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Abstract

There is a well-established literature linking obesity to altered dopamine signaling and brain 

response to food-related stimuli. Neuroimaging studies frequently report enhanced response in 

dopaminergic regions during food anticipation and decreased responses during reward receipt. 

This has been interpreted as reflecting anticipatory “reward surfeit”, and consummatory “reward 

deficiency”. In particular, attenuated response in the dorsal striatum to primary food rewards is 

proposed to reflect anhedonia, which leads to overeating in an attempt to compensate for the 

reward deficit. In this paper, we propose an alternative view. We consider brain response to food-

related stimuli in a reinforcement-learning framework, which can be employed to separate the 

contributions of reward sensitivity and reward-related learning that are typically entangled in the 

brain response to reward. Consequently, we posit that decreased striatal responses to milkshake 

receipt reflect reduced reward-related learning rather than reward deficiency or anhedonia because 

reduced reward sensitivity would translate uniformly into reduced anticipatory and consummatory 

responses to reward. By re-conceptualizing reward deficiency as a shift in learning about 

subjective value of rewards, we attempt to reconcile neuroimaging findings with the putative role 

of dopamine in effort, energy expenditure and exploration and suggest that attenuated brain 

responses to energy dense foods reflect the “fuel”, not the fun entailed by the reward.
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Obesity results when energy intake chronically exceeds energy expenditure [1]. The 

neurotransmitter dopamine plays a role in both sides of this energy balance equation by the 

regulation of food intake [e.g., 2], the invigoration of behavior [3, 4], and the integration of 

metabolic signals into brain reward circuits [5-9]. There is evidence in humans [10-21] and 

in animals [22-29] that obesity is associated with alterations in dopaminergic 

neurotransmission. For example, attenuated blood oxygen level dependent (BOLD) response 

to palatable food receipt is consistently observed in the dorsal striatum in overweight and 

obese individuals [19, 20, 30-32]. Although BOLD is only an indirect marker of neural 

activation, this response is linked to dopamine signaling because it is associated with 

polymorphisms that affect dopamine D2 receptors [18, 19] and positron emission 

tomography (PET) derived measures of dopamine signaling [33]. Specifically, carriers of the 

A1 allele of the TaqIA A1 polymorphism show reduced D2 receptor density compared to 

non-carriers [34, 35] and largely drive the inverse association between response in the dorsal 

striatum to caloric liquids such as milkshake and body mass index (BMI) or weight gain 

[18-20], while D2 receptor binding potential in the striatum is also associated with BMI 

[10-17].

Anhedonia commonly refers to a reduced ability to experience pleasure or a diminished 

response to rewarding stimuli [36-38]. According to the Diagnostic and Statistical Manual of 

Mental Disorders (DSM), anhedonia is one of the core symptoms of major depression [39]. 

Although anhedonia has received considerable interest in basic neurobiological research, the 

understanding of the concept has been hampered by ambiguities in the definition and 

operationalization of anhedonia [38]. In past decades, converging evidence has established 

that mesolimbic dopamine is related mainly to “wanting”, but not “liking” of rewards 

[40-42]. However, clinical diagnosis and most anhedonia self-report questionnaires do not 

distinguish between reduced motivation to obtain a reward (wanting) and reduced experience 

of pleasure when the reward is being obtained (liking; anhedonia [38]).

Similarly, the interpretation of the blunted dorsal striatal response as evidence of anhedonia 

fails to consider the other functions of dopamine signaling, as well as the considerable 
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evidence that dopamine contributes to regulating motivated behavior rather than “pleasure” 

per se [43]. We therefore offer a reinterpretation of dorsal striatal attenuations associated 

with obesity and weight gain susceptibility. Specifically, we apply a reinforcement learning 

framework [44] and argue that the data are better represented as differences in reward-

related learning, which has been consistently linked to dopamine D2 receptor function in 

animals [e.g., 45] and humans [46-48] but not to anhedonia.

A reinterpretation of the attenuated dorsal striatal response

The reduction of D2 receptors in the dorsal striatum has been considered a hallmark finding 

in drug addiction [49]. Whereas initial evidence suggested similar effects in obese 

individuals [17], flanked by animal studies indicating that this deficit could be diet-induced 

[28], this finding has not been consistently replicated to date [10]. Consequently, Horstmann 

et al. [10] have proposed an alternative interpretation of the conflicting data by arguing in 

favor of a nonlinear relationship between BMI and dopaminergic tone. This notion echoes 

the non-linear relationship that has been observed between BMI and reward sensitivity [50]. 

