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Complex gene expression patterns are mediated by the binding of transcription factors (TFs) to specific genomic loci. The in

vivo occupancy of a TF is, in large part, determined by the TF’s DNA binding interaction partners, motivating genomic

context-based models of TF occupancy. However, approaches thus far have assumed a uniform TF binding model to explain

genome-wide cell-type–specific binding sites. Therefore, the cell type heterogeneity of TF occupancy models, as well as the

extent to which binding rules underlying a TF’s occupancy are shared across cell types, has not been investigated. Here, we

develop an ensemble-based approach (TRISECT) to identify the heterogeneous binding rules for cell-type–specific TF occu-

pancy and analyze the inter-cell-type sharing of such rules. Comprehensive analysis of 23 TFs, each with ChIP-seq data in

four to 12 different cell types, shows that by explicitly capturing the heterogeneity of binding rules, TRISECT accurately iden-

tifies in vivo TF occupancy. Importantly, many of the binding rules derived from individual cell types are shared across cell

types and reveal distinct yet functionally coherent putative target genes in different cell types. Closer inspection of the pre-

dicted cell-type–specific interaction partners provides insights into the context-specific functional landscape of a TF.

Together, our novel ensemble-based approach reveals, for the first time, a widespread heterogeneity of binding rules, com-

prising the interaction partners within a cell type, many of which nevertheless transcend cell types. Notably, the putative

targets of shared binding rules in different cell types, while distinct, exhibit significant functional coherence.

[Supplemental material is available for this article.]

Transcriptional regulation is mediated by the binding of transcrip-
tion factors (TFs) to specific DNA elements in the genome (Jacob
and Monod 1961; Busby and Ebright 1994). While the in vitro
binding specificity of many human TFs has been determined, it
is well recognized that the in vitro binding specificity of a TF is
not sufficient to explain its condition-specific in vivo binding
(Zinzen et al. 2009; Yáñez-Cuna et al. 2012). This realization has
spurred investigations of additional determinants of in vivo bind-
ing, such as heterogeneity of a TF’s binding motif (Hannenhalli
and Levy 2002), broader sequence context and interposition de-
pendence (Mathelier and Wasserman 2013), homotypic clusters
of binding sites (Dror et al. 2015), cooperative binding of the TF
with its partners (Wang et al. 2006; Liu et al. 2016), condition-spe-
cific chromatin context (Wang et al. 2006; Heintzman et al. 2009;
Gheldof et al. 2010; Kumar and Bucher 2016), and local DNAprop-
erties (Dror et al. 2015; Kumar and Bucher 2016). While, overall,
both local genomic and epigenomic features are deemed impor-
tant in determining in vivo occupancy of a TF, recent reports sug-
gest that in vivo binding of a TF can be accurately predicted based
solely on the genomic signatures near the binding site without re-
lying on the epigenomic context (Arvey et al. 2012; Dror et al.
2015); this is consistent with additional recent reports, showing
that the epigenome itself is encoded by the genomic context
(Benveniste et al. 2014; Whitaker et al. 2015).

Prior models of in vivo TF binding have shown that, counter-
intuitively, the genomic context of a binding site effectively en-
codes the condition-specific in vivo binding specificity (Arvey
et al. 2012;Mathelier andWasserman2013). This can be explained

by the substantial plasticity of a TF’s interaction with other TFs
and the modular nature of TF binding co-operativity (Frietze and
Farnham 2011). The availability of specific combinations of inter-
acting TFs can then guide in vivo binding to specific loci where the
binding sites of the interacting TFs are present in close proximity
to each other, along with the availability of corresponding TFs
(Hannenhalli and Levy 2002).

Previous sequence-based modeling of in vivo TF binding was
performed in a cell-type–specific fashion (Arvey et al. 2012;
Mathelier and Wasserman 2013). These cell-type–specific models
exhibit substantial inter-cell-type heterogeneity, which is expect-
ed, given the variation in the availability of the potentially inter-
acting TFs. In particular, Arvey et al. (2012) explicitly modeled
potential interactions of the primary TFs with multiple additional
cofactors, while general sequence properties were used as features
by Mathelier and Wasserman (2013). These previous approaches,
however, build a singlemodel for a cell type, thus implicitly assum-
ing a homogeneous cell-type–specific TF binding model. As such,
previous models have not investigated intra-cell-type model het-
erogeneity. Intra-cell-type TF binding heterogeneity is expected
for the same reasons as inter-cell-type heterogeneity. Moreover,
in many instances, a binding specificity model trained in one
cell type can predict a subset of in vivo binding in another cell
type (Arvey et al. 2012), suggesting that binding models, or parts
thereof, are shared across cell types.
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Themotivation of the current study
is to evaluate the heterogeneity of se-
quence-based, cell-type–specific, in vivo
TF binding models and the extent to
which binding rules (submodels) are
shared across cell types. We have devel-
oped an ensemble model-based ap-
proach (TRISECT) to reveal both cell-
specific and cell-independent rules for
the in vivo TF binding. Application of
TRISECT to 23 TFs, each with genome-
wide in vivo binding data in four to 12
cell types strongly suggests that the cell-
type–specific binding rule for a TF con-
sists of multiple submodels, a subset of
which are shared across cell types, and
points to shared functional underpin-
nings. This refinement to our under-
standing of the genomic context of in
vivo binding specificity can facilitate fu-
ture investigations of transcriptional reg-
ulation and its genetic determinants.

Results

TRISECT—Ensemble model of TF binding

and the clustering of submodels across

cell types

An illustration of the TRISECT analysis
pipeline is presented by Figure 1A, and
a brief description of the pipeline is pro-
vided below (for additional details see
Methods).

Overview

As the first step, we developed an ensem-
ble model (EMT) to discriminate a TF’s in
vivo bound genomic loci (foreground)
from nonbound sites (background), bal-
ancing model complexity (number of
submodels in the ensemble) against the
cross-validation classification accuracy.
Given a set of genome-wide loci, bound
by a specific TF, we first identified sets
of foreground and background (control)
sequences. The foreground set consisted
of 100-bp sequences centered at the
ChIP-seq peak. For stringent background
sequences, as done previously (Arvey
et al. 2012), we used 100-bp regions
∼200 bp away from the peak location.
We considered a variety of feature sets
for discrimination (see below). The EMT
model was trained using the Adaboost
method where each submodel is a deci-
sion tree (Fig. 1B) built from a bootstrap
sample (Friedman et al. 2000; Friedman 2002, 2008). Next, given
a TF’s EMTmodels for all cell types, each cell-type–specific submo-
del was represented by a point in a d-dimensional space, with d cor-
responding to the number of relevant features. We constructed

clusters of the data points for a TF (representing the submodels
across all cell types), using k-nearest neighbors algorithm (k-NN).
The submodels within a cluster represent binding rules that are
similar within or across the cell types.

