline LPS
Control Diet Luteolin Diet

FIG. 6. Food intake of adult and aged mice after 4-week
consumption of control or luteolin-supplemented diet and
injection of LPS. Food intake was measured for 4 hours
after injection. Bars represent the mean+ SEM (n=8-11).
Labeled means without a common letter differ, p <0.01.

response in both age groups. Interestingly, feeding luteolin re-
duced the proportion of microglia that stained positive for IL-1
and IL-6 after LPS injection in adults (p<0.04 and p<0.01,
respectively, n=8-11) and only trended to do so in the aged
(p=0.12 and p=0.08, respectively, n=8-11).

In adult and aged mice fed control diet, food intake was
reduced in the 4-hour period after LPS injection (p <0.01,
n=28-11; Fig. 6). The age X diet X LPS interaction was not
significant (p=0.15). There was a trend for luteolin to in-
hibit the LPS-induced decrease in food intake (luteolin X
LPS interaction) in adult (n=8-11, p=0.10) but not aged
(n=9-11, p=0.16) mice.

Discussion

Microglial cell activity and signs of inflammation increase
in the brain of senescent mice.>>'>* Although evidence in-
dicates that luteolin is an immunomodulator that may be ef-
fective in reducing age-related inflammation,'® whether
ingesting a diet supplemented with luteolin reduces brain
microglial cell activity had not been examined before. The
important results show that providing mice a diet supple-
mented with luteolin inhibited increases in brain microglial
cell activity and proinflammatory cytokine production in aged
mice and after stimulation of the peripheral immune system in
adult mice. Therefore, consuming a diet supplemented with
luteolin or perhaps other flavonoids may constrain brain mi-
croglial cells and inhibit neuroinflammation.

Reducing proinflammatory cytokine production by mi-
croglia may be critical for preventing behavioral pathol-
ogy in the elderly. Evidence suggests primed microglia in
the senescent brain not only constitutively produce
proinflammatory cytokines but also produce excessive
levels of proinflammatory cytokines in response to pe-
ripheral infection,®?""*>* tissue trauma caused by sur-
gery,”*?” and acute psychological stress.”® Results of the
present study show a similar trend toward an age-related
increase of IL-1f-positive microglia after LPS (23% in
adult mice vs. 39% in aged mice), but the age x LPS
interaction did not reach significance perhaps because the
dose of LPS was too low. To avoid masking potential
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effects of luteolin, the dose of LPS used in this study was
lower than what has been used previously.*

The heightened production of proinflammatory cytokines
by microglia is thought to underlie severe behavioral deficits
seen in aged rodents after peripheral immune stimulation.?’
Consistent with this notion, intracisternal injection of IL-1
receptor antagonist (IL-1ra) reduced neuroinflammation and
prevented postoperative cognitive decline in aged rats, and
intracerebroventricular injection of IL-1ra inhibited behav-
ioral deficits caused by peripheral injection of LPS in aged
mice.*® Thus, by reducing the number of proinflammatory
microglia in the senescent brain and the sensitivity of mi-
croglia to peripheral immune stimulation, supplemental
flavonoids may provide a pragmatic way to improve the
likelihood for successful aging.

In the present study, supplemental levels of luteolin were
investigated. Based on an average daily food intake of 3—4 g, we
estimate mice provided the luteolin-supplemented diet ingested
18-24 mg/d luteolin. If adjusted for body weight, this far ex-
ceeds what a person could obtain eating a diet rich in fruits and
vegetables and thus needs to be supplemented. However, fruits
and vegetables contain a variety of flavonoids and other bioac-
tives that may interact at lower concentrations.

In a previous mouse study, plasma levels of luteolin were
assayed by HPLC.'® In addition to luteolin, several uniden-
tifiable peaks were detected in the plasma from mice fed
luteolin. This suggests the presence of luteolin metabolites
such as luteolin monoglucuronide, the main metabolite of
luteolin or perhaps phenolic acid compounds generated in the
large intestine. Studies have found that these metabolites may
play an imgortant role in the anti-inflammatory effects of
luteolin.*!*? For example, feeding rats dietary supplements
of fruit and vegetable extracts for 8 m beginning at 6 m of age
prevented neurochemical and behavioral signs of brain ag-
ing.*® Rats provided fruit and vegetable extracts had in-
creased dopamine release by striatal slices, increased
percentage of cerebellar Purkinje neurons that responded to
the f-adrenergic agonist, isoproterenol, and improved spatial
learning compared to age-matched rats fed control diet.*

Another study by the same group indicated that feeding
older rats dietary supplements of fruit and vegetable extracts
could reverse signs of brain aging.!' More recently, a 7-
week supplementation with a blueberry diet (2% w/w) im-
proved spatial learning and memory of young rats.>* All of
these observations in rodents help understand the positive
correlation between flavonoid intake and cognitive function
reported over a 10-year period for men 65 years of age or
older,® and both men and women aged 50-69 years."> As a
result, flavonoids have been suggested as novel naturally
occurring agents for preventing neuroinflammation, cogni-
tive aging, and age-related neurodegenerative diseases.’
The results of the present study suggest microglial cells as
an important target of luteolin and perhaps other flavonoids
that affect similar intracellular pathways.

That luteolin would target microglia is not unexpected.
We previously showed in a microglia cell line (BV-2) that
luteolin reduced LPS-stimulated IL-6 production by in-
hibiting c-Jun N-terminal kinase phosphorylation and acti-
vation of AP-1."> Another group, also using BV-2 cells,
showed that luteolin induced global changes in the tran-
scriptome leading to an anti-inflammatory phenotype.'” A
recent study with aged mice found improved learning and
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memory and reduced expression of inflammatory genes in
the hippocampus when luteolin was included in the diet.'
The present study was limited in scope with the specific
objective to determine if dietary luteolin reduced microglial
activation and expression of proinflammatory cytokines.
From the present study we cannot say that ingested luteolin,
which is detectable in blood,'0 accessed the brain and acted
directly on microglia. Although the presence of luteolin in
the brain was not determined, evidence suggests that fla-
vonoids generally can penetrate the blood—brain barrier.>®
Thus, it is reasonable to predict that circulating luteolin had
access to the microglial cell compartment. In addition, al-
though the presence of peripheral cytokines was not deter-
mined, evidence suggests if luteolin reduced immune-to-
brain signaling by an undefined peripheral mechanism, this
too could explain the reduced signs of inflammation in the
brain. In any case, the practical conclusion is that ingestion
of a luteolin-supplemented diet reduced the number of
primed proinflammatory microglia in the brain of aged mice
even after stimulation of the peripheral immune system.
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