It posits that dopaminergic tone is lowest for overweight and mildly obese individuals, 

which amplifies phasic dopamine signals (relative to the overall dopaminergic tone), thereby 

increasing sensitivity to reward [10].

Neuroadaptive changes have been commonly observed with the progression of addictive 

behavior. Whereas drug-seeking is initially guided by the prospect of positive reinforcement, 

the “dark side” of reinforcement, which is represented by negative reinforcement due to the 

reduction of withdrawal, becomes increasingly important with continued substance use [51, 

52]. This is also reflected in a shift from impulsive to compulsive behavior. The addiction 

cycle is characterized by three stages: 1) binge/intoxication, 2) withdrawal/negative affect, 

and 3) preoccupation/anticipation [51]. These stages have been associated with distinct brain 

networks. Binge/intoxication is supported by the mesolimbic network of ventral tegmental 

area and ventral striatum, withdrawal/negative affect by the extended amygdala, and the 

preoccupation/anticipation stage by a more distributed “craving” network involving the 

orbitofrontal cortex, dorsal striatum, prefrontal cortex, basolateral amygdala, hippocampus, 

and insula as well as “cognitive control/inhibition” network involving the cingulum, the 

dorsolateral prefrontal, and the inferior frontal cortex [51]. Notably, food addiction appears 

to resemble many aspects of other substance-related addictions, which points to a perhaps 

more generalized mechanism [53]. Critically, during protracted withdrawal (i.e., after acute 

withdrawal symptoms have declined), hypofunction in dopamine pathways has been 

observed as indicated by decreases in D2 receptor expression and decreases in dopamine 

release [51]. As a result, it has been hypothesized that these neuroadaptations may contribute 

to anhedonia and amotivation, which are commonly reported by individuals suffering from 

addiction, while sensitivity to conditioned drug cues might be enhanced at the same time 

[51]. To summarize, escalation of substance intake driven by positive reinforcement may 

contribute to neuroadaptations within the striatum that, in turn, lead to changes in reward-

seeking behavior, effectively reinstating addictive behavior via negative reinforcement.

In order to improve our understanding of the neurobiological substrates of anhedonia, 

“reward deficits” can be grouped into different facets. At least four broad categories can be 
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distinguished that have been linked to anhedonia in the past, depending on the experimental 

operationalization, namely consummatory (e.g., sucrose intake), anticipatory (e.g., food 

cue), motivational (e.g., effort), and learning (e.g., speed of reward-related learning) deficits 

[54]. While consummatory deficits map most intuitively onto the definition of anhedonia as 

reduced experience of pleasure, it is important to note that patients with major depression do 

not show an attenuated preference for sweet solutions over water, which is a common animal 

model for studying anhedonia [54]. In the following perspective, we argue that brain 

response to palatable milkshake may reflect all four facets of the “reward” response 

depending upon the exact task design.

Although it seems intuitive that the brain response to a palatable food mainly reflects the 

pleasure derived from it, there is conflicting evidence that blunted dorsal striatal response to 

caloric beverages such as milkshake reflect experienced pleasure. First, in healthy weight 

individuals responses in the dorsal striatum during chocolate consumption correlate with 

changes in wanting and liking that occur as the chocolate is consumed to beyond satiety [55] 

and meal-induced dopamine release in the dorsal striatum correlates with ratings of meal 

pleasantness [56]. However, studies that observe an association between BMI and dorsal 

striatal response to milkshake fail to find associations between BOLD response and 

individual differences in the rated liking of the milkshake [30]. Second, in a case-control 

study, individuals with the A1 allele and obesity or binge eating disorder had higher reward 

sensitivity (as assessed by two personality questionnaires) than normal-weight controls [57]. 

Collectively, these studies suggest that dorsal striatum response during palatable nutrient 

intake reflects the effect of internal state on the reinforcing properties of food but that the 

blunted response in obesity is unlikely to reflect anhedonia.

Positive and Negative Outcome Learning

Recently, theorists have applied a Bayesian approach to understanding brain function. The 

central feature of this approach is that the mind assigns probabilities to hypotheses and 

updates them according to Bayesian rules of inference. Here “agents” seek to optimize the 

value of future behavior and minimize surprise by trying to minimize the “free energy” [58]. 