Figure 1. (A) Schematic of TRISECT pipeline. Colors indicate different binding rules or submodels and
rows (a–c) represent different cell types. Green, pink, and yellow colors indicate cell-type–specific sub-
models. Each ensemble model (EMT) is represented by a bucket of submodels (top right). Stars and dia-
monds with the same color denote corresponding submodels and data points after transformation into
reduced feature space, respectively. Each submodel is represented by a decision tree. The submodels
across cell types are clustered. Cyan is common between cell types a and b, light brown is common be-
tween cell types b and c, and purple is common across all three cell types. (B) An example submodel taken
from the Interactionmodel for CEBPB-GM12878. Each node in the tree is labeled with the TRANSFAC id,
corresponding gene name, and the threshold at which the feature is split. Two binding rules are high-
lighted indicating TF binding and no TF binding. (C,D) Same color is used to denote the models using
the same features. (C) Comparison of accuracy between all pairs of feature sets. Nodes are labeled
with feature type andmean accuracy. Edges are labeled with “>” (greater) or “<” (less) sign and two-sid-
ed Wilcoxon P-value. (D) Accuracy (ROC-AUC) distribution of EMT for K-mer/K-merRC/Interaction (1 k)
and those of kmer-SVM models.
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EMT feature sets

We considered three feature sets for the 100-bp foreground and
background sequences. The first feature set, K-mer, was composed
of 6-mer frequencies within each 100-bp sequence (total, 4096 fea-
tures). The second set, K-merRC, consisted of unified 6-mers and
their reverse complement frequencies (total, 2080 features). The
third feature set included the binding scores for 981 vertebrate
TF motifs from the TRANSFAC 2011 database. We defined the
models built from the third feature set as the Interaction model,
as the features represent potential TFs that might contribute to
the binding of the reference TF (the TF for which EMT was built).
For Interaction models, we used four thresholds for motif match
in the PWMSCAN tool (Levy and Hannenhalli 2002), where a
threshold denotes the background match frequency—one hit in
every 1 kb, 2 kb, 5 kb, and 10 kb.

EMT training

We applied TRISECT to 23 TFs, each with ChIP-seq data in four to
12 cell types (a total of 135 TF–cell pair EMTs; Supplemental Table
S1). A TF was included in this study if (1) the TF has narrow-peak
data for at least four cell lines with at least 4000 bound sites in
each cell line, and (2) the TF has an established position weight
matrix (PWM) in the TRANSFAC2011 database. For other informa-
tion about each TF including family names, see Supplemental
Figure S1 for TF web-logos and Supplemental Table S2. EMTs
were trained using 75% of the full data set and tested on the re-
maining 25%. Model details such as the number of submodels,
model size, etc., are provided by Supplemental Table S3.

Each EMT includes multiple decision trees, and each path
from root to leaf in an estimated decision tree submodel captures
one binding rule that asserts how a combination of motifs and
their binding affinities contribute to the reference TF’s binding.
As an illustrative example, Figure 1B shows an arbitrarily selected
submodel of CEBPB in the GM12878 cell line. Two of the binding
rules are “presence of IRF8 with score >2.08 and presence of
NFATC4 with score <2.3”—when these rules aremet, the reference
TF, CEBPB, is likely to bound. Whereas “presence of IRF8 with
score >2.08 and presence of NFATC4 with score >2.3” hinders
CEBPB binding. Supplemental Note 1 and Supplemental Figure
S2 include further interpretation of a sample submodel (decision
tree), a summary of how the reference TF’s motifs are distributed
among the submodels, and a discussion of model robustness for
various parameter choices.

EMT performance

Model accuracy was quantified using area under the receiver
operating curve (ROC-AUC) on the 25% test set (Fig. 1C; Supple-
mental Fig. S2C). We compared the model performances, using a
Wilcoxon test across 135 TF–cell type pairs for the six sets of
EMTs (K-mer, K-merRC, and Interaction at four thresholds (i.e., In-
teraction (1 k), Interaction (2 k), Interaction (5 k), Interaction (10 k))
(Fig. 1C). We found that K-merRC significantly outperforms the
K-mer model (two-sided Wilcoxon P-value 5.3 × 10−20). This is
consistent with the fact that TF binding occurs on double-stranded
DNA and as such does not have directionality (except in relation
with other interacting TFs). Therefore, unifying each k-mer with
its reverse complement is more representative of the biological de-
terminants of TF binding. Following this line of reasoning, PWMs
can provide an even better abstraction of DNA binding specificity
and as expected, the PWM-based models outperform the k-mer–

based models (two-sided P-value 4.58 × 10−6), when comparing
K-merRC to Interaction (1 k). Therefore, for submodel clustering
and other downstream analyses we selected Interaction (1 k)–based
EMT (heretofore referred to as Interaction model).

Comparison with previous model

Next, we compared the EMT model (using K-merRC and
Interaction) with a previously published model based on support
vector machine (kmer-SVM) (Arvey et al. 2012). In kmer-SVM,
the investigators considered both k-mers and their reverse comple-
ments of size 8 with minimum matches of size 6. Applying the
kmer-SVM pipeline to our data set, the resulting ROC-AUCs for
all the TF–cell pairs are listed in Supplemental Table S4. Figure
1D suggests that the Interaction model performs favorably relative
to kmer-SVM.

TRISECT reveals intra-cell-type heterogeneity and inter-cell-type

sharing of binding rules across cell types

Given the favorable performance of EMT, and its architectural dif-
ferences to kmer-SVM, we next assessed whether EMT was better
able to exploit the heterogeneous binding rules across the genome,
as dictated by different combinations of co-occurring and coregu-
lated (i.e., potentially interacting) TFs. Conceptually, a “binding
rule” refers to the specific combination of motifs (along with their
importance) aiding in the binding of a reference TF. While a gen-
eral binding rule may be difficult to state concisely, it can be oper-
ationally defined in terms of a collective ensemble of cell-type–
specific binding rules. Each decision tree (a submodel) operation-
ally defines a binding rule in terms of presence of specific motifs
above/below a certain binding score. Furthermore, in general,
the relative importance of features decreases with increasing depth
of the node in the decision tree, with the first few levels contribut-
ing a substantial portion of the decision. Although a decision tree
represents a statistical model for TF binding, by applying strict
thresholds for motif scores and considering only the top few lay-
ers, in principal, a concise “binding rule” can be derived, albeit
with some loss of information. For a specific TF and cell type com-
bination, we captured the binding rules by a set of submodels (de-
cision trees). Then to investigate commonality and uniqueness of
binding rules for a TF across cell types, we pooled all submodels
from all cell-specific EMTs, represented each submodel by feature
importance, and clustered all submodels using the k-NN clustering
algorithm. Next, we constructed a cluster–membership matrix
mapping the number of submodels originating from different
cell types within each cluster. As an example, Figure 2, A and B,
shows the cluster–membership matrix for the TF ATF3 for cluster
sizes 16 and 20. The matrices show both cell-type–specific (Fig.
2A, cluster 6) and ubiquitous (Fig. 2B, cluster 20) clusters. Examin-
ing the cluster mapping for all TFs (Supplemental Fig. S3), a wide
range of patterns emerge. For certain TFs, many clusters tend to
map to a single cell type, suggesting cell-type–specific binding
modalities of these TFs (EP300, JUN), while other TFs have ubiqui-
tously applicable binding rules, such as YY1 and TBP, suggesting
cell-type–independent binding rules and, presumably, function.
Importantly, many clusters consist of submodels from multiple,
but not all, cell types. We ensured that inter-cell-type sharing of
binding rules is not simply due to the shared binding loci across
cell types (Supplemental Note 2; Supplemental Fig. S4). Subse-
quent analyses are based on k = 16; the reason for this choice is dis-
cussed in Supplemental Note 3.
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Previous research (Worsley Hunt and Wasserman 2014)
showed that so-called “zinger”motifs are enriched in ChIP-seq re-
gions of several unrelated TFs.We conducted additional analysis to
ensure that our clustering results are not affected by the zingermo-
tifs (Supplemental Note 4; Supplemental Fig. S5). Moreover, it is
possible that EMT can falsely yield multiple submodels, even in
the absence of heterogeneity, and those submodels can be falsely
clustered. By looking at the clustering tendency of the submodels,
we examined the heterogeneity across submodels and found that it
is possible to separate the submodels into distinct clusters (Supple-
mental Note 5; Supplemental Fig. S6B,C).

Next, we assessed the functional underpinning of shared
binding rules across cell types (for details, see Methods). Specifi-
cally, we assessed whether two coclustered loci from different
cell types (i.e., those obeying similar binding rules) are functional-
ly associated relative to loci from the same cell type but belonging
to different clusters, indicating that they are obeying different
binding rules.Wemeasuredacluster-specific score foreachbinding
sequence and assigned each binding site in each cell type to one or
more clusters. As per convention, we assigned each binding site to
thenearest geneas apotential transcriptional target; 88%of the tar-
get geneswerewithin50kb fromthebinding site (mediandistance,
4.5 kb) (Supplemental Fig. S6G). To assess functional coherence of
clusters, we defined two metrics: expression coherence and path-
way coherence. Expression and pathway coherence are measured
as the fraction of gene-pairs in a cluster (regardless of cell type)
that are respectively coexpressed, or belong to the same pathway.
We assessed the significance of coherence using a two-sided
Fisher’s exact test. As shown in Figure 2C,∼40% (expression coher-
ence) and∼18%(pathwaycoherence)multi-cell-type clusters show
significantly higher (P-value <0.05) than the background (expecta-
tion is 5%), and 5.5% of the clusters show both significant expres-
sion and pathway coherence (called dual coherence). Applying a

more stringent P-value threshold (<0.001), these coherent percent-
ages are 35% (expression), 10% (pathway), and 4% (dual). More-
over, the expression and pathway coherence are highly correlated
across clusters (Spearman correlation = 0.56, P-value = 0.02). As a
negative control, we conducted the same set of tests for random
clusters with the same size as the real clusters. In both cases, the co-
herence was no greater than the null expectation (Fig. 2C).

Taken together, these analyses support the existence of het-
erogeneous sets of TF binding rules governing the in vivo binding
and suggest that a subset of rules are shared across cell types with
functional implications.

The role of interaction partners in a TF’s binding occupancy

across cell types

By using 981 PWMs for a comprehensive set of vertebrate TFs as
the basis for features, EMT implicitly incorporates the contribu-
tions of interaction partners in predicting in vivo binding of the
reference TF. To quantify the contribution of putative interacting
motifs, we repeated the EMT training and testing using only the
PWMs corresponding to the reference TF. Individual TFs are repre-
sented by multiple motifs in the literature (ranging from one to
eight, with a median of three) (Supplemental Table S2), many of
which differ substantially from each other, suggesting potential
functional implications (Bulyk et al. 2002; Hannenhalli 2008);
e.g., 75% of the intra-TF PWM-pairs have <85% PWM similarity,
in contrast to 99% of inter-TF PWM-pairs (Linhart et al. 2008).
We refer to these motifs as the reference motifs, and, in contrast to
the Interaction model, the EMT model utilizing only the reference
motifs is referred to as the NonInteraction model. Supplemental
Figure S7 shows the prediction accuracies for the Interaction and
the NonInteraction models; the diagonal elements represent the
cross-validation accuracies within a cell type, while the off-

Figure 2. (A,B) Cluster membership matrix using a k-nearest neighbors algorithm (k-NN), where k = 16 (A) and k = 20 (B). Rows represent clusters and
columns represent cell types. Each element in the matrix denotes the number of submodels in the cluster from each cell type. Some clusters consist of
submodels frommultiple cells (cluster 20 in B), while some others consist of submodels from a single cell type (cluster 6 in A). (C) Functional and expression
coherence of submodel clusters: fraction of multi-cell-type clusters found to be coherent using k-NN. y-axis is the coherence percentage. Among the con-
ditions (x-axis), mapped.targets denotes when genes are assigned to cluster based on TRISECT pipeline, random.targets indicates the clusters consisting of
random genes among all targets, and random.genes indicates the cluster consisting of random genes. Here, expression coherence was defined using an
expression threshold of log2CPM≥ 1; i.e., a gene is considered expressed when the log2CPM≥ 1. The horizontal line (blue color) denotes the coherence
level of 5% of the total multi-cell-types.
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diagonal elements represent the accuracy when EMT is trained on
one cell type (row) and tested on another (column). Comparison
of the within-cell-type cross-validation accuracy for the
Interaction and NonInteraction models (Fig. 3A; Supplemental Fig.
S7) shows that the Interaction models have higher predictive accu-
racy than NonInteraction models, which is consistent with the ex-
pectation that in vivo binding of a TF relies on interactions
among several TFs.

Next, we conjectured that in the Interaction model allowing
for greater numbers of partners enables learning of more complex
binding rules, leading to increased binding prediction accuracy.
We therefore assessed the effect of the length of the region flank-
ing the binding site on prediction accuracy (see Methods). We
note that beyond 100 bp, due to narrowing the gap between the
foreground and the background region, the discrimination accura-
cy is expected to decrease. Despite this, in several cases (Fig. 3B;
Supplemental Fig. S8), the increase in ROC-AUC beyond 100 bp
suggests that a larger context may be necessary in these cases to
capture the binding rules. Nevertheless, we chose a sequence con-
text of 100 bp to make our model comparable to the previously
published kmer-SVM (Arvey et al. 2012).

For a given TF, we also quantified the variability of the model
accuracy in different cell types (seeMethods).We define cross-cell-

type prediction accuracy as the perfor-
mance of a model trained on one cell
type and tested on another cell type.
For these performance accuracy of mod-
els, we expect greater variability for the
models relying on cell-type–specific in-
teraction partners than the models only
relying on reference motifs. Our analysis
supports this expectation (Fig. 3C).
However, the small variability in cross-
cell-type prediction accuracy when using
the NonInteraction model is likely due to
the heterogeneity of the TF binding mo-
tif. We quantified the inter-motif diver-
gence for each TF as either the number
of annotated motifs, or the motif-diver-
gence (defined over all motifs-pairs; see
Methods). We found that the perfor-
mance variability of NonInteraction mod-
els is positively correlated with both
measures of motif divergence (Spearman
correlation = 0.63, 0.67; two-sided P-val-
ue = 1.2 × 10−3, 6.3 × 10−4, respectively).

In Supplemental Figure S7, the off-
diagonal elements for the Interaction
model show higher cross-cell-type per-
formance relative to the same elements
for the NonInteractionmodel. This higher
performance suggests that the binding
“rules” are shared between cell types.
We ensured that the high cross-cell-type
performance is not simply due to over-
laps in the genomic loci used to train
and test the model between cell types;
i.e., the genomic loci on which the mod-
el was trained in one cell type does not
substantially overlap with the loci tested
in another cell type. Overall, across TFs
and cell type pairs, the fractional overlap

in genomic loci ranges from 0% to 10%, with a mean and median
of ∼4% (Fig. 3D). This suggests that it is the binding rule, indepen-
dent of specific sequence instances, that is shared across cell types.

Furthermore, we found that when using the Interaction mod-
el, the cross-cell-type accuracy is symmetric. In other words, a high
(low) accuracy in cell type Y using EMT trained on cell type X im-
plies a high (low) accuracy in cell type X using the model learned
from cell type Y. To demonstrate this symmetry, we normalized
the off-diagonal elements of cross-cell performance matrices by
the reference AUC by dividing each row by the corresponding di-
agonal ROC-AUC. As shown in Figure 4A, the lower and upper di-
agonal ranks are highly correlated (Spearman correlation of upper
and lower triangle of resulting matrices is 0.68, two-sided P-value
9.5 × 10−53), supporting our claim that the interaction-dependent
(therefore genomic-context dependent) binding rules are shared
across cell types. In stark contrast, there is a lack of symmetry in
cross-cell prediction accuracy when the NonInteraction model is
used (Spearman correlation = 0.04, two-sided P-value 0.4) (Fig.
4B; Supplemental Fig. S9).