Analogous to the minimization of free energy, reinforcement learning algorithms (e.g., Q-

learning) seek to minimize surprise by sequentially improving value predictions. The 

predictions can be improved by the use of reward prediction errors, which serve as “teaching 

signals” to optimize action. Whereas surprise is present whenever expectations are violated 

(i.e., surprise is an “unsigned” prediction error), the concept of positive and negative 

outcome learning is key to understanding reward-related learning in particular. Within a 

reinforcement learning framework, positive updates occur whenever a reward is obtained 

that exceeds the current expectation (or an expected punishment is omitted), whereas 

negative updates occur whenever a reward is omitted that was being expected (or an 

unexpected punishment occurs). The Bayesian brain perspective, which can be seen as a 

more general framework than reinforcement learning, has also been applied to interoceptive 

processing. Here the perception of a food reward is thought to be dependent on an initial 

expectation of the stimulus, which upon consumption may produce a prediction error to 

update future inferences according to Bayesian principles [59]. This concept is supported by 

differences in the brain response to taste based on expectations of taste identity [60].
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The dorsal striatal response to food-related stimuli appears to reflect aspects of prediction 

and, consequently, prediction error signals. Specifically, the direction of the association 

between BMI and dorsal striatal response to milkshake in A1 carriers depends upon whether 

the milkshake is cued and predictable or uncued and unpredictable. More specifically, the 

initial studies reporting a decreased response to milkshake in obese A1 employed a 

paradigm where cues predict the arrival of a milkshake [19, 20]. More recently, the same 

quality and quantity of milkshake has been delivered without cueing and at random intervals. 

In this case increased dorsal striatal response in A1 carriers is associated with weight gain 

over a one-year period [61]. In contrast to deterministic designs, probabilistic cue designs 

promote the generation of value expectations based on the likelihood of receiving a reward 

within a certain time following a cue. BOLD responses in the dorsal striatum may therefore 

reflect distinct parameters in a reinforcement learning framework, depending upon design. 

These parameters distinguish between anticipatory and consummatory aspects of anhedonia 

on the one hand and learning on the other hand [54].

Striatal Circuits and Positive and Negative Outcome Learning

Striatal dopamine receptors can be mapped onto two distinct neural pathways, namely the 

D1 “go” circuit and the D2 “no-go” circuit [e.g., 47, 48]. D1 receptor function mainly 

predicts learning from positive outcomes, whereas D2 receptor function mainly predicts 

learning from negative outcomes. The hypothesized neurophysiological mechanism is that 

dopamine D1 receptors have a lower affinity, which makes them primarily responsive to 

large phasic bursts of dopamine, whereas the high-affinity D2 receptors are sensitive to the 

smaller dips in dopamine release that occur after unexpected reward omission [47]. 

Dopaminergic tone is thought to modulate the balance between reward-related vs. 

punishment-related learning with high dopaminergic tone favoring learning from positive 

outcomes [62]. These interpretations have been corroborated by a recent PET study 

demonstrating that a) D1 receptor availability in the dorsal striatum is positively related to 

positive outcome learning, b) D2 receptor availability in the dorsal striatum is related to 

negative outcome learning in an inverted u-shape manner, and c) that dopamine depletion 

improves negative outcome learning, but not positive outcome learning [46]. In particular, 

D2 receptor function seems to be involved in learning from trials where reward is at stake 

(compared to punishment involving the loss of money). Specifically, whereas enhancement 

of tonic dopamine by administration of L-DOPA increases the dynamic range of prediction 

errors (i.e., by increasing the magnitude of positive and negative updates) and improves 

reward-related learning, the inverse D2 receptor agonist haloperidol decreases the dynamic 

range of prediction error signals and attenuates reward-related learning [63]. BOLD 

responses to food-related cues may therefore reflect a combination of tonic and phasic 

responses driven by interaction between D1 and D2 receptor signaling.

There is emerging evidence that reinforcement learning is impaired in obese individuals. 