In summary, our analyses suggest that the cell-type–specific
TF interactions play a critical role in determining the cell-type–spe-
cific in vivo binding, and EMT reveals some of the interactions un-
derlying the cell-type–specific binding of a reference TF.

Figure 3. Association between the number of interaction partners and model accuracy. (A,C)
Interaction and NonInteraction models are indicated with green and purple, respectively. (A)
Comparison of cross-validation prediction accuracy for Interaction and NonInteraction models. (B) The
trend of model accuracy with increasing sequence size for TF ZNF143 (selected arbitarily for illustration).
Models from each cell line are indicated with different colors. (C) Comparison of model variability in
log scale (variability of cross-cell-type performance for each model) for Interaction and NonInteraction
models. (D) Distribution of the fraction of test sequences falling into one of the four categories:
Overlapped_true denotes correctly and overlapped_false incorrectly classified sequences having at least
50% overlap between training sequences in one cell type and test sequences in another cell type.
Nonoverlapped_true denotes correctly classified sequences that do not overlap with any sequence in
the training set; nonoverlapped_false, incorrectly.
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TRISECT reveals putative cofactors providing insights

into cell-specific biological roles of a TF

Our results so far suggest that cell-type–specific cofactors of a TF are
amajor driver of cross-cell-type in vivo binding variability. To gain
further insights into the functional implications of cell-type–spe-
cific cofactors, for each reference TF we identified its cell-type–spe-
cific cofactors using the feature importance of the corresponding
motif as estimated by the model. To minimize redundancy, we ex-
cluded motifs with substantially high co-occurrence frequency
with at least one of the reference motifs (see Methods). To further
minimize false positives, we assessed the enrichment of motif
occurrence within the cell-specific ChIP-seq peaks of the reference
TF relative to background and retained only those putative cofac-
tor motifs that were significantly enriched (odds ratio > 1.2 and
two-sided P-value <0.05; see Methods). The rationale for choosing
1.2 as the odds ratio threshold is discussed in Supplemental Note 6.

Several lines of evidence support TRISECT-identified cell-
type–specific TF cofactors, referred to as putative cofactors. First,
we showed that there exists an enrichment of protein–protein in-
teractions (PPIs) among a reference TF and its corresponding co-
factors compared with the PPIs among all motifs (Supplemental
Table S7a). Additionally, the putative cofactors are enriched for
either heterodimerizing TFs or for the TF family that the reference
TF belongs to for ∼70% of all TF–cell pair cases (see Methods)
(Supplemental Table S7b,c). The enrichment of the same family
as that of the reference TF is consistent with the fact that TFs
form dimers with other TFs preferably from the same family
(Amoutzias et al. 2008; Dror et al. 2015). We also performed pro-
tein domain enrichment analysis (Supplemental Table S8) using
the DAVID tool (Huang et al. 2009a,b) and found that >80% of en-
riched domains are involved in homo- or hetero-dimerization con-
sistent with the findings from Supplemental Table S7.

Second, we expect higher expression of putative cofactors in
the cell types where they are identified as cofactors by our analysis.
For each cofactor (excluding ubiquitous cofactors), we determined
the log-fold difference in expression between the cell types where
it is identified as a cofactor relative to cell types where it is not (see
Methods). The distributions of log fold changes of the cofactors are
compared with a control set of fold ratios, as presented in Figure
5A. For most TFs, the cofactors show significantly higher expres-

sion in the relevant cell types. This is not true only in five cases:
ATF3, USF1, CTCF, NRF1, and GABPA. Among these five cases,
CTCF is a known cell-type–independent TF; GABPA and NRF1
exhibit higher cell-type independence than other TFs as shown
via an independence test.

Third, we assessed whether the relationship between a refer-
ence TF and its cofactor is symmetric. For this assessment, we
limit the analysis to 23 TFs, as for the current study we have
models and associated cofactors only for these TFs. Specifically,
we assessed whether a reference motif from one TF appears as
a cofactor in the TFs whose reference motifs are also reported
as cofactors in the first TF. For all X-Y TF pairs where one TF is
deemed cofactor of the other and both TFs have available
ChIP-seq data in the same cell line, we found that the correlation
between the enrichment score of motif X in the binding se-
quences of TF-Y and vice versa is 0.41 (two-sided P-value =
5.19 × 10−14). This suggests a degree of codependence among
TFs for their DNA binding.

Finally, for each TF’s cell-type–specific cofactors, we per-
formed biological process (BP) GO term enrichment analysis using
the GOrilla tool (Eden et al. 2009) relative to all 981 motifs. We
found significant differences in the assigned BP of a TF’s cofactors
among cell types. Remarkably, the BP can vary across cell types
while still being functionally related to the reference TF. As an ex-
ample, Figure 5B shows the enriched BP (false-discovery rate≤
10%) for ATF3 in four cell types. ATF3 is a stress-inducible TF in-
volved in homeostasis regulating cell-cycle, apoptosis, cell adhe-
sion, and signaling (Allen-Jennings et al. 2001; Tanaka et al.
2011). We found that ATF3 cofactors are enriched for cell cycle
and proliferation functions in three out of four cell lines. In the
stem cell line, the identified cofactors are involved in liver re-
generation and inflammatory response, consistent with previous
studies showing a direct link between ATF3 induction to liver inju-
ry and regeneration in mice (Chen et al. 1996; Su et al. 2002).
Furthermore, enrichment of NOTCH and apoptotic signaling
among cofactors in the HepG2 cell line is consistent with ATF3’s
role in glucose homeostasis and other primary liver functions
(Allen-Jennings et al. 2001). Surprisingly, we find enrichment of
cognition, learning, and memory among the TF cofactors in the
leukemia cell line. Since leukemia is a cancerous cell line, nonna-
tive gene expression is not unexpected (Lotem et al. 2004, 2005).

Figure 4. Comparing cross-cell-type performance matrix of Interaction and NonInteraction models. (A) Ranks of the normalized symmetry of upper and
lower diagonal matrices of cross-cell-type performance. Interaction andNonInteractionmodels are colored green and purple, respectively. (B) In eachmatrix,
the row represents the cell on which the model is trained, and the column represents the cell from which the test data are used. Diagonal elements are
within-cell-type performance, and each matrix is color-coded according to the extent of the nondiagonal element symmetry. The symmetry is calculated
by normalizing each row by the reference model (diagonal element).
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While ATF3 is not known to play a direct role in neuronal function,
a functionally and structurally related protein CREBBP has a well-
documented role in neuronal activity and long-term memory for-
mation in the brain (Mayr and Montminy 2001). This raises the
possibility that either ATF3 has an unknown role in cognition or
the same set of cofactors are involved inmemory formation in con-
junction with other TFs.

For other TFs, the enrichedGO-terms are listed in Supplemen-
tal Table S9 (enrichment scores ranges from 1.22–93.75 with ame-
dian of 7.44, false-discovery rate cutoff of 10%). The corresponding
discussion based on a review of the literature is provided in Supple-
mental Note 7; Supplemental Note 8 includes functions of exam-
ple cofactors in various cells. This can serve as a resource for further
investigation into the cell-type–specific binding and function of a
broad array of TFs.