Preliminary evidence is pointing to a perhaps stronger impairment in negative outcome 

learning in obesity [cf. 10]. However, it is also possible that both forms of learning are 

impaired. Whereas obese participants in Coppin, Nolan-Poupart [64] showed impaired 

negative, but not positive outcome learning in a probabilistic learning task, the same 

participants showed impaired conditioning for both the “positive” and the “negative” pattern 
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in a conditioning cue preference test. Thus, an alternative interpretation would be that obese 

participants have a general impairment in value-based learning and that the balance between 

learning from positive and negative outcomes could be shifted in addition because of 

differences in dopaminergic tone [62]. This would explain why obese individuals do not 

show improved learning for negative outcomes as normal weight individuals do, but lower 

acquisition of the contingencies in general. Likewise, food-reward specific impairments in 

reversal learning have been reported in obese women that could be explained by impairment 

in both positive and negative outcome learning [65].

A general insensitivity to learning cues may also account for the observation that impulsivity 

is inversely associated with BOLD response to milkshake in the dorsal striatum, especially 

in overweight and obese individuals [30]. Accordingly, impulsivity has been associated with 

D2 receptor polymorphisms [66] and linked with reduced D2/D3 receptor availability in the 

striatum [67] and the midbrain [68]. The association in the midbrain is in turn correlated 

with enhanced amphetamine-induced dopamine release in the striatum, suggesting impulsive 

responding results from diminished inhibitory autoreceptor control over striatal dopamine 

release [68]. Taken together, these studies suggest that the negative association between BMI 

and striatal response to milkshake is associated, at least in part, with D2-dependent 

dopamine signaling, which in turn influences impulsive responding. However, impulsivity 

can be defined as a tendency for premature choices without foresight and despite negative 

consequences [69]. According to the influential reinforcement learning algorithm called Q-

learning [70], agents seek to maximize the total discounted expected reward and the degree 

of temporal discounting is captured by the discount rate γ. A higher discount rate reduces the 

subjective value of rewards that are more distant in time making them less attractive to 

pursue. The association between dorsal striatal response and impulsivity may therefore 

reflect to some degree increased temporal discounting resulting in diminished sensitivity to 

learn about future reward outcomes. Relatedly, high trait impulsivity has recently been 

linked to diminished generation of prediction error signals in the prefrontal cortex that 

reflect deliberative (“model-based”) control and foresight [71].

In summary, there are viable interpretations of the blunted striatal responses besides 

anhedonia. Below we consider the possibility that the robust inverse association between 

BMI and dorsal striatal responses to nutrient intake is an indication of attenuated reward-

related learning signals. We then outline a model mapping this interpretation onto the 

observed published findings.

A reinforcement learning perspective on anhedonia

In contrast to most self-report questionnaires of anhedonia, reinforcement learning models 

provide a clear mathematical distinction between the primary sensitivity to reward and the 

ability to learn from reward feedback [37]. This distinction is of critical importance because 

it is mainly learning from reward feedback that is consistently linked to D2 receptor 

function. Although many different designs have been used to study the brain response to 

food rewards using fMRI (Figure 1), the reinforcement learning framework can be applied to 

any design. Furthermore, separate learning rates can be introduced to capture differences in 

learning from positive or negative outcomes or rewards versus punishment. While these 
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additional parameters can substantially improve our understanding of the learning 

mechanisms involved in value-based decisions, they also come at the cost of increased 

complexity. Thus, the use of additional free parameters always has to be justified by the 

additional variance that they may capture in a given dataset. Here, we provide one example 

to illustrate the overall approach.

In our hypothetical study, we define the outcomes as receipt of a bolus of caloric milkshake 

or a noncaloric tasteless and odorless solution. Each outcome has a specific cue associated 

with it which never predicts the other outcome and only predicts the associated outcome in a 

probabilistic fashion. Such a design was used by Burger and Stice [72] to examine cue–

reward learning. They found differences in cue-reward learning slopes and reward-receipt 

habituation slopes across milkshake runs predict weight change [72]. This approach is 

complementary to what we propose, which is applied at the trial level, and provides an 

excellent example of how different aspects of learning can be quantified given careful design 

of a study. In our approach we denote the probabilistic cue design as p(milkshake|

cuemilkshake) = .5 and p(milkshake|cuetasteless) = 0. There is no uncued receipt of milkshake, 

p(milkshake|no cue) = 0. Following the notation of Huys, Pizzagalli [37], we denote the 

delivery of a milkshake reward on trial t as rt = 1 and the omission of the reward as rt = 0. 