Wenoted substantial variability in thenumber of detected co-
factors across cell types for a TF. Interestingly, a literature survey
suggests that for the cell types for which the reference TF has a spe-
cific known function, the number of cofactors in that cell type
is comparatively higher. For example, REST haswell-knownneuro-
nal functions, and its binding sites in neurons exhibit lack of
cognate RE1 motifs (Rockowitz et al. 2014), suggesting cofactor
dependence. Consistently, SK-N-SH (brain cancer cell line) has
the highest cofactor cardinality for REST. Similarly, JUN plays a
specific role in hematopoietic differentiation, and we found that
GM12878 (normal blood cell line) has the largest number of cofac-
tors (Liebermann et al. 1998). We reasoned that a TF with greater

cell-type–specific roles would exhibit greater variability in cofactor
cardinality. For each TF, wemeasured the variability of its cofactor
cardinality across cell types. As shown in Figure 6A, interestingly,
TFs with ubiquitous and invariant roles such as TBP and CTCF
have the least variable cofactor cardinality. Based on the trend
shown in Figure 6A, we use the variability of cofactor cardinality
as a proxy for the TF’s cell type specificity. As an additional support,
this proxy also correlateswith the sparsitymeasure of cluster–mem-
bershipmatrix. Specifically, for eachTFwecomputed the sparsityof
its cluster–membershipmatrix (presented in Fig. 2A,B; Supplemen-
tal Fig. S3) using theGini index (Handcock andMorris 1998; Hurley
and Rickard 2009). Figure 6B shows that sparsity is positively corre-
lated with the variability of cofactor cardinality (Spearman correla-
tion = 0.66, two-sided P-value = 9.2 × 10−4 using k-NN).

We also assessed whether differences in prediction accuracy
achieved by the Interaction model and the NonInteraction model
for a particular TF–cell type pair may reflect the TF’s cofactor de-
pendence. We compared cofactor cardinality to the normalized
distance between Interaction and NonInteraction model perfor-
mance (AUC shift). As shown in Figure 6C, the AUC shift is positive-
ly correlated with cofactor cardinality (Spearman correlation =
0.65, two-sided P-value = 2.7 × 10−17).

Previous studies have found that the DNA sequence specific-
ity of a TF can be influenced by its interactions with cofactors
(Siggers et al. 2011; Slattery et al. 2011). Interestingly, a close in-
spection of the feature importance estimated by theNonInteraction
EMT model shows that for different cell types the composition of

Figure 5. Functional validation of putative cofactors. (A) Each boxplot corresponds to all cofactors of a TF on the x-axis, and the y-axis denotes the log fold
change (logFC) of the expression of cofactors in cell types where it is identified as a cofactor (i.e., relevant cells) versus cell types where it is not. The “blue”
horizontal line at Y = 0 denotes no fold change. For a TF motif detected as a cofactor in n cell lines, and not in another m cell lines, we calculated log fold
change (logFC) in the TF’s expression between the two sets of cell lines. Identified cofactors have higher expression in the cell lines they are detected in
(relevant cells). (B) Enrichment scores of GO terms obtained from GO analysis of cofactors in four cell types of ATF3 (selected arbitrarily). The known
cell-type–specific biological roles are highlighted.
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utilized reference motifs varies. Figure 6, D and E, presents all cell-
type–specific usage of JUN and TBP (see Supplemental Fig. S10 for
other TFs); JUN shows significantly different binding specificity
from the expected usage in different cell types (marked with aster-

isks, seeMethods), while TBP does not. Notably, such diverse usage
is observed using NonInteraction models, suggesting a cell-type–
specific motif preference. In Figure 6D, M00925 and M00926
(for JUN) are almost identical (in reverse complement of each

Figure 6. EMTmodel heterogeneity is associatedwith cell type specificity of cofactors. (A) The plot shows for each TF the variability of cofactor cardinality
across cell types. Each point is labeled by cell type where the relevant TF has specific usage, based on the literature, and has the largest number of cofactors.
TBP and CTCF are the most ubiquitous TFs. The green dotted horizontal line denotes the variability of cardinality for CTCF cofactors. (B) Sparsity of cell–
membership matrix correlates with cofactor cardinality. (C) Normalized ROC-AUC difference of Interaction andNonInteractionmodels for a specific TF–cell
type pair correlates with cofactor cardinality. (D,E) Motif usage for the reference TF in the NonInteractionmodels of different cells, for JUN and TBP as two
extreme examples. y-axis denotes the feature importance of motif usage in the NonInteractionmodel. The sequence logos for the corresponding reference
PWMs are presented in F. (G,H) fX denotes the influencing cofactors of mX in cell line X; fY, mY in Y. (G, left) Log fold change (logFC) between relevant and
nonrelevant cell type for influencing cofactors of mX; (middle) logFC for noninfluencing cofactors; (right) logFC between nonrelevant and relevant cell type
for influencing cofactors of mY. (H) Genomic proximity of the motif-specific interaction partner with the motif. mX∼fX denotes the nearest genomic dis-
tances (in base pairs) from mX motif to any cofactors in the set of fX and so on.
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other), yet they show very different usage. Even though both
PWMshave very similar distributions of scores over the same geno-
mic regions, in most cases M00925 yields a slightly higher score
than M00926, and once M00925 is selected by a model, M00926
is deemed as redundant and not considered as important further.
Hence, they show dissimilar importance. However, in our down-
stream analysis for assessing contribution of cell-specific usage,
none of them are selected as having cell-specific influence and
thus have no impact on the analysis.

We further investigated the potential contribution of cell-
type–specific cofactors in modulating the cell-type–specific motif
usage for the reference TF. In this regard, we identified pairs of ref-
erence motifs (mX &mY) having the most differential usage in cell
types X and Y, respectively. For each such pair, we selected a set of
candidate cofactors (fX & fY) that could potentially aid the TF for
cell-type–specific binding; we call fX & fY “influencing cofactors”
of mX and mY, respectively. Next comparing the log fold change
(logFC) of fX & fY in cell type X versus Y (Fig. 6G) shows that the
influencing cofactors have higher expression in relevant cell types.
Moreover, the influencing cofactors are more proximal to the in-
fluenced motif in the relevant cell type (for details, see Methods)
(Fig. 6H).

Taken together, cell-type–specific cofactors revealed by
TRISECT are consistent with their cell-type–specific expression
and function, which may be critical in modulating a TF’s cell-
type–specific biological function.

Discussion

In this study, we have presented a novel ensemble-based frame-
work—TRISECT—to investigate intra-cell-type heterogeneity and
inter-cell-type commonality of in vivo TF binding rules. To the
best of our knowledge, this is the first study to comprehensively
demonstrate that in vivo binding specificity rules are composed
of multiple components, or submodels, many of which are shared
across multiple cell types. Importantly, nonorthologous targets
of binding sites across cell types governed by a shared binding sub-
model exhibit a greater functional and expression coherence than
targets of binding sites in the same cell type that are governed by
different binding rules. For each TF, TRISECT identified cell-type–
specific cofactors that are supported by gene expression data and
literature studies supporting their cell-type–specific function.

We chose Adaboost as our ensemblemodel due to its architec-
tural advantages with respect to our ultimate goal of analyzing
common and distinct binding rules, or submodels, across ensem-
bles learned for each cell type. Boosting ensemble methods, in-
cluding Adaboost, are designed to learn optimal tree submodels
for successive reweighted bootstrap samples. This is in contrast
to other ensemble methods, including the popular Random
Forest (RF) approach, which seeks to increase variability of sub-
models by estimating weak submodels from unweighted bootstrap
samples. Since our primary goal is to reveal model heterogeneity,
we chose to cluster submodels generated by Adaboost rather
than Random Forest’s weak learners.