The participant assigns this reward the value ρ and we assume that participants build an 

expectation of the reward value, Qt. This expectation can be derived by learning via trial-

based reward-prediction errors δt.

(1)

which reflect the difference between the expected reward value (Qt) and the received reward 

(rt), adjusted by the reward sensitivity parameter ρ. Expectations can be formed by adding 

the error term δt to the previous expectation.

(2)

The parameter ε (alternatively denoted as α; [73]) acts as learning rate and adjusts how fast 

expectations are formed by the use of prediction errors (also called delta rule). Within this 

simple reinforcement learning framework, anhedonia might be associated with two 

parameters, namely the reward sensitivity parameter ρ, and/or the learning rate ε. High 

values of ρ indicate higher sensitivity to, or greater subjective value of, the reward because 

the reward is multiplied with ρ [37]. Thus, the reward sensitivity parameter maps onto the 

anticipatory and the consummatory facets of anhedonia that are commonly employed to 

measure anhedonia [54]. In contrast, high values of ε increase the speed at which reward 

affects behavior because the prediction errors are multiplied with ε and thereby maps onto 

the aspect of learning [54]. Critically, the prediction-error signals δt have been commonly 

associated with phasic activity of dopamine neurons [74-76]. Hence, differences in 

dopaminergic neuromodulation that act via prediction-error signaling would be expected to 

modulate the learning rate ε [37]. It is also important to note that it is possible to include 
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information on the cue association provided by practice or instructions into the equation 2. 

For our simulated example, we set the expected value of the cue to half of ρ * rt because 

only 50% of the rewards are predicted by the cue. In other words, the participants in our 

hypothetical study know the probabilistic association of the cues when they start the task. 

We selected this instructed design to show that differences in the brain signal can also arise 

due to differences in learning when participants start with the same value expectations (Qt).

To investigate the selective effect of anhedonia or dopamine on the two reinforcement 

learning parameters, we need to establish that these two aspects can actually be separated 

[cf. 37]. Although reward sensitivity and learning rates affect distinct elements in the 

equations 1 and 2, respectively, the obtained parameters will tend to be inversely coupled. 

This is because the reward rt is multiplied by both ρ (to calculate the prediction error in 

equation 1) and ε (to update the expectation for the next trial Qt+1 in equation 2; [73]). 

Nevertheless, since ρ only affects one term in equation 1 to calculate δt, whereas ε controls 

the effect of δt on the expectation for the next trial in equation 2, these quantities are 

mathematically distinguishable. Whereas reward sensitivity governs the value that the 

reward would approach over time, the learning rate would affect how quickly this asymptote 

is reached [37]. This independence has allowed researchers to disentangle subtle aspects of 

appetitive behavior. For example, drawing on a behavioral meta-analysis that involved data 

from six experiments and 313 individual participants, Huys, Pizzagalli [37] were able to 

address the question of the selectivity of anhedonia on motivated behavior at this 

quantitative level. Employing a probabilistic reward learning task, they found that anhedonic 

depression, a subscale of the Mood and Anxiety Symptom Questionnaire [77], was 

significantly and specifically correlated with the reward sensitivity parameter ρ, but not the 

learning rate ε [37]. Similarly, major depression was most likely associated with a change in 

reward sensitivity, not the learning rate, in categorical model comparisons using the so-

called Bayes factor (i.e., reflecting the evidence in favor of one model/explanation over the 

others given the observed data). Intriguingly, administration of a low dose of the D2 receptor 

agonist pramipexole mainly affects performance by reducing the learning rate ε [37]. Taken 

together, the elegant study by Huys et al. outlines the enormous potential of model-based 

analyses in disentangling distinct psychological aspects of reinforcement by the use of 

reinforcement learning techniques and provides a quantitative framework for the conclusions 

derived from our literature review.

Differences in brain response to reward illustrated by simulated 

reinforcement learning

To create quantitative predictions based on the equations of the reinforcement learning 

framework outlined above, we created random task sequences of 50 trials that start with the 

milkshake cue. All of the sequences were fully balanced (i.e., 25 trials involved predicted 

administration of milkshake and 25 trials only involved the cue and the “predicted” reward 

was omitted; outcome null event). Trials including the administration of the tasteless 

solution did not have to be incorporated in the model because we can assume that a) the 

reward value of tasteless solution is close to zero and b) it does not interact with the reward 

value of milkshake. Both assumptions are standard in the analysis of fMRI data. Second, we 
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created a parameter grid to simulate participants with all combinations of reward sensitivity 

and learning rates. Since both parameters are orthogonal, we can depict the effect of altering 

each parameter separately (see Figure 2 and 3). For each of the 16 × 19 pairs of parameters, 

we simulated 10 participants leading to a total of 3,040 simulated participants and 152,000 

simulated trials.

The simulated data illustrate the main differences between the learning rate parameter and 

the reward sensitivity parameter in a probabilistic cue task as it would be assessed with 

fMRI group statistics. Whereas changes in learning rates do not affect the average cue 

responses (i.e., value expectations), changes in reward sensitivity lead to proportional 

changes in cue responses (i.e., anticipatory aspect of anhedonia). Critically, when the reward 

is being received, both reward sensitivity (i.e., consummatory aspect of anhedonia) and 

learning rates make highly similar predictions because both parameters scale positively with 

the modeled brain signal at the outcome stage (Figure 2). In other words, the brain response 

to palatable food does not only dependent on reward sensitivity (reflecting reward surfeit vs. 

deficit), but also on the associated update signals. Consequently, the attenuated brain 

response to food in the dorsal striatum in obesity could also be explained by alterations in 

learning or a combination of both reward sensitivity and reward-related learning.

This pattern of results demonstrates an important aspect about study design within the 

reinforcement learning framework. In order to differentiate between reward deficiency and 

“learning deficiency”, it is necessary to look at the cue and the outcome stage in 

combination, because neither alone might be sufficient to explain the results at each event. 

We illustrate this by selecting a subset of participants with high reward sensitivity, but low 

learning rates (Figure 3). Due to the high sensitivity of this subgroup to reward, we see high 

reward expectations at the cue stage (Figure 3, lower left panel). While this would also lead 

to stronger prediction error signals at the reward outcome stage, this effect is overshadowed 

by the low learning rates of this subset of participants (Figure 3, lower right panel). On the 

one hand, we see a reward surfeit at the cue (anticipatory) stage and on the other hand, we 

see a reward deficit at the outcome (consummatory) stage. This pattern strongly resembles 

the results obtained in the dorsal striatum in overweight/obese individuals.

Although simulations cannot provide an answer to the question of whether this pattern of 

differences is truly caused by higher reward sensitivity and lower learning rates, the 

simulations can demonstrate that such a reinforcement learning policy is able to generate 

exactly this diverging pattern. Thus, blunted reward outcome signals can even occur when 

there is heightened reward sensitivity in a probabilistic cue task such as the one employed in 

our representative example. This leads to the perhaps non-intuitive conclusion that reward 

sensitivity can be observed best in the brain response to the cue, not to the reward itself.

Endocrine modulation of dopamine signaling

Feedback signals generated by metabolic utilization of nutrients have been linked to 

dopaminergic signaling and thus entail the potential to modulate food reinforcement [78]. 

For example, food restriction increases tonic dopamine levels, which accounts for the 

common observation that animals are more motivated to work for food reward when hungry 

Kroemer and Small Page 9

Physiol Behav. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[79], and increases D2 receptor availability [25]. Whereas homeostatic signals such as 

ghrelin and leptin consistently modulate food intake, mesolimbic dopamine release is not 

precisely mirroring these effects [80, 81]. Nevertheless, ghrelin-treated rats work harder to 

obtain food [5] and leptin regulates effort-based responding for food rewards and 

mesolimbic dopamine via the midbrain [6]. Recent studies also show that food-evoked and 

food-cue evoked dopamine spikes are regulated by metabolic state with endogenous 

fluctuations in ghrelin as a key contributor [7, 8]. Likewise, leptin was found to attenuate the 

reward value of a nutrient via dopamine neurons, effectively opposing the result of food 

restriction [9]. Notably, leptin and D2 receptors appear to be coupled in a reciprocal manner 

and low availability of D2 receptors might be an indication of leptin resistance [82]. In 

humans, ghrelin and leptin have been found to modulate food-cue reactivity [83-86] and 

consummatory responses [87] in the mesocorticolimbic system.