In terms of prediction accuracy, EMT compared favorably to
the previously reported sequence-based discriminative model
(kmer-SVM) (Arvey et al. 2012). Apart from the modeling ap-
proach, our study differs from that of Arvey et al. (2012) in several
other aspects. The previous study compared the cell-type–specific
models for only two cell types (GM12878 and K562), while we
have investigated in depth the cell type specificity of TRISECT
across four to 12 cell types for each TF.While the previouswork pri-

marily discusses cell type specificity and ubiquity of their models,
by clustering the cell-type–specific submodels, our work investi-
gates the extent of shared binding rules; cell type specificity and
ubiquity are extreme cases thereof. In addition to the cell-type–
specific variability in proximal cofactors, we investigated in
much greater depth the cross-cell-type variability in the preferred
motif for the reference TF. Together, these novel aspects of our
study add to the knowledge of sequence information that specify
a TF’s in vivo binding in various cell types.

Another recent study (Dror et al. 2015) aimed at deciphering
the determinants of in vivo occupancy of a TF showed that TF
binding specificity is influenced by nearby homotypic sites (for
the reference TF), the local nucleotide composition, and certain
DNA physical properties. Moreover, the preferred in vivo binding
in homotypic clusters was related to a preferred nucleotide compo-
sition, e.g., GC-rich for zinc finger TFs and AT-rich for homeodo-
main reference TFs, in the binding site flanking region. These
previous findings are consistent with the fact that the cofactors
identified by TRISECT are enriched for the same family of TFs as
the reference TF and thus have similar preferences for nucleotide
composition to the reference TF. In the previous work (Dror
et al. 2015), the accuracy in discriminating bound versus unbound
sequences after controlling for the presence of a putative site for
the reference TF was modest (ROC-AUC∼ 0.6). In contrast, we
have shown that the motifs for the reference TF alone can discrim-
inate bound sites from unbound control sites with ROC-AUC∼
0.78, suggesting that the reference TF is the most informative
determinant of in vivo binding, which is indeed expected and
was also observed by Pique-Regi et al. (2011). The additional power
of discrimination comes either from the presence of cofactor mo-
tifs, as suggested before (Hannenhalli and Levy 2002; Arvey et al.
2012), or from nucleotide composition and other DNA physical
properties (Dror et al. 2015). Interestingly, DNA flexibility mea-
sured by propeller twist (el Hassan and Calladine 1996) is highly
dependent on GC content (Hancock et al. 2013), which in turn
is related to motif composition, as we have noted. Overall, the
three properties of nucleotide composition, DNA physical proper-
ties, and motif composition are interrelated. The specific advan-
tage of an ensemble model based on motif composition is that
apart from achieving favorable accuracy, it is functionallymore in-
terpretable and can provide insight into a TF’s cell-type–specific
functions.

Context-dependent function of a cis regulatory region re-
quires binding of a specific combination of TFs. This modularity
contributes to morphological evolution through changes in cis el-
ements controlling transcriptionwhile avoiding the pleiotropic ef-
fects of a TF gene’s expression change (Prud’homme et al. 2007).
Shared submodels of TF binding rules across cell types, as revealed
by TRISECT, may suggest shared history of cell types.

The ability of a TF to bind to diverse reference motifs and,
in conjunction, interact with diverse combinations of cofactors
serves to enhance its functional repertoire across contexts
(Meijsing et al. 2009; Arvey et al. 2012). Our analyses reveal a
cell-type–specific preference for the reference motif as well as the
cell-type–specific interaction partners of a TF. We found the ex-
pression of cell-type–specific interaction partners to be higher in
the cell types where they are expected to interact with the TF,
and their function is consistent with the context based on the lit-
erature. Thus, our study provides further support for a TF’s cell-
type–specific functions and, more importantly, enables further in-
vestigation into themechanismsunderlying a TF’s diverse cell-spe-
cific functions.
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Methods

Data processing

We downloaded the ChIP-seq peaks for 23 TFs from ENCODE
(Supplemental Table S1; The ENCODE Project Consortium
2013). For each TF we selected only those cell lines for which nar-
row-peak data were available. We chose the more stringent of the
two criteria—top 5000 most significant peaks or FDR q-values
<0.2—to select the binding sites. The criteria are reasoned by the
availability of enough data to build a model and the backward
compatibility of the previous method (Arvey et al. 2012).
Notably, not all ENCODEdata sets provide q-values, and in that sit-
uation, we generated the list of q-values from the given P-values us-
ing the qvalue package in R (http://github.com/jdstorey/qvalue).
Relative to the center of ChIP-seq peaks, theDNA regions of length
100 bp were identified as the foreground. As negative control, we
sampled flanking regions of 100 bp from 200 bp away from the
positive sequences. Again, the choice for the size and location of
foreground and background can be rationalized by the backward
compatibility. In fact, choosing control sequences from near the
foreground makes the modeling problem harder than when they
are chosen from arbitrary locations in the genome.Moreover, con-
trol sequences overlapping with any peak were excluded. Due to
the proximity of the negative examples, both foreground and
background are expected to have similar GC composition (Arvey
et al. 2012) and chromatin accessibility. However, we explicitly
controlled for the GC composition using a sequence set balancing
technique when comparing the foreground and the background
(Whitaker et al. 2015). In the sequence set balancing, the GC per-
centage is divided into N bins (e.g., we choose N = 100). Then for
both the foreground (F) and background (B) sets, the number of se-
quences falling into each bin are enumerated: F[i]& B[i]where i = 1
to N. Finally, in each bin min(F[i], B[i]) sequences are selected ran-
domly from the foreground and background sets. Thisway each set
of sequences will have similar distribution of GC composition.
After sequence set balancing, we discarded any cell line resulting
in fewer than 4000 sites. In our list of TFs, EP300 is nonsequence
specific. Even so, EP300 is localized to the chromatin by interact-
ing with other motifs. Like Arvey et al. (2012) we include EP300
specifically to reveal those putative interactions.

In addition to the 100-bp foreground and background, we
also extracted another six sets of foreground and background of
size 120, 150, 180 200, 250, and 300 bp. We keep increasing the
size of foreground to check how much additional information
was added to the model by the increased sequence size. Note
that for all sequence sizes the middle point of the background
does not vary; so as the sequence size is increased, the gap between
foreground and background decreases.

Learning EMT (Ensemble model of TF binding)

We considered three types of feature set for the sequence specific-
ity model: (1) K-mers, frequencies of 4096 6-mers in the 100-bp se-
quence; (2) K-merRC, frequencies of 2080 k-mer (k = 6) groups
equating a k-mer and its reverse complement; and (3) Interaction
(Lk), we obtained all 981 vertebrate positional frequency matrices
(PFMs) from TRANSFAC 2011 as features. Each PFMwas converted
into PWMs, which is a log-likelihoodmatrix, by (1) adding a pseu-
docount of 0.2 for “C” and “G”, and 0.3 for “A” and “T” in line
with human genome composition, (2) normalizing the frequen-
cies to get probabilities for each base, (3) dividing each base prob-
ability by the background probabilities (0.2 for “C” and “G”, and
0.3 for “A” and “T”), and (4) taking the log of the probability ratio.
The resulting PWMswere then used to get themotifmatches using
PWMSCAN (Levy and Hannenhalli 2002). Here, Lk refers to the

PWM hit threshold (hit expected every L kb on average in the ge-
nome); we used L = 1, 2, 5, or 10. In particular, we use log(1/Lk) as
the threshold value to call a PWM “match.” For instance, at L = 1,
the expected frequency of matches is once every 1 kb, correspond-
ing to a 20% chance of a match in a 100-bp region or its reverse
complement. Previous research showed that clusters of homotypic
“weak” binding sites are prevalent in regulatory regions (Gotea
et al. 2010), and such a presence of multiple weak binding sites,
called a homotypic cluster of binding sites, is preferred to single
strong binding site (He et al. 2012). Tomimic this binding affinity,
from the output of PWMSCAN, we decided to use the sum of
PWM-score (−log(match score)) for all matches as the feature val-
ue. However, we also collected the “maximum score” and “average
score” of binding for each of the training sequences andmeasured
their correlation with our feature value. The high correlations (0.8
and 0.87 respectively) suggest a minimal effect on downstream
analysis and overall conclusions. Finally, we used the log sum of
PWM-score to compensate for the skewed distribution of the num-
ber of binding sites for individual TFs.