In addition to ghrelin and leptin, glucose metabolism is an important modulator of dopamine 

signaling. The striatum (i.e, the NAcc) contains neurons that sense glucose [88], expresses 

insulin receptors [89] and insulin action in the brain provides a negative feedback signal 

[90]. Moreover, insulin modulates dopamine signaling effectively reducing reinforcement 

potency [91, 92]. In humans, reduced insulin sensitivity is associated with less endogenous 

dopamine at D2/3 receptors in the NAcc and acute dopamine depletion, in turn, reduces 

insulin sensitivity [93]. Importantly, a recent PET study has shown that insulin sensitivity is 

not correlated with D2 receptor binding per se using a non-replaceable tracer [94]. Insulin 

has been shown to reduce food-cue reactivity in the brain including the striatum [95, 96] 

and, accordingly, cue-induced appetite [96]. Moreover, NAcc response to a flavor predicting 

calories is directly proportional to increases in blood glucose when the flavor was previously 

consumed with calories [97] and the signal-to-noise ratio of NAcc response to milkshake 

receipt is related to peripheral insulin sensitivity [98].

Taken together, these findings suggest a close, but complex, interaction of metabolic state, 

endocrine signals, and the modulation of motivated behavior via dopaminergic projections. 

However, it is largely unknown to date how leptin, ghrelin, or insulin modulate reward-

related learning processes in healthy and obese humans. Nevertheless, endocrine signals 

might be analogous to an interface, supporting a close coupling between metabolic state, 

availability of energy in the environment, and the action policy necessary to pursue those 

reinforcing options.

Where is the “fun”? Opioid receptor signaling and hedonics

Since we have argued that dopamine signaling is not directly related to anhedonia and 

pleasure, this raises the question how food hedonics is represented. Hedonic hotspots have 

been identified in the ventral pallidum and the NAcc shell [42, 99, 100]. Within these 

spatially restricted hotspots, stimulation of, for example, μ-opioid receptors leads to an 

increase in sucrose liking of 200-400% [99]. Likewise, hedonic “coldspots” have been 

identified adjacent to the hotspot in the NAcc shell where opioid receptor stimulation leads 

to a decrease in liking of sweetness. Furthermore, anatomical differences between NAcc 

opioid-based modulations of “liking” versus “wanting” to eat suggest that these aspects are 

even separable within the opioid system [99]. Intriguingly, two recent studies have shown 
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that μ-opioid receptor binding is reduced in obese individuals [11, 101] and that weight loss 

induced by caloric restriction [101] or bariatric surgery [102] leads to an increase in receptor 

binding such that they approach the binding levels obtained in healthy weight controls.

Collectively, these results strongly suggest that μ-opioid signaling is a promising candidate 

for obesity-related differences in reward sensitivity and hedonics. This also calls for a better 

integration of future research on dopamine- or opioid-dependent mechanisms that may 

differentially modulate wanting or liking of rewards in order to improve our understanding 

of the neurobiological alterations that contribute to obesity. As reward-seeking behavior is 

guided by the integration of wanting and liking, computational approaches such as 

reinforcement learning could provide insights into their interplay in action control and 

reward-related learning.

Future directions

To determine if responses in the dorsal striatum to milkshake that are observed in overweight 

and obesity are partly explained by changes in reward sensitivity and/or learning rates, the 

ideal food administration task would incorporate multiple elements including cue only 

events, uncued food events, and cued food events. In addition, to optimize the estimation of 

learning rates, it is desirable to change the cue probabilities [73], as is typically done in 

reversal learning paradigms by swapping the associated probabilities or alternatively, by 

using random Gaussian walks of the associated reward probabilities. The question could also 

be answered retrospectively by employing meta-analytic techniques on acquired data across 

different designs. Ultimately, the proposed reinforcement learning framework could help to 

synthesize the current body of evidence such as in the study by Huys, Pizzagalli [37]. 

Moreover, although reward-related BOLD responses in the striatum have been shown to be 

associated with markers of dopamine function [33], the observed differences in the signal 

could also be modulated by other mechanisms unrelated to dopamine. Thus, while BOLD 

fMRI provides a reasonable proxy of reward-related learning signals, caution is warranted in 

interpreting such differences in BOLD signal with regard to differences in dopamine 

function. Future studies should thereby target the dopamine system more directly, for 

example using combined PET/fMRI measurements.