We found that the model performance was better for the 1-k
than the 2-k thresholds, and atmuchhigher stringency, themodel
performance significantly deteriorates due to the sparsity of the
matches (Supplemental Fig. S2C). Furthermore, we determined
the feature importance of the motifs for each model of TF–cell
pair at those four thresholds. For each TF–cell pair, we calculated
the correlation of the feature importance based on the 1-k thresh-
oldwith those based onother thresholds, i.e., three correlation val-
ues. Thus in total, we calculated 405 correlation measures for 135
TF–cell pairs. We found that 90% of those correlations are signifi-
cant, ranging from 0.21–0.81 with a median of 0.52 indicating
nonsignificant effects of the thresholds on the models. Consider-
ing the relative performance of the Interaction (1 k) model, in the
subsequent analysis we use them as the representative Interaction
model and refer to it as such.

We chose Adaptive boosting (Friedman 2002, 2008) as our
composite model where each submodel within the ensemble is a
decision tree, and each decision tree is constructed based on a
bootstrap sample. We used the Adaboost framework implemented
in R gbmpackage (https://cran.r-project.org/package=gbm). In the
framework, Huber loss function is selected to reduce overfitting.
We estimated the classification accuracy of the model based on
the 25%held-out data set, while 75%of the datawere used to build
the cell-specific models. In Supplemental Note 1, we summarize
the interpretation of a model and parameter choices.

Model conversion, Duda-Hart test, and Hopkins statistics

Each submodel is represented by a point in a d-dimensional space.
Each dimension denotes a feature, and the value along the dimen-
sion indicates the importance of the feature for the submodel.
Therefore, each model (consisting of multiple submodels) can be
represented as a set of points in a d-dimensional space, where
d≤number of features (981). For a model, the feature importance
was measured using the prediction performance improvement for
out-of-bag sample predictions.Wemodified the R implementation
of gbm package (https://cran.r-project.org/package=gbm) for fea-
ture importance to accommodate the calculation for single tree
or the submodel in question. In other words, we determined the
contribution of a single tree (submodel) in prediction performance
improvement using the same out-of-bag samples. We disregarded
the features that do not contribute to any submodel. We conduct-
ed a Duda-Hart test to show whether the submodels belong to one
or multiple clusters. We measured Duda-Hart or dh-ratio (ratio of
within-cluster sum of squares and overall sum of squares) for all
cluster pairs, based on either cell-type–specific set of submodels
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or the pooled set of submodels across all cell types for a TF using fpc
package in R (https://cran.r-project.org/package=fpc). While cal-
culating dh-ratio, k-NNwas used for clustering. Since the final out-
put of k-NN depends on initial random set of centers, the dh-ratio
calculation was repeated 1000 times to ascertain robustness. We
noted that all test results were significant (P-value <0.001).

Hopkins statistics (H) were measured to check clustering ten-
dency of the submodels. To measure Hopkins statistics (H), the
submodels are again represented as a set of points. H is defined
by the following:

H =
∑

j=1...m Ud
j

∑
j=1...m Ud

j +∑
j=1...m Wd

j

.

Wj is the nearest-neighbor distances ofm randomly chosen points
(submodels), which demarcate the sampling window. Uj is the
minimum distances of the submodels from m random points in
the sampling window. To define the sampling window, we either
took the 25–75 percentile of the feature values or from δ to max
value-δ along each dimension, where δ denotes the standard devi-
ation of the feature value (Zeng and Dubes 1985a,b; Dubes and
Zeng 1987). To estimate the P-value, we repeated the above proce-
dure 1000 times and measured the H-value. The P-values range
from 0.026 to <0.001.

Clustering submodels

For a TF, we obtained the submodels from all cell types and then
clustered all submodels using k-NN, where each submodel is an
instance and the features of the instances are individual feature
importance obtained in the context of the respective cell-specific
model. Before feeding into the k-NN, we remove all the features
whose cumulative importance over all submodels is zero. To check
robustness, the submodels are also clustered using a XY-fused
version of a self-organizing map (Melssen et al. 2006) from the
kohonenR package (Wehrens and Buydens 2007). Tomake it com-
parable to k-NN, submodels were clustered without preexisting
submodel cell labels; i.e., we assumed 100% weight for X map.

Assignment of sequences and target genes to the clusters

A cluster of submodels can be viewed as a new ensemble.
Therefore, for each cluster, we built a gbm object by treating the
cluster as an ensemble and used it the same way an original
Interaction model would score a sequence. Thus, we scored each
binding site sequence against each cluster, and a sequence is as-
signed to a cluster when it is scored above a threshold (of one)
by the cluster. The choice of the threshold was based on the ratio-
nale that the intercept (bias of the gbm model [https://cran.
r-project.org/package=gbm]) of cell-specific models is about one,
and for a high-confidence positive sequence, the model score
should be greater than the intercept. Each bound sequence
(from all cell lines) is mapped to a set of clusters. For each bound
sequence, the nearest gene on the genome is considered to be its
putative target, as per convention (Zhu et al. 2010). Hence, each
cluster corresponds to a set of target genes coming from different
cells.

Measuring pathway and expression coherence

using Fisher’s exact test

To measure the functional coherence, we determined the target
gene array of size M-by-N for M clusters and N cell types. The
M-by-N array thus includes a set of genes corresponding to each
cluster in a particular cell type. We compared gene-pairs from
the same row across columns (same cluster, different cells) to a

background of gene-pairs along columns from different rows
(same cell, different cluster). Then we apply the Fisher’s exact
test in a cluster-centric fashion by comparing the fraction of
coclustered gene-pairs in the foreground compared with the back-
ground. The measure is named as expression coherence: whether
target gene-pairs from same cluster but different cell lines are
more coexpressed than those from different clusters but same
cell line. A gene-pair is considered coexpressed if both of the genes
are turned on (RNA-seq log2CPM> 1) in their respective cells;
CPM stands for counts per million. CPM, instead of the standard
FPKM measure to quantify gene expression, suffices for our pur-
pose as we only compare a gene’s expression across samples and
not with other genes in the same sample. We showed a similar
trend of expression coherence with a different expression thresh-
old (log2CPM≥ 5) (Supplemental Fig. S6E,F).

Pathway coherence is also assessed in similar fashion: wheth-
er the target genes from different cell lines that are assigned to
the same cluster are more functionally related (i.e., in the same
pathway) than the target genes coming from the same cell but
from different clusters. Pathway data were downloaded from
KEGG pathway database (www.genome.jp/kegg).

Robustness of EMT and submodel clustering

While building EMT using the gbm R package, we used the default
parameter settings except maximum depth of variable interaction
(interaction.depth),minimumnumber of observations in the trees
terminal nodes (n.minobsinnode), and learning rate (shrinkage).
Our parameter choices are the following: interaction.depth, 15;
n.minobsinnode, 30; and shrinkage, 0.05. To check model and
pipeline robustness, we built models with different values of these
three parameters and compared the performance and model size
(number of learned submodels). We found that performance and
model size becomes stable after an interaction depth of 15 (Supple-
mental Fig. S2D,E), performance andmodel size do not varymuch
with the change of n.minobsinnode from 25 to 45 (Supplemental
Fig. S2G,H), and performance does not change with shrinkage
from0.1 to 0.5 (Supplemental Fig. S2I). However, model size varies
with the shrinkage parameter setting becausewith a lower learning
rate, it takes longer to reach an optimum and it results in an
increase in the model size (Supplemental Fig. S2J). Therefore, for
different shrinkage parameters, wemeasured the clustering consis-
tency. To this end, we took the models built with shrinkage = 0.05
as the reference models, and we compared the clustering pattern
of reference models with the set of models built using different
shrinkage values. More specifically, we determined whether a
pair of sequences that falls into the same cluster for the reference
model also falls in the same cluster for a different shrinkage value.
We found that on average 96% of the sequence pairs fall in the
same clusters regardless of shrinkage (Supplemental Fig. S2K).

Model variability and motif divergence

Model variability is defined by its normalized predictability
across cell lines. For each model, n ROC-AUC values are obtained
using the held-out data set of n cell lines. Cross-ROC-AUC
values are normalized by self-ROC-AUC value. Mathematically,

varmodeli =
∑

j=i, jecells rocaucj
rocauci

.

Motif divergence is defined by the following equation:

motif .div. pwms =
∑

i,j[pwms
disti,j

ICi + ICj
. Here, disti,j = 1/similarityi,j and

ICi is the information content of the ith motif. Similarity between
two PWMs is calculated following the normalized version of the
sum of column correlations (Pietrokovski 1996).
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Identification of cofactors

EMT provides importance of all features in discriminating the
foreground from the background. We retained all features with
nonzero importance. From the initial set, we removed any motif
that has 60% PWM similarity (consensus overlap) for at least
50% of the binding site locations with any of the reference
motifs. Next, we calculated an enrichment score (i.e., odds ratio)
of the motif in the foreground binding sites relative to control
sites. We retained the motifs with more than 1.2-fold enrich-
ment and two-sided P-value <0.05. The resulting motifs were con-
sidered as cofactors. For further analysis, we considered cell-
specific cofactors by removing commonmotifs across cells. In par-
ticular, we excluded all cofactors that are common between any
two cell lines. The functional cell specificity measure for a TF is
determined using the variability of cofactor cardinality of such
unique cofactors.

Enrichment of PPI, same family TFs, and heterodimerizing TFs

We obtained PPI data from STRING v10 (Szklarczyk et al.
2011). Using the TRANSFAC 2011 database, we determined the
mapping from motifs to Ensembl protein id and the number of
motif pairs having PPI. Using hypergeometric test, we calculated
the enrichment of PPI between a reference TF and each set of
cell-specific cofactors. The test summary indicated that 81% of
the TF–cell cases have higher PPI enrichment among the interac-
tions involving reference TFs and their cofactor (Supplemental
Table S7a).

We compiled each PWM’s family and the list of hetero-
dimerizing PWMs from the TRANSFAC 2011 database. To identify
heterodimerizing TFs, we looked for the presence of the keyword
“heterodimer” and absence of “no” or “not” in the description
of the motif. Supplemental Table S6 shows the heterodimerizing
PWMs. Detailed manual inspection of a random subsample sug-
gests that this automated criterion may result in ∼5% false posi-
tives. We also noted that occasional use of the term “dimer”
instead of “heterodimer” may lead to ∼20% false negatives. For
the hypergeometric test of family-enrichment, we compared
how many cofactors belong to the family of reference motifs
relative to the 981motifs. Heterodimer enrichmentwas tested sim-
ilarly. The enrichment scores (odds ratios) and P-values are report-
ed in the Supplemental Table S7, b and c. The Supplemental Table
shows that 70% of the model cofactors are enriched for either het-
erodimerizing TFs or TFs coming from the same family.

Gene expression and differential gene expression

For gene expression, we used RNA-seq data downloaded from
ENCODE (Supplemental Table S5). For each cell line, we obtained
between two and four RNA-seq samples depending on the avail-
ability and obtained the number of reads aligned to each gene.
We corrected for batch effect using the sva R package (Leek et al.
2012). To estimate the differential expression between two sets
of cell lines (those in which a TF is deemed a cofactor, and those
where it is not), we used the linear model implemented in the
limma package in R (Ritchie et al. 2015).

For each cofactor, we determined all possible relevant and
nonrelevant cell pairs and took the log fold change (logFC) of
the expression in those cells. To determine the control gene ex-
pression, we considered the same sets of cell pairs but took the
logFC of an arbitrary gene instead of the cofactor. In both cases,
we considered only significant differential expressions (logFC val-
ues with P-value <0.05) provided by the limma package (Ritchie
et al. 2015).

Cell-specific PWM for the reference TF

We obtained relative feature importance of the reference
motifs from the NonInteraction models and compared them with
random expectation. To calculate the random expectation, 1000
NonInteraction models are learned based on randomly sampled
4000 sites from all binding sites across cell lines. From 1000 mod-
els, 1000 relative feature importances were calculated. Each set of
relative importance was assumed a point in p-dimensional space
where p is the number of reference motifs. We considered the rel-
ative importance vectors as data points from multivariate normal
distribution and for each vector we calculated the Mahalanobis
distances from the centroid, which follows a χ2 distribution
(Slotani 1964). The degrees of freedom (d) for the χ2 distribu-
tion were determined using maximum likelihood estimate, and a
P-value was generated from a χ2 distribution function of d degrees
of freedom.

Influencing cofactors, proximity to the influenced motif,

and expression in the most used cell type

We identified the influencing cofactor set in the cell type where
onemotif is usedmuchmore frequently than the others.More spe-
cifically, for a TF, we identified pairs of motifs and cell types where
there is a maximal differential in cell type usage of the two motifs
(i.e., one of the motifs has the highest usage in one cell type and
the lowest usage in another, and vice versa). For such pairs of
cell types X, Y and corresponding reference motifs mX & mY, we
determined the candidate motif-specific cofactors fX & fY as fol-
lows. We first separated the sequences from cell types X and Y
where mX and mY matches are found, respectively. Next, we as-
sessed each putative cofactor’s motif enrichment in each sequence
set relative to the other sequence set. If the putative cofactor is en-
riched in X relative to Y, we consider it as a putative influencing
cofactor for mx and likewise for my. All other cofactors (fc) are con-
sidered noninfluencing and serve as a negative control.

We measured the fold change (logFC) of all influencing and
noninfluencing cofactors in X versus Y using the limma package
(Ritchie et al. 2015). To demonstrate the genomic proximity be-
tween influenced motif and influencing cofactors, we chose the
nearest distance between them among potentially multiple motif
matches.

Feature count and gene expression in ubiquitous vs.

cell-specific submodels

We designated a cluster as cell-type–specific if all member sub-
models (at least five) came from the same cell type. We then esti-
mated skewness (https://cran.r-project.org/package=e1071) for
each multi-cell-type based on the numbers of submodels contrib-
uted to the cluster by various cell types. If the skewness was <25%,
we designated the cluster as ubiquitous. For each cluster, we count-
ed the number of relevant features (i.e., with nonzero importance).
Among the relevant features, we retained only those which were
deemed as putative cofactors for at least one of the cell-specific
models in our earlier analysis. The retained cofactors are designat-
ed ubiquitous or cell-type–specific based on the label of the cluster
they belong to. Any common features from the two sets are re-
moved. For each feature, we collect the expression across cell types
in question and measure the skewness of gene expression.

Software availability

Sample data and code are available for download from the
Supplemental Material and from the following GitHub repository:
https://github.com/mhfzsharmin/trisectr
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