Finally, recent studies and reviews indicate that the dopamine D2 receptor is critically 

involved in energy allocation [3, 4, 103]. We suggest that reward-related learning might be 

the mechanism linking food reward expectations and consumption on the one hand and 

energy expenditure on the other hand. Specifically, these elements could be integrated in a 

complex, yet comprehensive, framework where dopamine signals the value of work [104]. 

More specifically, dopaminergic signals might guide learning and motivation to regulate the 

selection of options (e.g. foods) in our environment that are worth the effort needed to obtain 

them [104]. Within this theoretical framework, the D2 no-go circuit would put the D1 go 

circuit on an energy budget [4] and represent the opportunity cost of action [105, 106]. The 

average reward rate, which tracks the recent reward history and is learned via prediction 

error signals, has been linked to the invigoration of behavior and tonic dopamine signaling 

[106, 107]. While the average reward rate may, literally, set the tone, the error signal in the 

striatum could nevertheless be attenuated because it is less effective in driving behavioral 
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approach by the facilitation of energy expenditure [3]. In line with the idea of an approach 

signal, fMRI reward-cue signals in the ventral striatum can predict the invigoration of 

behavior on a trial-by-trial basis indicating that the strength of the signal “fuels” approach 

behavior [108]. A recent study by Stopper et al. [109] has demonstrated that phasic 

dopamine signals provide feedback on whether recent actions were rewarded in order to 

direct future actions towards options that pay off. Moreover, in rodents, the dorsal striatum 

has been recently shown to track the nutritional value of food [110] and human studies 

indicate that the dorsal striatal response is sensitive to the availability of energy-dense food 

[111]. Future studies are needed to test the hypothesis that “fuel” and learning signals are 

indeed entangled.

Conclusions

Converging evidence suggests that overweight and obesity is characterized by increased 

anticipatory, but decreased consummatory reward responses in the striatum. The attenuated 

striatal response to food reward receipt has been interpreted as potential indication of reward 

deficit or anhedonia. In this perspective, we have argued that the blunted dorsal striatal 

response to caloric and palatable liquids that is consistently observed in obesity does not 

provide a conclusive indication of anhedonia. Instead, we demonstrate that differences in 

reward sensitivity translate into symmetric effects on cue-value and outcome signals using a 

reinforcement learning framework. Specifically, the observed pattern of brain responses can 

also be explained by heightened reward sensitivity coupled with decreased reward-related 

learning signals. Within this framework, decreased striatal responses reflect weaker learning 

signals rather than anhedonia. Notably, dopamine has been conclusively shown to be 

critically involved in encoding reward-related learning signals, whereas dopamine function 

is not necessary for “pleasure”. Instead, the hedonic aspect is thought to be encoded in the 

opioid system, which might be altered in obesity as well. How the attenuated learning signal 

maps onto the recently elucidated function of D2 receptors in energy allocation is unknown 

but highly relevant because it may be that the dorsal striatum integrates available energy and 

energy costs to dynamically adjust the balance between the costs and benefits of action. If 

so, then striatal response to energy sources may reflect the “fuel” rather than “fun”.
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Highlights

• Attenuated response to food reward in dorsal striatum in obesity

• Response to reward does reflect more than “pleasure”

• Reinforcement learning indicates importance of error signals

• Obesity may be characterized by impairment in reward learning
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Figure 1. 
Many different designs can be used to study the effects of rewards on the brain response. 

However, subtle differences in the design may have an impact on the interplay between brain 

responses at the cue and outcome event. Reinforcement learning models can be used to 

generate predictions given the choice of design and may help to disambiguate the acquired 

brain response to reward. Brown = milkshake; blue = rinse; white = tasteless.
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Figure 2. 
Simulated brain responses based on a parametric grid (see Figure 3) of the two parameters 

learning rate and reward sensitivity. Whereas reward sensitivity has an effect on both 

predicted cue-value and prediction-error signals, the learning rate mainly influences 

prediction errors. Since increases in reward sensitivity will lead to corresponding increases 

in prediction error signals, the two parameters can only be separated by looking at both cue 

and outcome signals in a conjoint analysis.
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Figure 3. 
Sampling of simulated participants with high reward sensitivity and low learning rates can 

reproduce the observed pattern of “reward surfeit” during anticipation (cue response) and 

“reward deficiency” during reward receipt.
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